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Climate Change Amplifications of Climate-Fire

Teleconnections in the Southern Hemisphere

Michela Mariani1 , Andrés Holz2 , Thomas T. Veblen3, Grant Williamson4 ,

Michael-Shawn Fletcher1 , and David M. J. S. Bowman4

1School of Geography, University of Melbourne, Parkville, Victoria, Australia, 2Department of Geography, Portland State

University, Portland, OR, USA, 3Department of Geography, University of Colorado Boulder, Boulder, CO, USA, 4School of

Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia

Abstract Recent changes in trend and variability of the main Southern Hemisphere climate modes are

driven by a variety of factors, including increasing atmospheric greenhouse gases, changes in tropical sea

surface temperature, and stratospheric ozone depletion and recovery. One of the most important

implications for climatic change is its effect via climate teleconnections on natural ecosystems, water security,

and fire variability in proximity to populated areas, thus threatening human lives and properties. Only sparse

and fragmentary knowledge of relationships between teleconnections, lightning strikes, and fire is available

during the observed record within the Southern Hemisphere. This constitutes a major knowledge gap for

undertaking suitable management and conservation plans. Our analysis of documentary fire records from

Mediterranean and temperate regions across the Southern Hemisphere reveals a critical increased strength

of climate-fire teleconnections during the onset of the 21st century including a tight coupling between

lightning-ignited fire occurrences, the upward trend in the Southern Annular Mode, and rising temperatures

across the Southern Hemisphere.

Plain Language Summary This paper provides a critical view on the impending fire danger under

increased climatic pressures, which is of extreme importance for the immediate future of climate change

policy making and of landscape management and conservation actions. Our analysis of documentary

fire records from across the Southern Hemisphere reveals, for the first time, a critical increased strength of

fire-climate teleconnections and a tight coupling between lightning-ignited fire occurrences, the upward

trend in the Southern Annular Mode, and rising temperatures during the onset of the 21st century. A clear

increase in the potential for lightning-ignited fires in response to climate change is an important reminder of

the multitude of impacts that global warming will wreak on the Earth System.

1. Introduction

Fire is a key Earth system process determining global vegetation distribution (Bond et al., 2005), modulating

the carbon cycle (Liu et al., 2015), and influencing the climate system (Bowman et al., 2009). Documenting

mechanisms behind climate-fire dynamics is critical for understanding the future of Earth’s ecosystems under

projected climate and fire change scenarios (Abatzoglou & Williams, 2016; Jolly et al., 2015; Westerling et al.,

2006). Given the large variety of biomes and fire regimes around the Southern Hemisphere (SH; Bond et al.,

2005; Bowman et al., 2009; Enright & Hill, 1995; Murphy et al., 2013), it is crucial to understand how fire activity

responds to climate variability within different vegetation contexts and climatic frameworks, and how such

dynamics are being altered by climate change. Here we (1) present the first hemispheric-scale compilation

of relationships between large-scale climate modes (e.g., El Niño–Southern Oscillation, ENSO; Southern

Annular Mode, SAM; and Indian Ocean Dipole, IOD) and documentary records of lightning- and human-

ignited fires for the past 30–50 years and (2) present the first synthesis of climate change-mediated impacts

on these climate-fire teleconnections across temperate and Mediterranean biomes of Chile, Argentina, South

Africa, and Australia (Figure 1a).

Across the Earth, variability in fire occurrence and spread is determined by the confluence of sufficient and

dry fuel, an ignition source, and suitable weather for burning (Bradstock, 2010; Krawchuk et al., 2009). In moist

temperate forest areas, since there is abundant biomass to burn (Figure 1b), fire activity through time is con-

trolled by fuel moisture content (i.e., climate) and ignitions (lightning and humans; Bradstock, 2010;

Cochrane, 2003; McWethy et al., 2013; Pausas & Ribeiro, 2013). In contrast, fires in drier temperate biomes
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(e.g., Mediterranean-type ecosystems) are both moisture limited and biomass limited (Figure 1b). Increased

fire activity in Mediterranean-type ecosystems is sensitive to quasi-annual antecedent rainfall pulses,

whereas concurrent droughts and/or hot-dry winds tend to be the key driver of fire activity in temperate

forests (Moritz et al., 2012). Hence, predicting future fire activity hinges partly on understanding the impact

of climate conditions, mediated by large-scale climate drivers, on landscape flammability via vegetation

type and inherent fuel traits (Krawchuk et al., 2009; Moritz et al., 2012). The SH features extensive areas of

both Mediterranean-type and temperate forest ecosystems, both hosting endemic and fire-sensitive

