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Global climate change and its broad spectrum of effects on human and natural systems has become 
a central research topic in recent years; biodiversity informatics tools—particularly ecological 
niche modeling (ENM)—have been used extensively to anticipate potential effects on geographic 
distributions of species. Misuse of these tools, however, is counterproductive, as biased 
conclusions might be reached. In this paper, I discuss some issues related to niche theory, 
geographic distributions, data quality, and algorithms, all of which are relevant when using ENM 
in climate change projections for biodiversity. This assortment of opinions and ideas is presented 
in the hope that ENM applications to climate change questions can be made more realistic and 
more predictive. 
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The large-scale climatic changes observed 

and documented since mid-twentieth century 
represents a major and growing concern for 
the academic community. Considerable 
human and economical resources have been 
directed at understanding these phenomena 
and their possible consequences for humans 
and the natural world (Houghton et al. 1990; 
IPCC 1995; Watson 2001).  

One dimension in which climate change 
effects on natural systems has been studied is 
in understanding its implications for potential 
geographic distributions of species. A 
common rule of thumb has been that species’ 
potential distributional areas will likely shift 
poleward, as well as upward in elevation in 
areas of topographic relief. Although a useful 
generality, the predictive power of such 
sweeping statements is low; as such, the need 
for tools that produce species-specific, 
predictive tools regarding the details of 
climate change effects on species’ 
distributions became clear. 

Ecological niche modeling (ENM), also 
known as bioclimatic modeling or climate 
envelope modeling, has been applied 
increasingly to this task. This approach uses 
georeferenced primary occurrence data for 
species, in combination with digital maps 
representing environmental parameters, to 
build models of the ecological requirements of 
species—the set of conditions suitable and 

necessary for long-term survival of 
populations of the species without 
immigrational input. Then, such conditions 
are located on landscapes, and maps created to 
indicate the distributional potential of the 
species (Pearson and Dawson 2003; Peterson 
et al. 2001; Thuiller 2003). With this 
approach, distributional shifts caused by 
climatic change, in both the past and the 
future, can be estimated based on the fact that 
the niche model is characterized in ecological 
space—conditions with which a species is 
associated at present can be sought on 
modeled future or past climate scenarios (Fig. 
1) (Hugall et al. 2002; Martinez-Meyer et al. 
2004; Meynecke 2004). 

The simplicity of the approach, improved 
availability of relevant data and software, and 
the importance of the topic have increased 
considerably the number of studies aiming to 
estimate effects of future climatic regimes on 
species’ distributions. For instance, several 
studies have projected future potential 
distributions of species for conservation 
purposes (Aspinall and Matthews 1994; 
Bakkenes et al. 2002; Beaumont and Hughes 
2002; Burns et al. 2003; Dunbar 1998; 
Erasmus et al. 2002; Iverson and Prasad 2001; 
Meynecke 2004; Midgley et al. 2002; 
Midgley et al. 2003; Ortega-Huerta and 
Peterson 2004; Peterson et al. 2002; Skov and 
Svenning 2004; Tellez-Valdes and Davila-
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Figure 1. Diagrammatic summary of the ecological niche modeling process (see text for details). 
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Aranda 2003; Thomas et al. 2004; Williams et 
al. 2003), resource management (Bradshaw et 
al. 1992; Clark et al. 2001; Holden et al. 2003; 
Loukos et al. 2003; Mati 2000; Rafoss and 
Saethre 2003; Schwartz et al. 2001; Sykes 
2001; van Staden et al. 2004; Williams and 
Liebhold 2002), public health (Ando 1994; 
Craig et al. 1999; Peterson and Shaw 2003; 
Wittmann et al. 2001), and invasive species 
(Kriticos et al. 2003). 

In many cases, however, insufficient 
attention has been paid to the limitations of 
the approach and the data, and analyses rely 
on untenable assumptions that may bias 
conclusions (Thomas et al. 2004; Thuiller 
2003; Thuiller et al. 2004b). In this paper, I 
present and discuss what I consider the most 
critical issues—both conceptual and 
operational—that should be taken into 
account when using ENM to anticipate 
climate change effects on geographic 
distributions of species. 
 

