Climate and vegetation water use efficiency at catchment scales

Peter A. Troch

Surface Water Hydrology Dept. of Hydrology and Water Resources The University of Arizona Tucson, AZ USA

Email: patroch@hwr.arizona.edu Url: www.hwr.arizona.edu/~surface

Collaborators

- Guillermo Martinez The University of Arizona
- Valentijn Pauwels University of Ghent
- Ciaran Harman University of Illinois at UC
- Murugesu Sivapalan University of Illinois at UC
- Praveen Kumar University of Illinois at UC
- Travis Huxman The University of Arizona
- Hoshin Gupta The University of Arizona

Support

- NSF EAR-Hydrologic Sciences: Understanding the hydrologic implications of landscape structure and climate - Towards a unifying framework of watershed similarity (PIs: Thorsten Wagener, Murugesu Sivapalan, Peter Troch);
- NSF EAR-Hydrologic Sciences: Water cycle dynamics in a changing environment: Advancing hydrologic science through synthesis (PIs: Murugesu Sivapalan, Praveen Kumar, Bruce Roads, Don Wuebbles)

Outline

- Background and motivation
- Testing the Horton index
- Precipitation and vegetation productivity
- The annual water balance and L'vovich proportionality relations
- Testing the Ponce and Shetty model
- Conclusions

Budyko's hypothesis:

Milly, 1994 (WRR)

Sensitivity of water balance to water holding capacity

- Sensitivity diminishes at a scale factor on the order of 1;
- This implies that the actual values of capacity are almost large enough to maximize evapo-transpiration (minimize runoff);
- This could indicate that "the rooting depth of plants reflects ecologically optimized responses to the relative timing and magnitude of water and energy supplies".

Milly, 1994 (*WRR*)

Plants are in control?

Motivation: another Horton index...

A. A. A. A. A. A. A.

REPORTS AND PAPERS, FYDROLOGY -- 1953

TABLE 3 - SEASONAL RAINFALL RUNDER, AND WATER-LOSSED											
WEST BRANCH OF DELAWARE RIVER AL HANDOUTRING											
SUMMER SCASET ratios are in inches Depth.											
12	n ebewe			-			_	- E .	T	<u>L' </u>	640
					\sim	E	1. A.	ie-Y	. `	F	FL
Year	P'			<u>ካ</u>]	<u>'</u> *	- <u>-</u> -		<u> </u>	[-	<u>.</u>
L at	122	C]	(4)	(31	6	<u></u>	1 (82	-+-	21 	
	1						h-roat	ant	a a	8531 4	88
0.505	23.29	6	06 j :	2.97	307	0.327.]ເກະນາ ໄປສະຫາ7	20	ā,	791	.75
OE	13308]	ll ≥ nativ	4.211 3.46	2,79	1092月	:347	17.4	5	.772	-22
1 23			321	2 95 2 95	237	1.12	11.32	:43	4]	794	쀻
00	15.59		75	3.36	_3,4₽	1.05	0.01	LLZ		-14-3 -14-3	581
heid	15.99		56	2.90	1,66	4 L 13	$\left \begin{array}{c} (1.10) \\ (3.23) \end{array} \right $		Ĕ.	.831	05
1.1	20.65		42	3.09	2,33	1,06 1 54	ر عرد : ا الاح هر ا	d iz		872	1.09
4 13	1871		43	3101	1.22 DB4	0.0	1.3.80	15	26	.904	1.03
1 13	19.20			a.55	1 212	:04	15.23	8, 18	썓]	811 I 	.⊌0 .∠2
hail	2490		[89]	5.12	34	5 Q747	1:60		45	749	5A
	29.19		187	5,98	2 9	89.1	1155	4 2 L 4 A	uuri Peri	7.5	721
1 1	32.14		5.4]	「見ぬ」。	59	5 0.963 11.1 mil	511873) 1998:	2 24 8 26	30	758	. 62
	20.9	P	162	'≨40 ∗ 00	$\begin{bmatrix} 2 & 2 \\ 5 & 2 \end{bmatrix}$	21190. 511.40	112.2	3,19	93.	7291	ъ. Ģ
	▶ 21.10 2 27.10		a∡⊃t s.eot	1460-0 1594	29	£ ¦œ	l je 5	: Z4	45		1.1 0 ⊐a
1124	u 27.76 I 23.18	61.	i est	3.64	l ie	$\langle \langle g, 0 \rangle$.8. 4	2 22	171	 	1.18
	2 240	3	9.Zð	5.35	29	al to l	771	S Z:	n e A d	BA I	.00
	ajz∖ø	뒥	508	307	1.2	100 100	이 나라다.		59		.62
1.3	4 245	31	0,40 A 10	3.45	1 4 .2 33	2 0 6 5	و من اع	iii ¦ii	ŪΟ.	.755	.82
124	5 234	Э.	o-1≂ 5.86 :	3.78	$+\overline{2}$	0 096	o (:4)	99 J 4	27	1 723	1,90
	7 296	*	j.54	5.39	6.	71001	2 15.1	3 2	1.52 6 a.4	(고)의 - 지역	.0e 6d
- L 1	8 25 3	15	3.06	754	1 25	51 0.88	2) (Z) (E)	272 L 2 L 9	0.000	1.754	1.29
19	9 <u>22.3</u>	2	<u>7.18</u>	<u>, 998</u>	<u>ej 23</u>	éélison	· <u> </u>	<u>₽</u> 4 44	10 C 1		
	المراجع		-197	44	z 28	35	15	20 .	563	0177	0.90
рле	86, 33.4		د عدي							<u> </u>	L

