
Chapter 6 

 

 

 
 

© 2012 Abrol et al., licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Climate Change and Carbon  
Sequestration in Dryland Soils 

Peeyush Sharma, Vikas Abrol, Shrdha Abrol and Ravinder Kumar 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/52103 

1. Introduction 

Climate change is the biggest threat to humanity with implications for food production, 
natural ecosystems, health etc. The primary greenhouse gases are carbon dioxide (CO2), 
methane (CH4) and nitrous oxide (N2O). Although carbon dioxide is the most prevalent 
greenhouse gas in the atmosphere, nitrous oxide and methane have longer durations in the 
atmosphere and absorb more long-wave radiations. Therefore, small quantities of methane 
and nitrous oxide can have significant effects on climate change. The mean global level of 
greenhouse gases in the atmosphere is increasing to a level that can generate serious climate 
changes in air temperature, aggressive weather cycles and greater frequency of storms 
(Osborn et al., 2000). The primary sources of greenhouse gases in agriculture are the 
production of nitrogen based fertilizers; the combustion of fossil fuels such as coal, gasoline, 
diesel fuel, natural gas; and waste management. Livestock enteric fermentation results in 
methane emissions. Increased levels of greenhouse gases enhance the naturally occurring 
greenhouse effect by trapping even more of the sun’s heat, resulting in a global warming 
effect. The average surface temperature of the earth is likely to increase by 2 to 11.5°F (1.1-
6.4°C) by the end of the 21st century, relative to 1980-1990, with a best estimate of 3.2 to 
7.2°F (1.8-4.0°C) (Fig. 1). The average rate of warming over each inhabited continent is very 
likely to be at least twice as large as that experienced during the 20th century. 

These changes in greenhouse gas emissions generally are linked to human activities. 
Scientists have concluded that warming of the climate system is “equivocal" and there is a 
"very high confidence that the globally averaged net effect of human activity since 1750 has 
been one of warming" (IPCC, 2007). The concentration of carbon dioxide (CO2) in the 
atmosphere increased from 285 ppm at the end of the nineteenth century, before the 
industrial revolution, to about 366 ppm in 1998 (equivalent to a 28-percent increase) as a 
consequence of anthropogenic emissions of about 405 gigatonnes of carbon (C) (± 60 
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gigatonnes C) into the atmosphere (IPCC, 2001). This increase was the result of fossil-fuel 
combustion and cement production (67 percent) and land-use changes (33 percent). Acting 
as carbon sinks, the marine and terrestrial ecosystems have absorbed 60 percent of these 
emissions while the remaining 40 percent has resulted in the observed increase in 
atmospheric CO2 concentration. Agricultural ecosystems represent 11% of the earth’s land 
surface and include some of the most productive and carbon-rich soils. Agriculture accounts 
for approximately 13% of total global anthropogenic emissions and is responsible for about 
47% and 58% of total anthropogenic emissions of methane (CH4) and nitrous oxide (N2O). 
Besides CH4 from enteric fermentation (32%), N2O emissions from soils due to fertilization 
constitute the largest sources (38%) from agriculture (US-EPA, 2006; IPCC, 2007; Stern, 
2006). The annual greenhouse gas emissions from agriculture are expected to increase in 
coming decades due to increased demand for food and shifts in diet. Conservation tillage, 
nutrient management, cover cropping and crop rotation can drastically increase the amount 
of carbon stored in soils. Now scientists use carbon dioxide equivalents to calculate a 
universal measurement of greenhouse gas emissions as greenhouse gases have varying 
global warming potentials Table (1).  

 
 

 

 
 
Figure 1. Temperature projections to the year 2100, based on a range of emission scenarios and global 
climate models. The orange line (“constant CO2”) projects global temperatures with greenhouse gas 
concentrations stabilized at year 2000 levels. Source: NASA Earth Observatory, based on IPCC Fourth 
Assessment Report (2007) 
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Sources 1990 1995 2000 2005 
Avg. 

2001-2005 
Million metric tons CO2 equivalent (MMTCO2- Eq)

U. S. Agricultural Activities 
GHG Emissions (CH4 and N2O) 
Agriculture soil managementa 366.9 353.4 376.8 365.1 370.9 
Enteric fermentationb 115.7 120.6 113.5 112.1 115.0 
Manure management 39.5 44.1 48.3 50.8 45.6 
Rice cultivation 7.1 7.6 7.5 6.9 7.4 
Agricultural residue burning 1.1 1.1 1.3 1.4 1.2 
Subtotal 530.3 526.8 547.4 536.3 540.1 
Carbon sinks 
Agricultural soils (33.9) (30.1) (29.3) (32.4) (31.7) 
Other NA NA NA NA NA 
Subtotal (33.9) (30.1) (29.3) (32.4) (31.7) 
      
Net emissions, Agriculture 496.4 496.7 518.1 503.9 508.4 
 
Attributable CO2 emissionsc 

Fossil fuel/mobile combustion 
46.8 57.3 50.9 45.5 52.6 

 
% All emissions, Agricultured 8.5% 8.0% 7.7% 7.4% 8.0% 
% Total sinks, Agriculture 4.8% 3.6% 3.9% 3.9% 4.0% 
 
% Total emissions, forestry 0.2% 0.2% 0.2% 0.3% 0.3% 
% Total sinks, forestrye 94.3% 92.0% 94.8% 94.7% 95.0% 
 
Total GHG emissions, All sectors 6,242.0 6,571.0 7,147.2 7,260.4 6,787.1 
Total carbon sinks, All sectors (712.8) (828.8) (756.7) (828.5) (801.0) 
Net emissions, All sectors 5,529.2 5,742.2 6,390.5 6,431.9 5,986.1 

Source: EPA, Inventory of U.S. Grenhouse Gas Emissions and Sinks: 1990-2005, April 2007, 
[http://epa.gov/climatechange/emissions/usinventoryreport.html]. 
a. N2O emissions from soil management and nutrient/chemical applications on croplands. 
b. CH4 emissions from ruminant livestock. 
c. Emissions from fossil fuel/mobile combustion associated with energy use in the U.S. agriculture sector (excluded 
from EPA’s reported GHG emissions for agricultural activities). 
d. Does not include attributable CO2 emissions from fossil fuel/mobile combustion. 
e. Change in forest stocks and carbon uptake from urban trees and land filled yard trimmings. 