CONCEPTUAL CONSIDERATIONS 
ENM depends conceptually on the theory 

of the niche, developed in the early 20th 
century (Soberón and Peterson 2005). The 
contribution of niche theory to biogeography 
is highly relevant, since it provides key 
conceptual elements to understand why 
species have limited ranges, and how abiotic 
and biotic factors interact to mold species’ 
geographic distributions (MacArthur 1972). 
An understanding of these concepts is 
necessary for adequate and appropriate 
application of ENM tools to produce future 
potential distributional maps, and for correct 
interpretation of the results.  

Although several often disparate niche 
definitions have been proposed through the 
years (Elton 1927; Grinnell 1917; Hutchinson 
1957), in the context of biogeography, a 
generally accepted definition refers to the set 
of environmental conditions—biotic and 
abiotic—under which populations of a species 
can survive indefinitely without immigration 
(Grinnell 1917; Hutchinson 1957). According 
to Hutchinson (1957), measurements of a 
population’s performance along an 
environmental gradient (e.g., temperature) can 
be used to define tolerance limits along that 
axis—i.e., the niche limits. Extending this 
notion to two dimensions (e.g., temperature 
and humidity), the niche takes the form of a 
polygon; considering multiple (n) axes, we 

can envision an n-dimensional hypervolume 
encompassing the set of appropriate 
conditions. Hutchinson termed this 
hypervolume the fundamental niche—the full 
range of possibilities -in ecological space- 
where the population can persist. In most 
cases, though, negative biotic interactions 
(chiefly competition and predation) prevent 
species from occupying the entirety of the 
fundamental niche; according to the theory, 
the portion of the fundamental niche actually 
occupied by the species in geographic space 
was called the realized niche (Hutchinson 
1957). Hence realized niches are subsets of 
fundamental niches. 

From these ideas, several issues relevant 
to ENM and studies of climate change can be 
identified. Soberón and Peterson (2005) 
developed a conceptual framework to answer 
a fundamental question—what precisely are 
we modeling with ENM tools? As they 
described, differences exist between 
fundamental niches, realized niches, and 
geographic distributions, with each one 
implying a distinct set of influencing factors. 
According to the Soberón and Peterson 
framework, in a modeling exercise, depending 
on the nature of the input occurrence data 
(presence-only versus presence/absence data; 
source [within-the-niche] versus sink [outside-
the-niche] populations), the model may reflect 
the fundamental niche, realized niche, or 
actual geographic distribution of the species. 
In general, these authors argue that in most 
cases ENM summarizes something more 
towards the fundamental niche, which 
explains the fact that some (or a lot) 
overprediction is generally contained in 
resulting maps. 

Clearly, previous manifestations of niche 
theory are insufficient to explain geographic 
distributions of species for two reasons. (1) 
Niche theory simply does not account for 
influences of historical factors, such as 
biogeographic barriers and life history traits of 
species such as dispersal capacity, which are 
manifested exclusively in geographical, rather 
than ecological, space. (2) Although 
interactions may take place in ecological 
space (e.g., species A is able to survive at 
some temperatures only because its 
competitor species B cannot), they may also 
exist exclusively in geographic domains (e.g., 
under identical environmental conditions, 
species A is absent from site 1 because 
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species B is present, but species A is present 
at site 2 because species B has never been 
there for historical reasons), or in both realms. 

Therefore, finding in the field a stable 
population of a species likely means that that 
place presents suitable environmental 
conditions—biotic and abiotic—and thus lies 
within the species’ realized niche. Hence, 
neglecting the possibility of sink populations 
biasing model results, occurrence points can 
be assumed to represent within-the-niche 
populations. In such cases, maps resulting that 
show true overprediction (i.e., not owing to a 
poorly specified model), would represent a 
projection of the realized ecological niche 
model of the species onto an unconstrained 

fundamental geographic space: a landscape in 
which historical factors and/or interactions 
acting in the geographical domain are not 
reflected. Put another way, this map would 
identify the potential geographic distribution 
of the species. 