(a) This is apparent influencempacity in inches per day as acquised from daily rainfail-records. The actual influencemcapacity is greater in the ratio of 24 to the number of hours per day of rainfail-excess duration.

 $H = \frac{V}{\simeq} \text{ constant}$ W

V : Growing-season vaporization (E+T)W : Growing-season wetting (P-S)

"The natural vegetation of a region tends to develop to such an extent that it can utilize the largest possible proportion of the available soil moisture supplied by infiltration" (Horton, 1933, p.455)

Horton, 1933 (AGU)

A closer look at the Horton index

$$\mathbf{H} = \frac{V}{W} \cong \frac{P - R}{P - S}$$

- P: Growing-season rainfall
- R: Growing-season total runoff (discharge)
- S: Growing-season surface runoff (quick runoff)

No energy: P - R = V = 0 : H = 0No storage: R = S = P : H = 0/0Humid: R > S : H < 1

Semi-arid: $R \cong S < P : H \cong 1$

MOPEX watershed to test Horton Hypothesis

Three Baseflow Separation Methods

- USBR Method (Wahl and Wahl, 2006)
 - Based on IH method (recession slope test)
- USDA Method (Arnold and Allen, 1999)
 - Method adopted in SWAT model
- UG Method (Huyck et al., 2005)
 - Based on hydraulic groundwater theory
 - Accounts for catchment's geomorphology

Comparison of Results

Illustration of Huyck et al. Method

Spatial Variability of Horton Index

Horton Index vs. Humidity Index

Mean Horton Index

Std. Horton Index

53% with Std(H)<0.06 74% with Std(H)<0.07 83% with Std(H)<0.08 93% with Std(H)<0.10

Interannual Variability of Horton Index

Ecological controls to interannual variability in semi-arid regions

Figure 24: Schematic of non-vegetated and vegetated system responses to elevated precipitation. In non-vegetated systems (*Left*), elevated precipitation (*P*) results in increased soil-water storage (SWS) that drains resulting in groundwater recharge (*R*). In the vegetated systems (*Right*), elevated precipitation results in increased soil-water storage that enhances vegetation biomass production (BP), which feeds back to decrease soil-water storage and precludes recharge (Scanlon et al., 2005).