Gondwanan plant species, embedded in fire-prone vegetation (e.g., eucalypt forests of southeast Australia;

introduced pine plantations in Central Chile; Hennessy et al., 2005). In these settings human ignitions are

known to increase with intermediate population densities, but most fires are aggressively fought except

those uncontrollable due to extreme weather conditions (Bowman et al., 2017).

Despite the acknowledged importance of various climate modes in modulating fire weather across the SH,

analyses of their influence on SH fire activity are few in number, focus on one or few climate modes, and

are spatially fragmented (Cai et al., 2009; Holz, Kitzberger, et al., 2012; Holz & Veblen, 2011; Mariani et al.,

2016)—hence, a hemispheric synthesis of climate-fire teleconnections is overdue. Here we consider the

three large-scale climate modes operating at interannual and decadal scales in the SH—the SAM, ENSO,

and IOD (Figures 1c–1e)—to (a) identify the individual most important climate index influencing fire activ-

ity by vegetation types within Mediterranean-type and temperate forest ecosystems across the SH and (b)

quantify the past variability of teleconnections between climate modes and fire activity throughout the

end of the 20th and the start of the 21st century.

This work also aims to identify the effects of the above-mentioned climatic change on the teleconnections

between climate modes and natural (lightning-ignited) fire occurrences across the SH. Although lightning

strikes constitute the most important natural ignition source for wildfires, they only account for a small

Figure 1. (a) Geography of the dominant climatemodes and study regions: (1) Australia, (2) South Africa, and (3) South America. (b) Conceptual model of coarse-scale
controls on fire activity: Fuel-limited areas tend to experience more fire due to interannual pulses in precipitation. In contrast, areas with more abundant fuel tend to
experience more fire due to pulses of ignitions and/or fire-conducive weather conditions (modified from Moritz et al., 2012). (c) Time series of Southern Annular
Mode (SAM) index (annual); (d) NIÑO 3.4 index (annual); (e) Indian Ocean Dipole (IOD) index (annual). See methods for sources. ENSO = El Niño–Southern Oscillation;
NPP = net primary productivity.
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proportion of total fire occurrence in many regions on Earth (Bowman et al., 2009). Nonetheless, under war-

mer conditions it is likely that the potential for lightning-ignited wildfires will increase in response to climate

change (Abatzoglou et al., 2016; Williams, 2005). There have been few attempts to understand the implica-

tions of increased flash rate on fire activity, principally area burnt from short-term coupled satellite data

and climate models (Goldammer & Price, 1998; Krause et al., 2014; Price & Rind, 1994), and there is a dearth

of information on the hemisphere-wide relationship between actual lightning-ignited fires and climate

trends. To address this important knowledge gap, we compiled a hemispheric-scale documentary data set

of natural (lightning-ignited) wildfire occurrences, testing the connection between trends in lightning-ignited

fires and (1) rising SH temperature and (2) variability in the leading climate modes throughout the late 20th

and early 21st centuries.

2. Methods

2.1. Fire and Climate Records and Climate Indices

Fire occurrence data were obtained through local administrative databases from four countries within the

Mediterranean-type and temperate forest regions of the SH: Chile, Argentina, Australia, and South Africa

(Figure 1). Information on the data sets collected and the sources are presented in supporting information (SI)

Table S1. We define a fire season year (extending from the austral spring—early September—through early

fall—late March) by the year in which the fire season starts—for example, fire season 1951/1952 = 1951. Two

(per fire season) fire-regime metrics were used to represent annual-scale fire activity: number of occurrences

and area burnt per fire season, including both human-set and lightning-set fires (separately and merged).

Prescribed burns and arson fires were excluded from all data sets prior to analyses; thus, we used only acci-

dental and unplanned fire events. To minimize the effect of errors in area burnt measurements and small

human-set fires, only fire events larger than 5 ha were included in the analyses. To account for differences

in climate-fire mechanisms in each biome, fire data were separated by vegetation type: herb-/grass-

dominated versus tree-dominated vegetation within the broad climate study regions.