If the additional factors of history, limited 
dispersal ability, and biotic interactions were 
incorporated into the modeling process, then 
we would be truly modeling the realized 
ecological niche projected onto its realized 

geographical space—in other words, the 
actual geographic distribution of the species. 
Currently, to approximate actual geographic 
distribution maps from potential distributional 
models, post hoc procedures have sometimes 
been used. For example, electronic maps of 
biogeographic provinces, ecoregions, or 
vegetation types can be used as “cookie-
cutters” to trim potential distribution maps 
under the assumption that the species’ 
distribution is well-sampled at the level of 
ecoregions, and that disjunctions among such 
regions represent distributional barriers for the 
target species (Anderson and Martínez-Meyer 
2004). 

In studies in which the goal is to 
anticipate geographic shifts in species’ 
distributions resulting from climate change, 
additional problems arise. In the best-case 
scenario, a species’ present-day (modeled) 
potential distribution map resembles fairly 
well its known geographic distribution; in this 
case, an investigator may assume that 
environmental factors (rather than biotic or 
historical factors) are most influential in 
molding the species’ distribution. When this 
model is projected onto future climate 
scenario, the resulting map identifies areas 

likely to become habitable or uninhabitable 
for that species. Several authors have argued 
that this sort of result should be taken 
cautiously, since biotic interactions may shift 
in the face of changing conditions, and may 
thus affect the distributional potential of 
species (Davis et al. 1998a; Davis et al. 
1998b; Pearson and Dawson 2003).  

In situations in which a potential 
distribution map for present-day conditions 
shows broad areas of overprediction, 
biogeographic barriers to dispersal and 
colonization, biotic interactions, or both have 
an important influence on the geographic 
distribution of the species. Such potential 
distribution maps would need to be reduced to 
the species’ actual geographic distribution 
prior to interpretation, based on explicit 
assumptions regarding which sorts of areas 
are likely to represent actual distributional 
areas as opposed to potential distributional 
areas (Fig. 2). 

Projecting such models to future scenarios 
poses important complications. If  potential 
distribution maps are not processed post hoc 
into actual distribution maps, then establishing 
which habitable areas are likely to be 
reachable by the species is difficult, and 
projections to future conditions may become 
totally unrealistic (Fig. 2). If the same scheme 
as for present-day maps is followed, and 
distributions are adjusted via maps 
representing biogeographic barriers, the 
outcome may be misleading because the 
barriers may also shift under effects of climate 
change. In other words, what is today a barrier 
for a species may not be a barrier in the 
future, because ecological differences become 
less abrupt and make previously inhabitable 
areas habitable for the species (Thomas et al. 
2001). Sadly, no straightforward solution to 
this problem exists.  

At present, projecting niche models onto 
changed-climate landscapes produces 
expected suitability maps. When the goal is to 
produce plausible future distributional 
scenarios for species, understanding and 
incorporating dispersal considerations 
becomes critical (Morecroft et al. 2002; 
Svenning and Skov 2004; Thuiller et al. 
2004a; Travis and Dytham 2002). Previous 
studies have shown that dispersal patterns are 
species-specific, and also depend on the 
geography of the area, which can make 
predictions difficult (Clark et al. 2003; Davis 
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Figure 2. Distribution model of the Volcano Rabbit (Romerolagus diazi) in central Mexico, showing raw 
predictions for (A) the present and (B) in 2050. Overprediction (commission error) is reduced with a post 

hoc clipping process both in the present (C) and the future (D) using a map of the ecoregions (black 
lines), assumed to represent biogeographical barriers for the species. Gray areas represent the prediction 
for the present and blue areas are the modeled projection to 2050 under a future-climate scenario. 
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et al. 1998b; Dullinger et al. 2004; Post and 
Forchhammer 2002; Travis and Dytham 
2002). As a result, some authors do not 
attempt to present definite future 
distributional predictions, but rather a set of 
possible scenarios based on different dispersal 
assumptions, ranging from no dispersal to 
universal dispersal (Peterson et al. 2001). In 
this way, one can at least bracket possible 
effects of climate change on species’ 
distributions. Recent findings and new 
modeling tools regarding dispersal of species, 
however, are opening opportunities to 
incorporate dispersal information into 
predictive modeling to produce more realistic 
future distributional scenarios (Clark et al. 
2003; Collingham and Huntley 2000; 
Nagelkerke and Alkemade 2003; Nathan et al. 
2002). 