Interannual Variability of Horton Index

Interannual Variability of Horton Index the dati place point delection Look species 0000000000000000000000 • • • • • • • • • aut in an other -----Legend Selected Stations US States US DEM 0 - 110 Horton Index Interannual Variability 111 - 227 228 - 341 342 - 470 **Closed Shrublands** 471-617 618 - 775 776 - 940 941 - 1,115 1,118 - 1,284 1,285 - 1,441 0.95 1,442-1,600 00 1.601 - 1.758 0 1,759 - 1,921 1,922 - 2,088 0.9 2,089 - 2,260 2,261 - 2,451 2,452 - 2,674 2,675 - 2,940 0.85 2,941 - 3,272 > 3,273 Horton Index [V/W] 0.8 1.51 2.21 2-04 0.75 0.7 0.65 1664000 0.6 1668000 1672500 О 0.55 0.5 0.5 1.5 2 1

Humidity Index [P/PE]

Biome rainwater use efficiency

Huxman, 2004 (Nature)

Convergence to a common RUE_{max}

Huxman, 2004 (Nature)

Water Use Efficiency and Actual ET

Webb et al, 1978 (Ecology)

Catchment-scale Water Use Efficiency the dat time point printion look sprice D#88 1 88 X + + 133870 0000000000000000000000 • • • • • • • • • aut Person of -----Legend Selected Stations US DEM 0 - 110 Catchment-scale Water Use Efficiency 111 - 227 228 - 341 Closed Shrublands 342 - 470 471-617 0.5 618 - 775 776 - 940 941 - 1,115 1,118 - 1,284 0.45 1,285 - 1,441 1,442-1,600 1.601 - 1.758 1,759 - 1,921 Water Use Efficiency [g.m⁻².mm⁻¹] 0.4 1,922 - 2,088 2,009 - 2,200 2,261 - 2,451 2,452 - 2,674 2,675 - 2,940 2,941 - 3,272 > 3,273 0.35 8 0.3 1981 473.04 468300.046 Heleve 5.55 1.29 Sches 0 0 0.25 0.2 0.15 03410500 03438000 0.1 03443000 0 03451500 0.05 0 0.5

0.55

0.6

0.65

0.7

0.75

Horton Index [V/W]

0.8

0.85

0.9

0.95

1

The annual water balance

Fig. 3. Diagram of the water balance of land area. P--Precipitation; R--total runoff; U--groundwater runoff; S--surface runoff; W--total wetting of the area (annual infiltration) including surface retention; N--unproductive evaporation (evaporation proper); T--transpiration of plants; E--evapotranspiration.

L'vovich, 1979 (AGU)

The L'vovich Hypothesis

L'vovich, 1979 (AGU)

Rappahannock River, Virginia

Rocky River, North Carolina

Flint River, Georgia

Rolling Fork River, Kentucky

James River, Missouri

Chehalis River, Washington

Proportionality Relations

 W_p : Wetting Potential (annual precipitation that can be retained by the catchment) λ_s : Surface Runoff Abstration Coefficient

Ponce and Shetty, 1995 (JoH)

Proportionality Relations

X = Y + ZZ = X - Y $Z \to Z_p \Leftrightarrow X \to \infty; Y \to \infty$ W = U + VV = W - U $V \to V_p \Leftrightarrow W \to \infty; U \to \infty$ $U = \frac{\left(W - \lambda_u V_p\right)^2}{W + \left(1 - 2\lambda_u\right)V_p}$

 $V_{\rm p}$: Vaporization Potential (annual wetting that can be evaporated) $\lambda_{\rm s}$: Baseflow Abstration Coefficient

Ponce and Shetty, 1995 (JoH)

Back to the Horton Index

Conclusions (1)

- In semi-arid climates, the Horton index is very constant and close to 1 over the growing season, indicating that the biome WUE is constant and near maximum;
- In humid climate, the Horton index is fairly constant and its value below 1 depends on the available energy; the biome WUE depends on other factors, such as nutrients and radiation;

Conclusions (2)

- When evaluated at annual time scales, the Horton index seems to converge to a common value, similar to those observed in semi-arid climates;
- This seems to indicate that the catchment WUE converges to a common maximum WUE, in line with previous observations at the biome level;

Conclusions (3)

- The interannual variability of the Horton index can be accurately reproduced using the proportionality relations of L'vovich;
- The parameters of the model indicate the catchment functioning in terms of competition between quick runoff and wetting, and between evapotranspiration and baseflow.

Interannual Variability of Horton Index

Ecological controls to interannual variability

Scanlon et al., 2005 (PNAS)