Table 1. Greenhouse gas emissions and carbon sinks in agricultural activities, 1990-2005  
(CO2 equivalent). 
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2. Soil as a source of carbon storage 

Soils are the fundamental foundation of our food security, global economy and 
environmental quality, the degradation of soil conditions can affect the on-farm 
environment. The soil environment is a principal component of the global carbon (C) cycle 
where key interactions between biotic and abiotic components take place to regulate the 
flow of materials to and from the pedosphere, atmosphere and hydrosphere. There is 
general agreement that although soil is part of the climate change problem, it is also an 
integral part of the solution. Soils altogether contain an estimated 1,700 Gt (billion metric 
tons) to a depth of 1 m and as much as 2,400 Gt to a depth of 2 m (Fig.2). An estimated 
additional 560 Gt is contained in terrestrial biota (plants and animals). The carbon in the 
atmosphere is estimated to total 750 Gt. The amount of organic carbon in soils is more than 
four times the amount of carbon in terrestrial biota and three times that in the atmosphere. 
Lal et al., (1999) estimated historic loss of ecosystem C due to desertification at 9–14 Pg of 
SOC pool, with losses from the biotic/vegetation pool at 10–15 Pg. Ojima et al., (1993) 
estimated that grasslands and drylands of the world have lost 13–24 Pg C due to 
desertification.  

 
Figure 2. Carbon reserve and exchange in the land- ocean- atmosphere continuum  (Quantitative 
estimates regarding fossil fuels in ocean sediments vary widely) 

Carbon dioxide is removed from the atmosphere and converted to organic carbon through the 
process of photosynthesis. As organic carbon decomposes, it is converted back to carbon 
dioxide through the process of respiration. The quantity of organic carbon in soils is spatially 
and temporally variable, depending on the balance of inputs versus outputs. The inputs are 
due to the absorption of carbon dioxide from the atmosphere in the process of photosynthesis 
and its incorporation into the soil by the residues of plants and animals. Some of the dead 
plant matter is incorporated into the soil in humus, thereby enhancing the soil organic carbon 
pool.  Decomposition of soil organic matter, releases carbon dioxide under aerobic conditions 
and methane under anaerobic conditions. In certain conditions, decomposition of organic 
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matter may also cause the release of nitrous oxide, which is another powerful greenhouse gas. 
The content of organic carbon in soils in most cases constitutes less than 5% of the mass of soil 
material and is generally concentrated mainly in the upper 20 to 40 cm (the so-called topsoil). 
However, that content varies greatly, from less than 1% by mass in some arid-zone soils 
(Aridisols) to 50% or more in waterlogged organic soils such as Histosols (Table 2). Changes in 
agricultural activities and land use system during the past centuries have made soils act as net 
sources of atmospheric CO2. Evidence from long-term experiments suggests that carbon losses 
due to oxidation and erosion can be reversed with soil management practices that minimize 
soil disturbance and optimize plant yield through fertilization. Appropriate land management 
practices can result in a significant increase in the rate of carbon into the soil. Because of the 
relatively long turnover time of some soil carbon fractions, this could result in storage of a 
sizable amount of carbon in the soil for several decades. Maintaining soil quality can reduce 
problems of land degradation, decreasing soil fertility and rapidly declining production levels 
that occur in large parts of the world which lack the basic principles of good farming practices. 
The loss of rain water that cannot infiltrate in the soils to replenish the ground water reserves 
might be the more serious long-term result of excessive tillage. Thus, the way soil is 
cultivated must be drastically changed. 
 

Soil Order 
Area 

103 km2 

Organic C 
Gt 

Alfisols 13,159 90.8 
Andisols 975 29.8 
Aridisols 15,464 54.1 
Entisols 23,432 232.0 
Gelisols 11,869 237.5 
Histosols 1,526 312.1 
Inceptisols 19,854 323.6 
Mollisols 9,161 120.0 
Oxisols 9,811 99.1 
Spodosols 4,596 67.1 
Ultisols 10,550 98.1 
Vertisols 3,160 18.3 
Other orders 7,110 17.1 
Total 130,667 1,699.6 

Source USDA 

Table 2. Estimated mass of carbon in the worlds soils resources  

3. Degradation of dryland 

Degradation of soil is especially important in drylands of the world where desertification is 
a serious problem (UNEP, 1992). The world’s drylands, 6.31 billion hectares (Bha) or 47% of 
the earth’s land area, are found in a wide range of climates spanning from hot to cold. 
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According to FAO (1993), drylands comprise four ecoregions covering land area of 0.98 Bha 
in hyper-arid, 1.57 Bha in arid, 2.31 Bha in semi-arid and 1.29 Bha in dry sub-humid climates 
(Table 3). Soils of the drylands also vary widely, but are mostly Aridisols (2.12 Bha) and 
Entisols (2.33 Bha). Dryland soils also include Alfisols (0.38 Bha), Mollisols (0.80 Bha), Vertisols 
(0.21 Bha) and others (0.47 Bha) (Dregne, 1976; Noin and Clark, 1997). The arid zones cover 
about 15 percent of the land surface. The annual rainfall in these areas is up to 200 mm in 
winter-rainfall areas and 300 mm in summer rainfall areas. Interannual variability is 50–100 
percent. Africa and Asia have the largest extension of arid zones (Table 4). 