Finally, even resolving issues of 
interactions, barriers, and dispersal, some 
uncertainty remains in future projections as 
regards the ability of species to survive in 
novel environments. As climates change, 
environmental regimes novel to populations 
emerge; populations will be able to survive 
under these conditions if (1) those conditions 
are within their fundamental niches (Vetaas 
2002); or (when such is not the case) (2) 
populations are able to adapt to conditions 
outside their present niches (Holt 1990; Holt 
and Gaines 1992). In the first case, projections 
to future scenarios may fail to predict areas 
within the fundamental niche but not 
represented in the modeled realized niche; as 
such, the models may underestimate potential 
future distributions of species. In the second 
situation, models will also underrepresent 
potential distributional areas, given the 
species’ ability to adapt to new conditions; 
however, theoretical and empirical evidence 
strongly suggests that adaptation is less 
frequent than migration (Holt 1996; Hughes 
2000; Martínez-Meyer et al. 2004). 
 

OPERATIONAL CONSIDERATIONS 
Modeling ecological niches and 

predicting geographic distributions of species 
frequently becomes complicated because 
input data are frequently far from ideal. As 
mentioned above, two main data streams are 
employed: (1) locality data documenting 
known occurrences of the species (some 
algorithms incorporate absence data as well), 
and (2) environmental data in the form of 

raster GIS maps, normally including some 
combination of climatic, topographic, and 
land-cover data. In climate change studies, 
parallel environmental variables must be 
available for the future (or the past; Fig. 1). In 
the following section, I discuss some 
important issues regarding data quality, both 
biological and geographic, that should be 
taken into account in this sort of analysis. 
 
Biological data 

Studies of climate change and biodiversity 
are frequently based on incomplete biological 
data; indeed, ENM emerged as a solution to 
this challenge. Perhaps the most frequent 
question from new workers in this field refers 
to minimum numbers of occurrence points 
needed to generate robust models. Sadly, no 
easy answer to this question exists. Controlled 
experiments and analyses have shown that 
minimum numbers of points required for 
modeling depends on the species in question, 
as well as on the number of geographic 
variables in the analysis, and the algorithm 
used (Kadmon et al. 2003; Stockwell and 
Peterson 2002).  

In general, a rule of thumb is that the 
more occurrence data are available, the better, 
but even this seemingly obvious point is not 
necessarily true. Actually, the distribution of 
occurrence data in ecological space becomes 
much more important than the overall density 
of points, particularly for generalist, 
widespread species that likely have broad 
ecological niches (Kadmon et al. 2003; 
Thuiller et al. 2004b). When the distribution 
of occurrence points in geographic space is 
too biased (i.e., observations are clustered in 
small regions of the species’ range), biases 
appear in ecological space as well, and models 
can misrepresent the species’ ecological 
requirements (Fig. 3). In this case, systematic 
removal of points to “balance” their spatial 
distribution have resulted effective (Hidalgo-
Mihart et al. 2004). Although methods for this 
manipulation need exploration and 
standardization, a useful approach has been to 
overlay a reticule on the study area, and 
randomly select one point per cell (Hidalgo-
Mihart et al. 2004). Cell size for the reticule 
has to be large enough to eliminate clustered 
points, but not as large as to eliminate points 
from the same cell that represent different 
environments. 
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Figure 3. Geographic bias in occurrence data available for the Mexican wolf (Canis lupus baileyi). (A) 
Input points show strong geographic bias towards the center of the distribution of the species, causing a 
bias in the distribution model. (B) Systematic removal of points reduces the bias and produces better 
distribution models. 
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Not only are the amount and distribution 
of points important to producing good models, 
but some species are more difficult to model 
than others. In general, models for species 
with narrow ecological niches (e.g., habitat 
specialists) result better and more predictive 
than models for species with broad ecological 
niches (Thuiller et al. 2004b).  