2.2. Statistical Analyses

Simple and partial Pearson correlations, scatterplot analyses, and linear regressionmodels were conducted to

examine the spatiotemporal relationships of past and future wildfire occurrences and area burnt to variability

in climate modes. Time series were tested for normality using the Shapiro-Wilk normality test (Shapiro & Wilk,

1965). If skewed time series were identified, a log transformation was performed prior to correlation analyses.

A simple correlation matrix was created using all the fire activity data (occurrences and area burnt) to test

whether fire activity was correlated with same-year climate conditions and climate modes/variables in each

study region. A significance test using a 0.9 confidence level was run in the corrplot package (Wei & Simko,

2016) in R Core Development Team (2013). Interactions among climate modes involve complex feedbacks

and variable interaction patterns in space and time (Cai et al., 2011; Fogt et al., 2009; Meyers et al., 2007;

Risbey et al., 2009). To account for the possible codependence of climate indices in modulating fire activity

across the studied regions, partial correlations were calculated using simple (Pearson) correlations of the resi-

duals of pairs of linear regression models: fire metric (e.g., area burnt in woody vegetation in South

Africa) ~ climate mode 1 (e.g., IOD) + climate mode 2 (e.g., ENSO) and climate mode 3 (e.g., SAM) ~ climate

mode 1 (e.g., IOD) + climate mode 2 (e.g., ENSO). In this way, two climate modes (e.g., IOD and ENSO) were

set as control variables for the relationship between fire activity and the remaining climate mode (e.g., SAM).

To achieve a hemispheric synthesis of ignition patterns, fire occurrences from all the regions were summed as

departures (in standard deviation units, i.e., z scores) and run through the same partial correlation procedure.

A summary table of the highest significant partial correlation values (i.e., seasonal or annual) per region,

biome, and dominant vegetation type is presented in Tables 1a–1c. A table with the highest significant sim-

ple Pearson correlation values is also presented (SI Table S3). A spreadsheet listing all the simple and partial

correlation coefficients for all the study regions and metrics is available in SI (additional external table).

Correlation matrices by region are presented in SI Figures S2a and 2b. Barplots showing the comparison of

Pearson correlation coefficients between simple and partial correlations are presented in Figure S6.

To analyze changes in the patterns of ignition directly related to climate variability and change at a hemi-

spheric scale between the 21st (2000–2014) and 20th (1958–1999) centuries, only the number of lightning-

lit fires (i.e., as opposed to intraregion, idiosyncratic, and complex socioecological ignition patterns), and
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not the area burnt, were considered in the statistical analyses. In this case, due to the low number of

observations by year, herbaceous and woody vegetation types were combined. Simple Pearson correlation

coefficients between climate indices and SH summed fire occurrences (all unplanned human fires and

lightning-ignited fires) were measured on either the full and split time series. To quantify the relationship

between observed warming on fire occurrence across the SH, summed fire occurrence records from all the

analyzed regions (and combined vegetation types) in the SH were compared against hemispheric-scale

annual temperature. To minimize the issues deriving from an uneven distribution of data points in the

20th and 21st centuries, a randomized simple correlation method was employed using 14 years in the

20th century (n = 21st century) that were chosen through 100 random combinations (supporting

information Table S3, Document S3).

Lastly, to project the impact of SAM on fire occurrence under increasing greenhouse gases concentrations

over the remaining of the 21st century, a simple linear model of SH fire occurrences against the summer

SAM index projection (data from McLandress et al., 2011; Thompson et al., 2011).

3. Results and Discussion

3.1. Climate Modes and Variability in the Occurrence and Extent of Fire Across the SH

Our measure of same-year correlation coefficients between seasonal climate mode indexes and (a) total

annual wildfire activity (human, i.e., unplanned burns only, plus lightning-lit fires) and (b) lightning-lit fires

only provides insights on the leading modes of fire variability in each study region. The associations of the

three climate modes with fire occurrence and area burnt, from all ignition sources and lightning alone, are

described below, with subsequent sections considering the effects of ENSO, IOD, and SAM separately.