 
Region Hyper-

arid(<0.05)a

Arid 
(0.05-0.20)

Semi-arid 
(0.20-0.50)

Dry sub-
humid  

(0.50-0.65) 

Total % of Earth’s 
land area 

 
Africa 67 0.5 o.51 0.27 1.96 15.0 
Asia 0.28 0.63 0.69 0.35 1.95 14.9 
Australia 0 0.30 0.31 0.05 0.66 5.1 
Europe 0 0.01 0.11 0.18 0.30 2.3 
N. America 0.003 0.08 0.42 0.23 0.74 5.6 
S. America 0.03 0.05 0.27 0.21 0.54 4.2 
Total 0.98 1.57 2.31 1.29 6.15  
% of Earth’s 
land area 

7.5 12.1 17.7 9.9 47.2  

* Aridity Index = P/PET 

Table 3. Global distribution of drylands of the world (modified from Middleton and Thomas 1992, 
Noin and Clarke 1997, Reynolds and Smith 2002) 

 

Continent Extension Percentage 
Arid Semi-arid Dry 

subhumid 
Arid Semi-arid Dry 

subhumid 
Million ha 

Africa 467.60 611.35 219.16 16.21 21.20 7.60 
Asia 704.30 727.97 225.51 25.48 26.34 8.16 
Oceanta 459.50 211.02 38.24 59.72 27.42 4.97 
Europe 0.30 94.26 123.47 0.01 1.74 2.27 
North/Central 
America 

4.27 130.71 382.09 6.09 17.82 4.27 

South 
America 

5.97 122.43 250.21 7.11 14.54 5.97 

Total 1641.95 1897.74 1238.68  
Source FAO (2002a) 

Table 4. The global dryland areas by continent 
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Desertification is defined as destruction of the biological potential of land which can lead 
ultimately to desert-like conditions’ (UNEP, 1977). In this context, the term ‘land’ includes 
whole ecosystems comprising soil, water, vegetation, crops and animals. The term 
‘degradation’ implies reduction of resource potential by one or a combination of 
degradative processes including erosion by water and wind and the attendant 
sedimentation. The process of desertification is not confined to the drylands of the tropics it 
also occurs in developed countries (U.S.A.), high latitude humid ecoregions (Iceland) and 
even humid regions (tropical rainforest). Traditionally desertification has been defined as 
land degradation in arid, semi-arid, and dry sub-humid areas resulting from climatic 
variations and human activities (Le Hou´erou, 1975, Warren, 1996, UNEP, 1992), but it has 
also been observed in cool, humid climates such as iceland (Arnalds, 2000). The land area 
prone to desertification has been estimated at 3.5–4.0 Bha or 57%–65% of the total land area 
of dryland ecosystems (UNEP, 1991). Of this, the land area affected by soil degradation 
alone (excluding vegetation degradation) ranges from 1.02 (UNEP, 1991) to 1.14 Bha 
(Oldeman and Van Lynden, 1998). The estimates of current rate of desertification also vary 
widely. Mainguet (1991) estimated the annual rate of desertification at about 5.8 million 
hectares (Mha), with 55% occurring in rangeland and 45% on rainfed cropland. 
Desertification in humid areas results mainly from land misuse and soil mismanagement. 
Estimates of the extent of desertification range widely and are highly subjective. UNEP 
estimated 3.97 Bha in 1977, 3.48 Bha in 1984 and 3.59 Bha in 1992 (UNEP, 1992). Land area 
affected by desertification was estimated at 3.25 Bha by Dregne (1983) and 2.0 Bha by 
Mabbutt (1984). According to the GLASOD methodology (Oldeman and Van Lynden, 1998), 
land area affected by desertification due to soil degradation is estimated at 1.14 Bha (Table 
5). As with the area affected, estimates of the current rates of desertification also vary 
widely. The annual rate of desertification is estimated at 5.8 million hectares (Mha) or 0.13% 
of the dryland in mid latitudes. Also desertification is considered as a biophysical process 
driven by socio-economic and political factors (Mortimore, 1994; Mainguet and Da Silva, 
1998). Two principal biophysical processes leading to desertification are erosion and 
salinization. Accelerated soil erosion by wind and water are severe in semi-arid and arid 
regions (Balba 1995; Baird, 1997), especially those in the Mediterranean climates (Brandt and 
Thornes, 1996; Conacher and Sala, 1998a,b). Salinization is a major problem on irrigated 
lands. The irrigated land area in the world has increased 50 fold during the last three 
centuries which was 5 Mha in 1700, 8 Mha in 1800, 48 Mha in 1900, and 255 Mha in 2000. 
Risks of secondary salinization are exacerbated by use of poor quality water, poor drainage 
and excessive irrigation, leakage of water due to a defective delivery system, impeded or 
slow soil drainage and other causes. Salinization is a severe problem in China, India, 
Pakistan, and in countries of Central Asia (Babaev, 1999). The extent of land area salinized is 
89% in Turkmenistan, 51% in Uzbekistan, 15% in Tadjikstan, 12% in Kyrgyzstan and 49% of 
the entire region (Pankova and Solovjev, 1995; Esenov and Redjepbaev, 1999). Salinization is 
also a problem in southwestern U.S.A., northern Mexico and dry regions of Canada (Balba, 
1995). Lal et al., (1999) estimated that soil erosion in drylands leads to emission of 0.21–0.26 
Pg C/y, with an additional 0.02–0.03 Pg C/y due to exposure of carbonaecous material to 
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climatic elements caused by surface soil erosion. Therefore, total annual emission of C due 
to erosion- induced land degradation in dryland ecosystems may be 0.23–0.29 Pg C/y. 
 