Of course, it is always highly 
recommended to validate model predictions 
prior to any extrapolation or interpretation 
(Oreskes et al. 1994). Validation usually takes 
the form of challenging models to predict the 
distribution of a suite of points that were not 
included in model development—a general, 
predictive, and usable model will be able to 
anticipate the distributions of such sets of 
points. Model predictions may also be 
validated via cross-time tests, which such is 
feasible (Martínez-Meyer et al. 2004). 
Different statistics have been used for this 
purpose, including the Receiver Operating 
Characteristic (ROC) curve, Cohen’s Kappa 
statistic, and chi-square tests (Anderson et al. 
2003; Elith and Burgman 2002; Fleishman et 
al. 2003; Oreskes et al. 1994); detailed 
reviews of statistical methods can be found 
elsewhere (Fielding and Bell 1997; Pearce and 
Ferrier 2000; Pearce et al. 2001), but a couple 
of comments will be provided here.  

First, ROC curves and Kappa require both 
presence and absence data, whereas chi-
square not. Of course, the former methods are 
more powerful, but interpretation of ‘absence’ 
information is complex—absences of species 

will frequently not coincide with absence of 
appropriate niche conditions, making the 
meaning of the absence data difficult to 
interpret (Soberón and Peterson 2005). In 
instances in which true absence data are 
lacking and sampling from non-presence areas 
is performed to obtain ‘pseudo-absence’ 
points (Engler et al. 2004; Hirzel et al. 2001; 
Zaniewski et al. 2002), these same concerns 
are relevant.  

Furthermore, the independence of data 
sets for developing models (‘calibration’) and 
for evaluating them (‘validation’) is critical. 
Different strategies have been followed here, 
including data partitioning, resubstitution, and 
independent sampling. In general, obtaining 
new and independent data directly from the 
field is preferable. When such new sampling 
is not feasible, data partitioning seems to 
provide better results than resubstitution 

(Fielding and Bell 1997). When biases exist in 
particular sampling methods, calibration and 
validation data sets may both reflect them, and 
the model may not be generally representative 
of the distribution of the species. 

In any case, true independence may not 
exist in the biological data because of the very 
nature of species’ distributions. However, this 
situation overestimates model fit, 
necessitating development of validation 
techniques that incorporate effect of spatial 
autocorrelation (Hampe 2004). Projections 
onto scenarios of change over time bring 
additional complications, because frequently 
no data are available to validate future 
predictions. Projections to past climates are 
often the only means of obtaining statistical 
validation for cross-time predictions 
(Martínez-Meyer et al. 2004). In future 
climate change studies, a minimal step is 
validation of model predictions under current 
conditions—because errors are propagated or 
even exacerbated in projections (Thuiller 
2003), species for which present-day models 
are poor should not be used for future 
projections.  
 
Geographic data 

Several issues related to environmental 
datasets used in ENM affect model 
performance in both present and future 
predictions, including the amount, type, and 
quality of variables included in analyses. 
Experimental studies have demonstrated that 
some environmental variables are more 
informative than others when modeling 
ecological niches. In general, climatic 
variables (e.g., maximum and minimum 
temperatures, precipitation) are particularly 
useful, as they coincide with physiological 
tolerances (Parra et al. 2004; Peterson and 
Cohoon 1999). However, a combination of 
climatic and topographic features, like 
elevation, slope, and orientation of slopes, 
yields better results (Parra et al. 2004) because 
topographic features modify how individual 
animals or plants experience a particular 
climate regime. In future projections, 
elevation certainly is not useful, as certain 
elevation-temperature associations break 
down under different climates. 