Differences between patterns of human- and lightning-ignited fires were not addressed in this work, as they

are idiosyncratic to the different cultures and regions (e.g., motives and timing of intentional or accidental

burning) and require a research design targeting human behavior.

ENSO (NIÑO3.4 Index) is significantly positively correlated with wildfire activity in temperate Australia (SEAUS;

i.e., number of fires and area burnt in both vegetation types), Mediterranean Chile (CHMEDI; i.e., area burnt in

both vegetation types), western Mediterranean Australia (WMEDIAUS; i.e., number of fires and area burnt in

woody vegetation), and temperate South America (TEMPSA; i.e., area burnt in woody vegetation). The highest

partial correlation coefficient values between fire and ENSO were consistently found across regions in spring

in the temperate regions, while they were found in the antecedent autumn in the Mediterranean regions

Table 1a

Pearson Correlation Coefficients (r) for Partial Correlations (p Values Are indicated in Parentheses) Between Seasonal Climate Modes and Documentary Records of Fire

Activity: Unplanned Fires (Total of Human and Lightning Ignited), by Region

Control variables: IOD + NIÑO3.4 Control variables: IOD + SAM Control variables: SAM + NIÑO3.4

Vegetation type SAM SAM season NIÑO3.4 NIÑO3.4 season IOD IOD season

Mediterranean CHMEDI (n = 26) herbaceous 0.559 (0.005) winter (A) 0.5722 (0.004) annual (A) �0.4860 (0.018) winter (A)
woody 0.4497 (0.024) winter (A) 0.385 (0.069) autumn (A) �0.3901 (0.065) winter (A)

WMEDIAUS (n = 67) herbaceous 0.4116 (0.0019) summer (N) �0.2676 (0.05) spring (N) 0.364 (0.006) spring (N)
woody 0.3017 (0.026) annual (N) 0.2759 (0.043) autumn (A) 0.291 (0.03) spring (N)

EMEDIAUS (n = 67) herbaceous �0.333 (0.013) spring (A) / / / /
woody / / / / �0.2596 (0.057) summer (A)

SAFR (n = 66) woody 0.42 (0.001) annual (N) / / 0.354 (0.008) spring (N)
Temperate SEAUS (n = 64) herbaceous �0.293 (0.031) spring (A) 0.299 (0.027) spring (A) 0.265 (0.05) annual (N)

woody �0.3778 (0.004) spring (A) 0.4217 (0.001) summer (A) 0.29 (0.03) annual (N)
WTAS (n = 35) herbaceous 0.4843 (0.0036) summer (N) / / / /

woody 0.5601 (0.0005) summer (N) 0.3218 (0.063) summer (N) 0.3424 (0.04) autumn (N)
TEMPSA (n = 67) herbaceous 0.4320 (0.001) summer (A) / / 0.309 (0.022) spring (N)

woody 0.4848 (0.0002) summer (N) �0.2362 (0.085) spring (A) 0.315 (0.03) spring (A)

Note. Only highest significant same-year correlation coefficients are reported (by season). Full correlation matrices between interannual climate modes and
fire activity by vegetation type for each region are presented in supporting information (Figures S2a and S2b). Letters in parentheses indicate the most significant
fire metric (N = number of fires; A = area burnt). Region codes: CHMEDI = Mediterranean Chile, WMEDIAUS = western Mediterranean Australia,
EMEDIAUS = eastern Mediterranean Australia, SAFR = Mediterranean South Africa, SEAUS = temperate Southeast Australia, WTAS = western Tasmania, and
TEMPSA = temperate South America (Chile and Argentina). The letter n in parentheses indicates the number of years used to run Pearson correlation coefficients.
Control variables refers to the climate modes kept constant to account for codependencies in their respective effect on fire activity. IOD = Indian Ocean Dipole;
SAM = Southern Annular Mode.
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(Figure S2). ENSO is also significantly associated to lightning-ignited fire occurrences in SEAUS and CHMEDI in

summer (for both vegetation types combined; see section 2 and Table 1b).