Land type Area (Bha) Type of soil 
degradation 

Area (Bha) 

Degraded irrigated 
lands 

0.043 Water erosion 0.478 

Degraded rainfed 
croplands 

0.216 Wind erosion 0.513 

Degraded rangelands 
(Soil and vegetation) 

0.757 Chemical degradation 0.111 

Sub-total 1.016 Physical degradation 0.035 
Degraded rangelands 
(Soil and vegetation) 

2.576 Total 1.137 

Total 3.592 Light 0.489 
Total land area  5.172 Moderate 0.509 
% degraded                                   69.5 Severe and extreme 0.139 

Total 1.137 

UNEP (1991); Oldeman and Van Lynden (1998). The estimates by Oldeman and Van Lynden does not include the 
vegetation degradation on rangeland. (Bha= 109 ha) 

Table 5. GLASOD estimates of desertification (e.g. land degradation in dry areas excluding hyber-arid 
areas) 

4. Soil organic carbon storage  

The soil organic C storage decrease with increase in temperature and increases with increase 
in soil water content. Studies show that a 30C increase in temperature is projected to 
decrease soil organic C concentration by about 11% in the upper 30 cm soil depth and 
increase CO2 emission by 8 %. This may to some extent be counteracted by higher uptake of 
carbon dioxide by plants as they grow faster in warmer conditions and store carbon as 
biomass both in the soil and the plant. The world’s dryland soils contain 241 Pg of soil 
organic carbon (SOC) (Eswaran et al., 2000), which is about 40 times more than what was 
added into the atmosphere through anthropogenic activities, estimated at 6.3 Pg C/y during 
the 1990s (Schimel et al., 2001 IPCC, 2001). In addition, dryland soils contain at least as much 
as or more soil inorganic carbon (SIC) than SOC pool (Batjes, 1998; Eswaran et al., 2000). 
Total dryland soil organic carbon reserves comprise 27% of the global soil organic carbon 
reserves (MA, 2005). The soil properties, such as the chemical composition of soil organic 
matter and the matrix in which it is held, determine the different capacities of the land to act 
as a store for carbon that has direct implications for capturing greenhouse gases (FAO, 
2004). Management of both SOC and SIC pools in dryland ecosystems can play a major role 
in reducing the rate of enrichment of atmospheric CO2 (Lal, 2002).  
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Most soils may lose one-half to two-thirds of their SOC pool within 5 years in the tropics 
and 50 years in temperate regions. The new equilibrium may be attained after losing 20–50 
Mg C/ha. Several studies has estimated the global loss at 40 Pg by Houghton (1995), 55 Pg 
by IPCC (1996) and Schimel (1998), 66–90 Pg by Lal (1999) and 150 Pg by Bohn (1978). 
Rozanov et al., (1990) observed that world soils have lost humus (58% C) at a rate of 25.3 
Tg/year ever since agriculture began 10,000 years ago, 300 million tons/year in the past 300 
years and 760 million tons per year in the last 50 years. The SOC is easily transported by 
runoff water or wind because it is of relatively low density (< 1.8 Mg/m3) and is concentrated 
in the vicinity of the soil surface. A study on wind erosion in southwest Niger showed that 
wind-borne material trapped at 2-m height contained 32 times more SOC relative to the 
antecedent topsoil (Sterk et al., 1996).  

In dryland soils, SOC declines with cultivation and even more so with desertification. In 
East Africa, Swift et al., (1994) reported that continuous cultivation for 14 years without 
recommended inputs of fertilizers and manures decreased SOC content by half from 2% to 
1%. Pieri (1991) reported that continuous cropping without application of fertilizers and/or 
manure leads to rapid decline in SOC content. The experimental results revealed a marked 
decline in soil C, reaching some 13 tonnes/ha (Fig. 3) when aboveground material is 
harvested and removed and some FYM is applied at different times, equivalent to 3.9 
tonnes/ha/year. The rate of depletion of SOC content is accentuated by soil erosion, because 
of the preferential removal of the finer soil fractions comprised of clay and organic matter. 
The SOC is often bound with the clay fraction (Quiroga et al., 1996, 1998) which is 
preferentially removed by erosion. Adoption of inappropriate land use and farming 
practices can deplete SOC content (Table 6). These trends, if unchecked, accentuate the 
process of  desertification. Swift et al., (1994) indicated  that land degradation around the 
world has led to an SOC loss of 8 to 12 Mg C ha−1on land area of 1.02 Bha (UNEP, 1991), the 
total historic C loss would be 8 to 12 Pg C. 

5. C sequestration to combat land degradation in drylands  

Drylands are considered to be areas where average rainfall is less than the potential 
moisture losses through evaporation and transpiration. About 47 percent of the surface of 
the earth can be classified as dryland (UNEP, 1992). Droughts are characteristic of drylands 
and can be defined as periods (1–2 years) where the rainfall is below the average. The main 
characteristic of drylands is lack of water. This constrains plant productivity severely and 
therefore affects the accumulation of C in soils. The problem is aggravated because rainfall is 
not only low but also generally erratic. Therefore, good management of the little available 
water is essential. In addition, the SOC pool tends to decrease exponentially with 
temperature (Lal, 2002a). Consequently, soils of drylands contain small amounts of C 
(between 1 percent and less than 0.5 percent) (Lal, 2002b). The SOC pool of soils generally 
increases with the addition of biomass to soils when the pool has been depleted as a 
consequence of land uses (Rasmussen and Collins, 1991; Paustian et al., 1997; Powlson et al., 
1998, Lal, 2001a). Soils in drylands are prone to degradation and desertification, which lead  
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Figure 3. Change in total soil carbon for a rainfed farm 

 