Not only are the type and number of 
environmental variables important, but also 
their quality in terms of resolution (spatial, 
temporal, and metric) is crucial. Today, 
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thanks to efforts by individuals and research 
groups, global, regional, and local climatic 
and topographic data sets with different 
spatial and temporal resolutions are freely 
available (e.g., Hydro-1K1,  WorldClim2; 
Chapman et al. 2005). Nonetheless, at least 
until recently, many regions lacked adequate 
geographic information (Lim et al. 2002). In 
any case, a thorough understanding of the 
methods used to derive geographic datasets is 
highly desirable, since all of them have 
limitations (Chapman et al. 2005), and these 
limitations will affect modeling outcomes.  

Spatial resolution (pixel size) is of 
particular importance when interest is focused 
on species with relatively small ranges or in 
complex landscapes (Chapman et al. 2005). 
Low-resolution maps do not capture such 
variability and models result too coarse or 
imprecise (Lim et al. 2002). High-resolution 
datasets may be difficult to generate for some 
regions because climatic station data are too 
sparse or are lacking (New et al. 1999). Even 
when high-resolution maps are derived (e.g., 
Worldclim), it is very important to validate 
their reliability with independent field data or 
other information (Magana et al. 1997) before 
using them for predicting species’ 
distributions. 

In climate change studies, simulated 
future climates are generally obtained for 
projections by one of two means: (1) 
increasing one or more present-day 
temperature variables (minimum, maximum 
or mean) by some quantity (e.g., Tellez-
Valdes and Davila-Aranda 2003), or (2) from 
data output from General Circulation Models 
(GCM) (e.g., Peterson et al. 2002). Use of 
GCM results is clearly preferable since 
climate change involves complex 
rearrangements of numerous parameters; 
GCMs are currently the best means to account 
for these complexities (Murphy et al. 2004). 
However, inconsistencies among predictions 
from different GCMs available pose problems 
for users who may not be able to decide 
among alternatives. In recent years, research 
efforts have focused on quantifying 
uncertainties among models, with the aim of 
producing more reliable estimations (Allen et 
al. 2000; Murphy et al. 2004). Regional 
Climate Models (RCM) have been developed 

                                                 
1 http://lpdaac.usgs.gov/gtopo30/hydro/.  
2 http://biogeo.berkeley.edu/worldclim/worldclim.htm.    

for some areas as well, which improve spatial 
resolution, but which bring an additional suite 
of assumptions and potential complications 
(MacCracken et al. 2004). For now, statistical 
downscaling of GCM results remains the best 
option for producing high-resolution scenarios 
(Giorgi et al. 2001).  

 
Modeling algorithms 

As with biological and geographic 
datasets, ENM algorithms have seen 
considerable improvement and development 
in recent years. Currently, many ENM 
algorithms are available as stand-alone 
software packages (e.g., Biomapper, 
DesktopGarp, FloraMap, BIOCLIM), or are 
implemented in statistical or GIS packages 
(e.g., GRASP). This rapid development has 
led to a series of studies testing and 
comparing algorithm performance under 
diverse circumstances. Although results 
suggest that no single algorithm can be 
identifying as performing better than all others 
under all circumstances (Brotons et al. 2004; 
Pearson et al. submitted; Thuiller et al. 2003), 
some generalities can be drawn.  

First, as mentioned above, all approaches 
face particular problems in dealing with 
widespread species. This effect results from 
increased probability of data being lacking or 
bias in representation of the niche (Brotons et 
al. 2004), or from reduced statistical power 
(Stockwell and Peterson 2002). In this case, 
algorithms able to handle “true” absence data 
(e.g., Generalized Linear Models, GLM; 
Artificial Neural Networks, ANN) seem to 
perform better than presence-only methods 
(e.g., Ecological Niche Factor Analysis, 
ENFA; BIOCLIM). However, most biological 
data sources provide only occurrence records; 
so methods that at least take advantage of 
“pseudo-absence” information (e.g., Genetic 
Algorithm for Rule-set Prediction, GARP) 
may have an advantage. 