The IOD shows significant partial correlations with the fire activity metrics in all vegetation types across all

temperate regions during spring, summer, and annually, and also in some Mediterranean regions with both

Table 1b

Pearson Correlation Coefficients (r) for Partial Correlations (p Values Are indicated in Parentheses) Between Seasonal Climate Modes and Documentary Records of Fire

Activity: Number of Lightning-Lit Fires (Summed Occurrences; Woody and Herbaceous Vegetation Types Combined), by Region

Control variables: IOD + NIÑO3.4 Control variables: IOD + SAM Control variables: SAM + NIÑO3.4

SAM SAM season NIÑO3.4 NIÑO3.4 season IOD IOD season

Mediterranean CHMEDI (n = 26) 0.3774 (0.075) winter �0.586 (0.0032) summer / /
WMEDIAUS (n = 40) 0.3679 (0.006) summer / / 0.3225 (0.0173) spring
EMEDIAUS N/A N/A N/A N/A N/A N/A
SAFR (n = 61) 0.3298 (0.019) annual �0.237 (0.093) winter 0.2767 (0.051) spring

Temperate SEAUS (n = 54) 0.2912 (0.044) summer 0.2666 (0.0669) summer 0.30879 (0.023) spring
WTAS (n = 35) 0.2873 (0.099) annual / / 0.3680 (0.032) spring
TEMPSA (n = 67) 0.2871 (0.035) autumn �0.3329 (0.013) spring 0.2508 (0.0672) spring

Note. Only highest significant same-year correlation coefficients are reported (by season). Full correlation matrices between interannual climate modes and fire
activity by vegetation type for each region are presented in supporting information (Figures S2a and S2b). Region codes: CHMEDI = Mediterranean Chile,
WMEDIAUS = western Mediterranean Australia, EMEDIAUS = eastern Mediterranean Australia, SAFR = Mediterranean South Africa, SEAUS = temperate
Southeast Australia, WTAS = western Tasmania, and TEMPSA = temperate South America (Chile and Argentina). The letter n in parentheses indicates the number
of years used to run Pearson correlation coefficients. N/A stands for information not available due to lack of data. Control variables refers to the climatemodes kept
constant to account for codependencies in their respective effect on fire activity. IOD = Indian Ocean Dipole; SAM = Southern Annular Mode.

Figure 2. (a) Stacked plots of the Southern Annular Mode (SAM) index (summer) and the total number of wildfires in the
Southern Hemisphere (SH; black solid line; only regions with a positive correlation with the SAM index are included in the
summed record) from all ignition sources and vegetation types combined; (b) scatterplot of the two time series shown in
(a). Color and symbol coding refers to the 20th (blue dots) and the 21st (red triangle) centuries; (c) summer SAM index
projection under increasing greenhouse gases concentrations (data from Thompson et al., 2011, and McLandress et al.,
2011); (d) linear model projecting the total (human and lightning lit) wildfire occurrences in the SH extending to the year
2100 based on the SAM index projection presented in (c). Pearson correlation coefficients are reported in (a) and (b).
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herbaceous and woody vegetation (Table 1a). In CHMEDI and EMEDIAUS, the IOD displays negative partial

correlation coefficients with the fire metrics, whereas positive values are observed in all the other regions.

Significant positive correlations were also found with natural fire activity across Australia during spring.

The SAM index shows high significant positive correlations with fire activity from all ignition sources in all

regions and vegetation types (Table 1a). High partial correlation coefficients were found in spring and sum-

mer in the temperate regions, whereas the highest correlation coefficients in the Mediterranean regions were

found especially in winter and annually. SAM has a significant positive correlation with lightning-lit fires for all

regions (except SEAUS) particularly during summer and annually (Table 1b). Accordingly, our results indicate

that SAM in the same-year summer and spring seasons plays a key role in modulating unplanned fire activity

(occurrences and area burnt) across all the studied regions (Figure 2), especially across temperate forests in

the SH (Tables 1a–1c).

We assessed whether SAM, as the most influential climate mode across all study regions, had an impact on

the combined record of all fire occurrences (number of fires) from all ignition sources in all vegetation types

and across all regions that had separately shown positive correlation to the summer SAM index (CHMEDI,

WMEDIAUS, SAFR, TEMPSA, and WTAS). SAM is positively correlated to fire occurrence of all regions, from

all ignition sources and vegetation types combined (r = 0.61; p value < 0.001; Figure 2a and SI Figure S4).