Traditional practices Recommended 
Plough till Conservation till/ no till 
Residue removal/ burning Residue return as mulch 
Summer fallow Growing cover crop 
Low off-farm input Judicious use of fertilizers and integrated 

nutrient management 
Regular fertilizer use Soil- site specific management 
No water controlFence-to fence cultivation Water management/ conservation, irrigation, 

water table management 
Fence-to fence cultivation Conservation of marginal lands to nature 

conservation 
Monoculture Improved farming systems with several crop 

rotations 
Land use along poverty lines and political 
boundaries 

Integrated watershed management 

Draining wetland Restoring wetlands 

Table 6. Agricultural practices for enhancing productivity and increasing the amount of carbon in soils 
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to dramatic reductions in the SOC pool. Soil-quality improvement as a consequence of 
increased soil C will have an important social and economic impact on the livelihood of 
people living in these areas. The ability of agriculture lands to store or sequester carbon 
depends on several factors, including climate, soil type, type of crop or vegetation cover and 
management practices. Carbon sequestration in the agriculture sector refers to the capacity 
of agriculture lands and forests to remove carbon dioxide from the atmosphere. Carbon 
dioxide is absorbed by trees, plants and crops through photosynthesis and stored as carbon 
in biomass in tree trunks, branches, foliage and roots and soils (EPA, 2008b). Forests and 
stable grasslands are referred to as carbon sinks because they can store large amounts of 
carbon in their vegetation and root systems for long periods of time. Soils are the largest 
terrestrial sink for carbon on the planet. The amount of carbon stored in soil organic matter 
is influenced by the addition of carbon from dead plant material and carbon losses from 
respiration, the decomposition process and both natural and human disturbance of the soil. 
By employing farming practices that involve minimal disturbance of the soil and encourage 
carbon sequestration, farmers may be able to slow or even reverse the loss of carbon from 
their fields. In the United States, forest and croplands currently sequester the equivalent of 
12 percent of U.S. carbon dioxide emissions from the energy, transportation and industrial 
sectors (EPA, 2008b). 

The sequestration of atmospheric C in the soil and biomass not only reduces greenhouse 
effect but also helps maintain or restore the capacity of the soil to perform its production 
and environmental functions on sustainable basis. Dry soils are less likely to lose C than wet 
soils (Glenn et al., 1992) as a lack of water limits soil mineralization and therefore the flux of 
C to the atmosphere. Consequenlty, the residence time of C in dryland soils is long, 
sometimes even longer than in forest soils. 

6. Carbon sequestration potential 

Several studies have attempted to assess the potential for carbon sequestration in drylands 
(Table 7). Lal (2001) estimated that they had the potential to sequester up to 0.4–0.6 Gt of 
carbon a year if eroded and degraded dryland soils were restored and their further 
degradation were stopped. Glenday (2008) measured forest carbon densities of 58 to 94 
tonnes C/ha in the dry Arabuko-Sokoke Forest in Kenya and concluded that improved 
management of wood harvesting and rehabilitation forest could substantially increase 
terrestrial carbon sequestration. Farage et al., (2007) in dryland farming systems in Nigeria, 
Sudan and Argentina showed that it would be possible to change current farming systems 
to convert these soils from carbon sources to net sinks without increasing farmers’ energy 
demand. Hülsbegen and Küstermann et al., (2008) compared 18 organic and 10 conventional 
farms in Bavaria, Germany and calculated the organic farms annual sequestration at 402 kg 
carbon, while the conventional farms had losses of 202 kg. Hepperly et al., (2008) estimated 
that compost application and cover crops in the rotation were particularly adept at 
increasing soil organic matter, also compared to no tillage techniques (Table 8). 
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Technological options Sequestration potential (Tonnes C/ha/year ) 
Croplands 0.10 – 0.20 
Conservation tillage 0.05 – 0.10 
Mulch farming (4-6 Mg/ha/year) 0.10 – 0.20 
Compost (20 Mg/ha/year) 0.05 – 0.10 
Elimination of bare fallow 0.10 – 0.20 
Integrated nutrient management 0.10 – 0.20 
Restoration of eroded soils 0.05 – 0.10 
Restoration of salt effected soils 0.10 – 0.20 
Agricultural intensification 0.10 – 0.30 
Water conservation and management 0.05 – 0.10 
AfforestationGrassland and pastures 0.05 – 0.10 

Lal et al. (1998) 

Table 7. Effects from land management practices or land use on carbon sequestration potential in 
drylands 

 

Practices Soil Carbon sequestration (kg/ha) 
Compost 1000 to 2000 
Cover crop 800 to 1200 
No-till 100 to 500 
Rotation 0 to 200 
Manure 0 to 200 
Cover+rotation 900 to 1400 
Compost + Cover + Rotation + No till 2000 to 4000 

Table 8. Soil carbon sequestration estimates for different agricultural practices. Data projected from 
Rodale long-term trials 

7. Management options to control sequester carbons 

Adoption of recommended management practices (RMPs) on favorable soils with good soil 
moisture regime and the possibility of supplemental irrigation can increase SOC 
concentration. Enhancing water use efficiency (WUE), by reducing losses due to surface 
runoff, evaporation and decreasing soil temperature by residue mulching, is important. 
Application of fertilizers, irrigation and manuring are all common practices that consume C.  
Innovative farming practices such as conservation tillage, organic production, improved 
cropping systems, land restoration, land use change, irrigation and water management 
are the strategies to increase the C storage. Organic systems of production increase soil 
organic matter levels through the use of composted animal manures and cover crops 
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(Rodale Institute, 2008). Organic cropping systems also eliminate the emissions from the 
production and transportation of synthetic fertilizers. Land restoration and land use 
changes that encourage the conservation and improvement of soil, water and air quality 
typically reduce greenhouse gas emissions. Soil quality is largely governed by soil organic 
matter (SOM) content, which is a dynamic pool and responds effectively to changes in soil 
management, primarily tillage and carbon inputs resulting from biomass production. 