Second, since model performance varies 
among species, combining results of different 
methods may be desirable in cross-taxon 
studies (Thuiller 2003). Currently, only a few 
algorithms incorporate multiple methods in 
predicting distributions, like Biodiversity 
Modeling, Biomod (Thuiller 2003) and GARP 
(Stockwell and Peters 1999). Another useful 
approach to this challenge may be 
development of models using several distinct 
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algorithms, and combining the results after 
modeling. 

Finally, projections to future climate 
scenarios may produce very different results 
depending on the algorithm used, even when 
present-day results are very similar (Thuiller 
2003). These differences arise because 
different algorithms make different 
assumptions when extrapolating to future 
scenarios presenting environmental 
combinations not found in the present 
(Pearson et al. submitted). Theoretical studies 
have indicated that significant elements in 
species’ adapting to new conditions are the 
degree of dissimilarity between conditions 
within and outside the niche, genetic variation 
for key traits determining abundance and 
distribution, dispersal dynamics, etc. (Holt 
and Gaines 1992). A fundamental problem is 
that very little is known about species’ 
responses to novel environments to permit 
their incorporation into the modeling process 
(Holt 1990). Probably, the most appropriate 
recommendation here is to evaluate algorithm 
performance in present-day predictions, to 
select only those algorithms that perform best, 
and to follow a ‘consensus’ approach with 
algorithms used in future projections. This 
approach at least provides a notion of ranges 
of distributional possibilities of target species, 
and strengths and weaknesses of algorithms 
employed. Clearly, more research is needed 
both in fundamental aspects of the ecology 
and evolution of species, and in 
implementation of these findings in ENM. 
 

CONCLUSIONS 
In recent years, climate change has come 

to rank among the most active research topics 
in science because of its immediacy, and the 
profound effects on natural systems and 
human welfare that are anticipated. Rapid 
development of biodiversity informatics tools 
has stimulated research focused on forecasting 
climate change impacts on biodiversity. ENM 
has become particularly important, because it 
provides one of few predictive approaches to 
understanding geographic dynamics of 
species. As more people turn to such tools, it 
becomes relevant to review key aspects of 
their use. Poor understanding of the ENM 
approach, both in terms of conceptual basis 
and practical implementation, might lead to 
inappropriate results or interpretations. 

The first elements for consideration are 
the biological, ecological, and geographic 
characteristics of the species in question. 
Natural history aspects such as niche breath, 
ecological affinities, and dispersal capacity 
are crucial to understanding geographic 
distributions, and to interpreting model 
results. Here, the theory of the niche plays a 
key role—based on the this conceptual 
framework, we can affirm that the ENM 
approach does not produce a representation of 
the geographic distribution of species, but 
rather an unconstrained geographic projection 
of the realized niche, estimated in ecological 
space. Other elements that modify species’ 
geographic distributions from their 
fundamental potential, e.g., biogeographical 
barriers and competitors, are not integrated 
into the ENM process. Post hoc procedures 
are generally implemented to convert 
potential distribution models into actual 
distribution models if the intention is to 
produce realistic scenarios of present and 
future distributions of species.  

In addition to the conceptual framework, 
the quality of input data, both biological and 
geographic, is fundamental. Species’ 
distributions and their responses to climate 
change processes are idiosyncratic. Spatial 
and metric resolutions of geographic data are 
decisive in the quality of modeling outcomes. 
In projections to future scenarios, 
notwithstanding several complications, GCMs 
are the most reliable source of future-climate 
information, but downscaling is mandatory to 
permit regional and local studies. Currently, it 
is impossible to identify any single modeling 
algorithm that performs better than all others 
for all types of species and data conditions, 
and I suspect that use of multiple methods 
may prove to be the most robust current 
option. 

Despite all the limitations discussed 
herein, ENM is the best instrument currently 
available for anticipating effects of climate 
change on distributions of species. As more 
workers get involved in this field, I anticipate 
rigorous and critical evaluation of ENM tools, 
as well as filling key knowledge gaps and 
incorporating them into the modeling systems. 
In this way, this approach will become more 
reliably predictive, and results will be 
increasingly useful in preservation of both 
natural and human resources. 
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