These simple correlation coefficient values remain high and upward trends in teleconnections between

SAM and fire occurrence over the SH are observed during the 20th and early 21st centuries (r = 0.58 and

r = 0.52, respectively), with higher dispersion from the mean during in the early 21st century (Figure 2b).

These results are supported by our randomized correlation method results (Table S3). Based on the strong

linear relationship between observed summer SAM index and SH fire occurrence (i.e., number of fires;

Figure 2a), projected results on the relationship between both time series show a persistent increasing trend

throughout the 21st century, reaching up to 8–10 standard deviations from the historical mean occurrence in

fire (Figure 2d).

Results indicate an overall tight and positive association between SH temperature and fire occurrence, with a

persistent upward trend over time (r = 0.54; p value< 0.001; Figure 3a). The warming-fire occurrence relation-

ship is substantially stronger during early 21st century than the 20th century (r = 0.64 versus r = 0.12, p

value < 0.05). Moreover, the SAM and IOD indexes (see all seasonal r values in SI Figure S5) display a strong

significant correlation with the number of lightning-lit fires combined across the SH, with tighter relationship

and increased departure from the mean during the early part of the 21st than during the 20th centuries

(Figures 3c and 3d).

3.2. ENSO: The “Pacific” Mode

Our results from the partial correlations analysis confirm existing literature supporting the importance of

ENSO in driving fire activity in SEAUS, CHMEDI, WMEDIAUS, and TEMPSA (Tables 1a–1c), though we note an

absence of a significant correlation (either positive or negative) between ENSO and the summed SH fire occur-

rences from all ignition sources (Table 1c) in all vegetation types. A significant relationship between ENSO and

fire activity has been previously reported for some of the study regions used here based on both documentary

Table 1c

Pearson Correlation Coefficients (r) for Partial Correlations (p Values Are indicated in Parentheses) Between Seasonal Climate Modes and Documentary Records of Fire

Activity: Southern Hemisphere Summed Occurrences

Control variables: IOD + NIÑO3.4 Control variables: IOD + SAM Control variables: SAM + NIÑO3.4

1958–2014 SAM SAM season NIÑO3.4 NIÑO3.4 season IOD IOD season

All unplanned wildfires (n = 66) 0.4225 (0.00145) summer / / 0.3264 (0.016) spring
All lightning-ignited wildfires (n = 66) 0.3295 (0.0147) annual / / 0.3823 (0.0043) spring

Note. The table shows partial correlations for the summed fire occurrences in the Southern Hemisphere. Only highest significant same-year correlation coefficients
are reported (by season). Full correlation matrices between interannual climate modes and fire activity by vegetation type for each region are presented in sup-
porting information (Figures S2a and S2b). The letter n in parentheses indicates the number of years used to run Pearson correlation coefficients. Control variables
refers to the climate modes kept constant to account for codependencies in their respective effect on fire activity. IOD = Indian Ocean Dipole; SAM = Southern
Annular Mode.
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records (Holz, Haberle, et al., 2012; Mariani et al., 2016; Nicholls & Lucas, 2007) and tree ring fire scar

reconstructions (Veblen et al., 1999) and sedimentary (charcoal peaks) records (Holz, Haberle, et al., 2012).

Notwithstanding the lack of a significant correlation between fire occurrences and ENSO across the entire SH

(i.e., summed records; Table 1c), the scatterplot presented in Figure 3 showing the split time series (20th and

Figure 3. (a) Stacked plots of the Southern Hemisphere (SH) annual temperatures (z scores; data from ERA-Interim
Reanalysis) and the total number of lightning-lit fires recorded in the SH. (b) Scatterplot of the SH annual temperatures
(z scores; data from ERA-Interim Reanalysis) and the total number of lightning-lit fires recorded in the SH; black solid line
in (a) represents the summed SH number of lightning-ignited fires. Color and symbol coding in (b)–(e) refer to the 20th
(blue dots) and the 21st (red triangle) centuries. (c) Scatterplot of the NIÑO3.4 index (spring) and the number of
lightning-lit fires across the SH; (d) scatterplot of the Southern Annular Mode (SAM) index (summer) and the number
of lightning-lit fires across the SH; (e) scatterplot of the Indian Ocean Dipole (IOD) index (spring) and the number of
lightning-lit fires across the SH.
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21st centuries separated) highlights the importance of ENSO in the current century. In this case, a more posi-

tive state of spring NIÑO3.4 (El Niño) corresponds to a large departure of fire occurrences above historical

average, stepping up by about 4 standard deviations from the 20th century data point cloud (Figure 3c).