8. Conservation agriculture 

Conservation tillage as an integral part of conservation agriculture includes a minimum 30% 
soil cover after planting to reduce soil erosion implies conformity with all three of its pillars: (i) 
minimum soil disturbance (ii) diverse crop rotations and/or cover crops and (iii) continuous 
plant residue cover. Reducing tillage reduces soil disturbance and helps mitigate the release of 
soil carbon into the atmosphere. Conservation tillage also improves the carbon sequestration 
capacity of the soil. The amount of carbon released from soils depends directly on the volume 
of soil disturbed during tillage operations. Therefore, lesser the soil is disturbed, better the 
conservation of soil carbon. Additional benefits of conservation tillage include improved water 
conservation, reduced soil erosion, reduced fuel consumption, reduced compaction, increased 
planting and harvesting flexibility, reduced labour requirements and improved soil tilth. 
Stewart and Robinson (2000) indicated one of the gratifying consequences of the no-till system 
is increase in SOC concentration in soil, which may range from 60 to over 600 kg C/ha/y. In 
northern Colorado, Potter et al., (1997) observed 560 kg C/ha/y accumulation during 10 years 
of no-till continuous cropping wheat system. Kihani et al., (1984) conducted soil analyses on a 
45-year old tillage experiment and reported that incorporation of biosolids improved SOC 
concentration. Murillo et al., (1998) reported that SOC concentration in 0 to 5 cm depth was 
0.84% in traditional tillage and 1.1% in conservation tillage after 2 years, and 0.89% in 
traditional tillage compared with 1.34% in conservation tillage after 4 years. Holland (2004) 
gives the interactive processes as a consequence; conservation agriculture generate the soil’s 
structural stability and have a substantial impact on the environment (Fig 4).  

9. Organic input and manuring 
Mineral nitrogen in soils may contribute to the emission of nitrous oxides and is one of the 
main drivers of agricultural emissions. The efficiency of fertilizer use decreases with 
increasing fertilization, when a great part of it is not taken up by the plant but emitted into 
the water bodies and the atmosphere. In summary, the emission of GHG in CO2 equivalents 
from the production and the application of nitrogen fertilizers from fossil fuel amounts at 
approximately 480 million tonnes (1 percent of total global GHG emissions) in 2007. In 1960, 
47 years earlier, it was less than 100 million tones. In dryland areas, several studies 
demonstrated the importance of judicious use of fertilizer, compost and nutrient 
management (Fuller, 1991; Traore and Harris, 1995; Singh and Goma, 1995; Pieri, 1995; 
Miglierina et al., 1996; Laryea et al., 1995). Application of nitrogen fertilizer is important to 
obtaining high yields, but may have little impact on SOC concentration unless used in 
conjunction with no-till and residue management (Russell 1981; Dalal 1992; Skjemstad et al., 
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Figure 4. Interactive process through which conservation tillage can generate environmental benefits 
(Holland, 2004) 

1994; Dalal et al., 1995). Recycling nitrogen on the farm by using manure and nitrogen fixing 
plants (the predominant technique of organic and low external input agriculture) enhances 
soil quality and provides nutrients. However, timing and management of its use are 
essential. Nambiar (1995) reported increase in SOC content with manuring from 0.20% to 
0.25% in 1997-1989 for a sandy soil. Ryan (1998) observed a significant increase in SOC 
concentration by application of recommended rates of fertilizers. Mäder et al., (2002) 
compare the relative input and output of three farming systems: organic agriculture; 
integrated production with farmyard Manure and stockless integrated production in a 28 
years experiment. Input of nutrients, organic matter, pesticides and energy as well as yields 
were calculated. Crop sequence was potatoes, winter wheat followed by fodder intercrop, 
vegetables (soybean), winter wheat (maize), winter barley (grass-clover for fodder 
production, winter wheat), grass-clover for fodder production, grass-clover for fodder 



 
Climate Change and Carbon Sequestration in Dryland Soils 153 

production. Crops in brackets are alterations in 1 of the 4 crop rotations. The results 
indicated an increased efficiency of organic agriculture for most arable crops, with grain 
crops showing a yield reduction of only 20 percent while fertilizer inputs were lower by 50-
60 percent (Fig.  5). Mishra et al. (1974) reported that application of manure at the rate of 9–
30 Mg ha−1 y−1 caused significant increase in SOC content. Dalal (1989) observed a positive 
effect on SOC concentration after 13 years of no-till, residue retained and N application (34.5 
Mg C/ha vs. 35.8 Mg C/ha). In semi-arid conditions, the SOC sequestration is limited by the 
input of biomass carbon. Although, crop yields are sufficiently increased by N application, the 
residue input is not sufficient enough to balance the mineralization rate.  Mathieu et al., (2006) 
pointed out that higher soil carbon levels may lead to N2 emission rather than N2O. Petersen et 
al., (2005) found lower emission rates for organic farming compared to conventional farming 
in five European countries. In a long-term study in southern Germany, Flessa, et al. (2002) also 
found reduced N2O emission rates in organic agriculture, although yield-related emissions 
were not reduced.  A reduction of the Global Warming Potential (GWP, 64 %) has also been 
found at Michigan State University for organic crops as compared to the conventional 
(Robertson et al., 2000). In India, Gupta and Venkateswarlu (1994) observed that application of 
manure at 10 Mg/ha increased SOC concentration. For Vertisols in the Ethiopian Highlands, 
Wakeel and Astartke (1996) recommended adoption of improved agricultural practices 
(nutrient management, water conservation, new varieties and crop rotation) to minimize risks 
of soil degradation. Use of high-lignin amendments, recalcitrant to decomposition, increases 
SOC concentration. 

 
Figure 5. Comparison of GHG and crop productivity in different farming systems in long term field 
experiments  
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10. Crop rotation 

Numerous case studies show that in comparison to traditional subsistence farming, organic 
yields were 112 percent higher due to crop rotation, legumes and closed circuits. Miglierina 
et al., (1993, 1996) observed that SOC content was high in wheat-grassland and wheat-alfalfa 
(Medicago sativa) rotations, especially with a conservation tillage system. In another study, 
Ryan et al., (1997) reported the beneficial effects of using reduced tillage for enhancing SOC 
concentration are accentuated when used in conjunction with rotations based on 
appropriate cover crops or pastures. Skjemstad et al., (1994) reported an increase of 550 kg 
C/ha/y in a Vertisol under Rhodes grass.  In Saudi Arabia, Shahin et al., (1998) observed that 
introducing alfalfa in rotation with wheat grown on a sandy soil increased SOC 
concentration threefold as compared with continuous wheat. In Syria, Ryan (1998) reported 
that incorporation of Medicago in rotation increased SOC concentration to 1-m depth. 
Jenkinson et al., (1999) assessed the SOC pool under different rotations on a calcareous soil 
in Syria. The SOC pool in wheat-meadow rotation increased by 1.6 Mg/ha at a mean rate of 
0.17 Mg C/ha/y in comparison with wheat-wheat rotation and by 3.8 Mg/ha at the mean rate 
of 0.38 Mg C/ha/y in comparison with wheat-fallow rotation. In Australia, Whitehouse and 
Littler (1984) observed an increase in SOC concentration from 1.18% to 1.37% in 0 to 15 cm 
depth after 2–4 years of lucerne-prairie grass pasture. In a Vertisol in central India, Mathan 
et al., (1978) reported that continuous cropping and manuring increased SOC concentration 
by 20%–40% over 3 years. In northern India, Singh et al., (1996) observed that incorporation 
of legumes in a rice-wheat rotation increased SOC concentration. Growing crops with a 
deep and prolific root system generally has a favorable impact on SOC concentration in the 
sub-soil. Barber (1994) observed that sub-soiling and incorporation of cover crops in rotation 
enhanced soil quality. Lomte et al., (1993) reported that intercropping sorghum (Sorghum 
bicolor) with legumes and application of manure increased SOC content and aggregation. Some 
examples of soil management practices that may lead to SOC sequestration are listed in Table 
9 and 10. Activity of soil fauna, especially termites, improves soil structure and enhances the 
SOC pool in the long run. An appropriate use of stone cover and gravel mulch can also 
improve soil moisture regime and enhance the SOC pool. 

11. Grazing management 

Excessive and uncontrolled grazing are a major cause of the acceleration of the 
desertification process. Grazing is the predominant land use in dryland ecosystems, and 
adoption of improved grazing practices can improve C sequestration through conservation 
and better management of surface residue. In the Sahel, deposition of droppings ranges 
from 1 tonne/ha to 50 tonnes/ha depending on the time that animals are kept on the same 
field (Sagna-Cabral, 1989; Hoffmann and Gerling, 2001). However, direct exposure to the 
elements can reduce the nutrient value of dung and droppings considerably. Although 
stubble grazing has a long tradition in drylands, increasing land scarcity, limited purchasing 
power among many smallholders and increased risks of animal theft in many areas have 
contributed to a general decline in herd sizes and in some cases, led to the abandonment of  
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Strategy/technique Practice Location/region Reference 

Erosion control/water 
conservation 

a) No-Till farming Bushland, TX, USA 
Northern CO, USA 
Queensland, 
Australia 
West Africa Sahel 
Southern Spain 

Jones and others 1997 
Potter and others 1997 
Dalal and others 1997 
Bationo and others 2000 
Murillo and others 1998 

 b) Mulching 
 stone cover 
 residue mulch 
 mulch 

 
Negev Desert 
Chihuahuan Desert 
Suriname 

 
Lahav and Steinberg 
2001 
Rostagno and Sosebal 
2001 
Breeman and Protz 1988 

Crop Diversification a) Rotations Saudi Arabia, West 
Asia, Alegria, North 
Africa 

Shahin and others 1998 
Arabi and Roose 1989 

 b) Legumes Syria, West Asia 
Australia 
Northern India 
Argentina 
 

Jenkinson and others 
1999 
Whitehouse and Littler 
1984 
Singh and others 1996 
Galantini and Rosell 
1997 

Integrated nutrient 
management and recycling

a) Manuring Maiduguri, Nigeria Aweto and Ayub 1993 

 b) Organic by-
products 

Spain Pascual and others 1998 

 c) Soil fauna Chihuahuan Desert Nash and Whitford 1995 

 d) Sewage sludge Spain Pedreno and others 1996 

Water management  a) Irrigation and 
conservation tillage

Mexico Folleu and others 2003 

 b) Irrigation with 
sewage  

Israel Hillel 1998 

 c) Irrigation with 
silt-laden water 

China Fullen and others 1995 

 d) Saline 
aquaculture 

Drylands Glen and others 1993 

Table 9. Strategies of soil management in dryland ecosystems for carbon sequestration 

stubble grazing altogether. Pluhar et al., (1987) observed that grazing caused a significant 
decline in infiltration capacity by reducing the protective vegetal cover and increasing the 
surface area of the bare ground. Thurow et al., (1988) also observed that infiltration capacity 
decreased and inter-rill erosion increased in the heavily stocked pastures. In Alice, Texas, 
Weltz and Blackburn (1995) observed that the saturated hydraulic conductivity was the least 
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for the bare soil. Biomass burning also affects soil hydrological properties. Hester et al., 
(1997) showed that fire reduced water infiltration capacity in case of the oak and juniper 
vegetation types. Therefore, controlled grazing, fire management and planting improved 
species are important considerations of enhancing biomass production and improving soil 
quality. Some examples of improved practices with positive impact on the SOC pool are 
listed in Table 11. Important among these are grazing management through controlled 
stocking and rotational grazing, fire management, and agroforestry practices involving 
legume species (Conarc et al., 2001). 
 