The projected amplifications of El Niño and La Niña activity due to anthropogenic climate change (Cai

et al., 2014, 2015; Power et al., 2013) herald a serious threat to both fire-sensitive ecosystems and the ever

expanding flammable bush- or wild-urban interface (Bowman et al., 2017; Sharples et al., 2016), presenting

fire management agencies with even greater challenges than they face now. In this regard, the significant

correlations of climate forcing and fire occurrence in heavily populated SEAUS and CHMEDI found in this

study and elsewhere (Holz, Kitzberger, et al., 2012; Mariani et al., 2016) are of concern.

3.3. SAM: The Leading Mode of Fire Variability in the SH

Critically, from our results it is evident that a strong departure in the positive polarity of the SAM index above

the historical meanmay result in a large increase in fire occurrence by the end of the current century or earlier

(Figures 2c and 2d). Given the importance of this climate mode in driving moisture patterns and fire activity

across themidlatitudes of the SH (Holz et al., 2017; Holz & Veblen, 2011; Mariani & Fletcher, 2016), the fact that

the observed trend in the SAM index is statistically distinct from estimates of natural variability (Abram et al.,

2014; Fogt et al., 2009) and the projections of increased positive polarity under enhanced greenhouse gases

concentrations (Thompson et al., 2011), it is crucial to take this climate mode into account when addressing

future projections of fire activity across the entire SH extratropics (Figure 2d). In terms of lightning ignitions,

we identified SAM as the leading climate mode in most of the analyzed regions across the SH (Table 1b and

Figure 3d; see below). Anomalously large positive states of SAMwere found to be linked to a great increase in

number of fires during the 21st century, stepping up by at least 2 standard deviations from the 20th century

data point cloud (Figure 3d). While the overall trend of these findings is unequivocal, we acknowledge

that the departures projected in climate and the SAM have uncertainties associated with the use of

Coupled Model Intercomparison Project phase 3 models and SAM projections to 2100 (i.e., based on a global

climate model study; McLandress et al., 2011; Thompson et al., 2011). For instance, in the future it is highly

likely that the nonlinearities of the climate dynamics (linked to changes in ozone-depleting substances

and concentration of greenhouse gases) will manifest more strongly, in turn affecting the reliability of projec-

tions in SAM and SAM-fire relationships.

3.4. IOD and SH Fire Activity: Not Only an Indian Ocean Mode

Our results suggest the existence of a relatively strong correlation between IOD and variation in fire ignited

from all sources and lightning across Australia (SEAUS, WTAS, and WMEDIAUS) and SAFR. Positive IOD events

are linked to negative precipitation anomalies across the Australian continent occasionally up to its Pacific

coast (Cai et al., 2009), especially when occurring in combination with El Niño events (Meyers et al., 2007;

Risbey et al., 2009). Our results also report for the first time teleconnections between IOD and fires in

South America (CHMEDI and SATEMP), a region that is not located within the “classical” IOD zone of influence

(Saji et al., 1999; Figure 1). Although climate mechanism and relationship between the IOD and South

American rainfall have been described in the past (Chan et al., 2008; Taschetto & Ambrizzi, 2012), we believe

our findings are probably mostly related to the complex spatiotemporal ENSO-SAM-IOD teleconnections (Cai

et al., 2011), but further studies are needed. In spite of the fact that the IOD does not have a significant cor-

relation with lightning-lit fire occurrences during the 20th century, the strong association found during the

21st century (Figure 3d) highlights the possible implication of recent climatic change and warming of the

SH and the Indian Ocean (IO; Cai et al., 2013; Vecchi & Soden, 2007).

3.5. A Warmer and Fiery Future?

Our correlative analyses suggest a strong link between lightning-lit fires, rising hemispheric temperatures,

and the increasingly positive polarity of the SAM, NIÑO3.4, and IOD indexes over the 21st century

(Figure 3). Climate change is projected to increase lightning strikes (cloud to ground) frequency, an important

source of ignition for wildfires (Abatzoglou et al., 2016; Romps et al., 2014), with an estimated warming-

induced increase of roughly 5–12% for every degree (°C; Michalon et al., 1999; Price & Rind, 1994; Romps

et al., 2014) and up to 21.3% for the RCP85 projection (IPCC, 2014) at the end of the 21st century (Krause

et al., 2014). Evidence of the warming pressure on natural fire variability is the high positive correlation

coefficient between SH temperature and lightning-lit fire occurrences and the increased strength of this
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correlation stepping from the 20th to the 21st century under the persistent warming trend (Figures 3a and

3b). Importantly, lightning strikes were the cause of recent large-fire activity and carbon loss in the boreal for-

ests of North America, suggestive of a potential positive feedback between increased lightning incidence,

subsequent fire activity, and the global carbon cycle (Balch et al., 2017; Veraverbeke et al., 2017). In addition,

increased greenhouse gases along with the effects of ozone recovery are expected to continue to drive the

SAM, the most important fire-teleconnected climate mode identified in this study. During summers the

effects of ozone recovery might cancel out greenhouse forcing, whereas during the rest of the year and on

an annual basis the SAM is expected to continue on its high index polarity even under ozone recovery

(Thompson et al., 2011).

Our results indicate a strong positive relationship between fire occurrence and positive trends in SAM,

NIÑO3.4, and IOD, especially in the early 21st century (Figures 3c–3e), and highlight a potential further

increase in fire occurrence into the future related to these climate modes. Due to the tight linkages with both

unplanned and natural fire occurrence and extent across the entire SH, future SAM projections under

increasing greenhouse gases concentrations and global warming are alarming (Figures 2c and 2d, and 3d;

Thompson et al., 2011). In the tropical Pacific, extreme El Niño events are projected to becomemore frequent

due to increased ocean surface warming under a rising global temperature scenario (Cai et al., 2014). This cas-

cade of events will likely have consequences on anthropogenic and natural fire occurrences across temperate

and Mediterranean regions across the SH. Moreover, in the tropical IO, climate models project a future warm-

ing pattern that features a slower warming rate in the eastern IO than in the western IO (Cai et al., 2013; Vecchi

& Soden, 2007). This warming pattern matches sea surface temperature conditions similar to those occurring

during a positive IOD event (Cai et al., 2013), which are becoming more frequent and achieving unprece-

dented levels in the past 30 years (Cai et al., 2009). Given the high correlations of the IOD with Australian

drought and fire records, the predicted warming pattern of the IO is most likely to increasingly impact water

security and fire danger across southern Australia and may impact, at a minor magnitude, the rest of the SH.

Regardless of the potential feedback between several bottom-up factors such as fire-driven vegetation

change, technological advances to detect and suppress fires, and the increases in human ignitions, our

results indicate an underlying, marked positive trend in the lightning-ignited fires. This trend is likely to con-

tinue due to projected temperature increase and the climate modes’ trajectories. These findings imply the

existence of a significant threat for natural ecosystems and wildland urban interfaces across the SH. For

instance, landscape-scale loss of fire-sensitive ecosystems has already occurred in response to changes in fire

frequency and fire-vegetation feedbacks in parts of southeast Australia (Holz et al., 2015), New Zealand

(Tepley et al., 2017), and southern South America (Paritsis et al., 2015), with concern about a future where fires

become more frequent and/or extensive. Indeed, the threat posed by increasing fire occurrence is magnified

by the compounding effects of direct climate change impacts on ecosystem functioning, such as postfire

growth and recovery rates (i.e., under drier and more flammable environments; Enright et al., 2015; Tepley

et al., 2018). Enormously economical and socially disastrous fires are increasingly reported around the SH

(Australia, Tasmania, New Zealand, and Chile; Bowman et al., 2017). We acknowledge our analysis is limited

because we have been unable to incorporate the full array of factors and the interactions that are likely to

influence trends in the multifaceted climate-fire dynamics. Nonetheless, our findings highlight the capacity

of climate change particularly via lightning-ignited fires and interannual climate modes (i.e., fire-prone

phases in SAM, IOD, and ENSO) to strongly affect the Earth System.
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