Strategy/technique Location/region Reference 

Surface application of biosolids Chihuahuan Desert Rostagno and Sosebal 2001 

Stone cover Negev Desert Lahav and Steinberg 2001 

Enhancing termites activity Chihuahuan Desert Nash and Whitford 1995 

Manuring Maiduguri, Nigeria Aweto and Ayub 1993 

Desert soil macrofauna  
(termites/ants) 

Chihuahuan Desert Whitford 1996 

Sewage sludge Spain Pedreno and others 1996 

Organic by-products Spain Pascual and others 1998 

Table 10. Soil management options for C sequestration in soils of dryland ecosystems 

 

Strategy/technique Practice Location/region Reference 

Improved species Sowing legumes 
 
 
Agroforestry 

Vertisols, Australia
Northern Colorado
Sadore, Niger 
West African Sahel 

Chan and others 1997 
Havlin and others 1990 
Hiernaux and others 
1999 
Breeman and Kessler 
1997 

Fire management Prescribed burning 
Stocking rate 
 

Wyoming, USA 
Negev, Israel 

Schuman and others 
2002 
Zaady and others 2001 

Grazing 
management 

Controlled grazing 
 

Kawas, USA Rice and Owensby 2001 

Improving 
grasslands 

Integrated 
management 

World’s drylands Conant and others 2001 

Erosion 
management 

Integrated 
management 

World’s drylands Lal 2001 

Table 11. Strategies of pasture and range land management for soil carbon sequestration. 
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12. Erosion control 

Soil C losses can occur both as a result of mineralization as well as through erosion often 
making it a complex relationship. Where water erosion dominates, a high proportion of soil 
C may be washed into alluvial deposits close to the erosion site and stored there in forms 
which decay more slowly than in the parent soils. Therefore, this kind of erosion may have a 
positive effect on soil CS. In Western Nigeria Gabriels and Michiels (1991) observed C losses 
from bare fallow Alfisol plots with slopes of 1, 5 and 10 % , varied from 54 to 3080 kgha-1. 
Erosion does not always decrease productivity, but if it could be shown to do so, it would be 
perverse to favour decreased productivity for a medium term and perhaps one-off gain in 
sequestered C. The same arguments probably do not apply where wind erosion is the main 
erosional process, for organic matter is usually blown great distances and dispersed to 
places where it may decay rapidly and release its C. Management options that increase the 
amount of live and dead biomass left in agricultural areas decrease erosion in general while 
simultaneously increasing the C input to the soil (Tiessen and Cuevas, 1994). Assuming that 
20% of the C displaced is emitted to the atmosphere ( Lal et al., 1998), erosion (e.g., light, 
moderate, severe and extreme forms) leads to emission of 0.206 to 0.262 Pg C y−1. Erosion 
also leads to exposure of the sub-soil rich in calciferous materials. These areas, severely 
affected by strong and extreme wind erosion, are estimated at about 103.6 Mha. If 10% of 
these areas have calciferous horizons exposed at the soil surface, about 10 Mha are subject to 
the impact of anthropogenic perturbations and environmental factors (e.g., ploughing, 
application of fertilizers, root exudates, acid rain, etc.). These factors may lead to dissolution of 
carbonates and emission of CO2. If this exposed layer containing high amounts of carbonates 
and bicarbonates leads to emissions of C at the rate of 0.2 to 0.4 Kg C ha−1 yr−1, the annual rate 
of emissions of C from SIC is 2 to 4 × 106 Kg C y−1. Therefore, total C emission due to soil 
erosion and exposure of calciferous horizon is 0.21 to 0.26 Pg C y−1. Three main type of erosion 
preventive techniques are (Lal, 1990) i) those that increase the soils’ resistance against agents of 
erosion; ii) soil surface management techniques that help establish quick ground cover and; iii) 
techniques that provide a buffer against rainfall and runoff erosivity. 

13. Summary 

Many of the factors affecting the flow of C into and out of the soil are affected by land-
management practices. The soils of drylands have lost a significant amount of C and, 
therefore, offer a great potential for rehabilitating these areas. There are vast areas of 
dryland ecosystems in developing countries where improvements in farming systems could 
add C to soils. Tillage-based agriculture damages the soil, conservation agriculture builds 
soil quality, protects water quality, increases biodiversity and sequesters carbon. 
Considering the growing concern of elevated atmospheric greenhouse gases, the complex 
economics and availability of fossil fuels, the deterioration of the environment and health 
conditions, a shift away from intense reliance on heavy chemical inputs to an intense 
biologically based agriculture and food system is possible today. Sustainable and 
conservation agriculture offer multiple opportunities to reduce greenhouse gas emissions 
and counteract global warming. Improving energy efficiency by managing agricultural and 
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food inputs can make a positive contribution to reducing agricultural greenhouse gas 
emissions. This environmentally beneficial and economically viable method of production 
agriculture should be supported and endorsed through policy mechanisms so that 
worldwide adoption is increased and global benefits are realized. Mitigation of  atmospheric 
CO2 by increase CS in the soil, particularly make sense in the scope of other global 
challenges such as combating land degradation, improving soil quality and preserving 
biodiversity. Effective mitigation policies will likely be based on a combination of modest 
and economically sound reduction which confer added benefits to society.  
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