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1.  INTRODUCTION

Globally, major increases in crop yields are required

to meet the increasing demand for food. During the

past several decades, world agricultural production

has increased rapidly, although with significant vari-

ations (FAO 2000). Production increases are mainly

due to technological developments, infrastructure im-

provement and investment increments, such as in-

creases in fertilizer investment (Fan et al. 2002), while

climate disasters are the main reason for variations in

production. Drought occurrence is one of the world’s

most widespread climate disasters affecting agricul-

tural production (UNDP 2004, Dilley et al. 2005,

Helmer & Hilhorst 2006), and is therefore a determi-

nant of world food security (Tubiello et al. 2007). An

increase in the intensity, duration and area affected by

drought has been observed over wider areas since the

1970s, particularly in the tropics and subtropics, where

rising temperature and less precipitation have con-

tributed to enhanced drought conditions. There is now

higher confidence that climate change will increase

drought risk in drought-prone areas (IPCC 2007b),

placing additional stress on food security systems that

are already under strain on food security systems in

many regions (Rosegrant & Cline 2003, Ericksen 2008).

Due to the complexity in understanding crop yield

formation and food systems, the assessment of climate

change impacts on crop production has been focused

on analyzing specific aspects including crop produc-

tion modeling, field CO2 fertilization effects on crop

yields and socio-economic modeling (Ericksen 2008).

Often the observed historical crop yields are different

from the results from crop production models, because
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it is difficult to incorporate all the relevant factors in

model development, for instance, technological devel-

opments and agricultural adaptation measures such as

new crop varieties and increases in irrigation capacity.

Similarly, observed historical crop production may dif-

fer from socio-economic model predictions because of

the fluctuations caused by natural disasters that are

likely to be ignored in most socio-economic models. A

comprehensive assessment of climate change impacts

on crop production, however, requires the explicit inte-

gration of both the natural and socio-economic compo-

nents related to crop yield formation.

Recently, integrated modeling frameworks have been

developed for global assessment of climate change im-

pacts on food security. For example, the International In-

stitute for Applied Systems Analysis (IIASA) developed

a system that combines the Global Agro-Ecological

Zones (GAEZ) model (Batjes et al. 1997) with various

general circulation models (GCMs) to provide biophys-

ical impact analysis of climate change, and then incorpo-

rates the IIASA-Basic Linked System (BLS) to facilitate

the subsequent socio-economic analysis. This modeling

framework has the advantage of providing a holistic

approach that integrates multiple influencing factors.

Given the uncertainties associated with climate change

and the complex interrelations of factors determining the

threat it poses to world food security, there is a need for

more methodologies and models to be developed to pro-

vide sufficient unbiased, solid information for disaster

reduction and risk management (UNDP 2004). Despite

their usefulness, integrated modeling frameworks intro-

duce additional uncertainties into the final results. Given

that the robustness of the overall assessment strongly de-

pends on the performance of the underlying models

which are integrated (Schmidhuber & Tubiello 2007),

there is a clear need for continued and enhanced valida-

tion efforts for these modeling frameworks.

Assessments of climate change impacts on crop pro-

duction must consider uncertainties in both future cli-

mate projections and the response of crops to these

changes. Climate change uncertainties are often eval-

uated by utilizing ensemble projections from multiple

climate models, and each GCM can be run with multi-

ple greenhouse gas (GHG) emission scenarios (IPCC

2007a). Since the probabilities of individual GCM and

GHG emission scenario combinations are generally

unspecified, the value of multiple climate model out-

puts is primarily to define the range of potential

changes. Differences among models can be explained

by using statistical methods such as standard devia-

tion, consistency indices (Wang 2005) and reliability-

weighted averages (Giorgi & Mearns 2002).

Few studies have thoroughly evaluated the uncer-

tainties of crop responses to climate change. In the

majority of global and regional assessments, crop re-

sponses are usually simulated using process-based

models that are calibrated for individual sites and then

implicitly assumed to be accurate for applying to simi-

lar environmental settings and future climate condi-

tions (Fischer et al. 2005, Parry et al. 2005). It is very

hard to analyze the uncertainties in a process-based

model, not only because the sources of uncertainty are

complicated, but also because the parameterization

processes introduce further uncertainties (Challinor et

al. 2009).

Another climate change impact assessment method is

to use historical crop yield data directly by quantifying

the sensitivity of crops to observed climate data (Lobell

et al. 2006). This method avoids the uncertainties of

crop modeling. Despite the complexity of global grain

production, Lobell & Field (2007) showed that simple

measures of growing season temperatures and precipi-

tation — spatial averages based on the locations of each

crop — explained around 30% or more of year-to-year

variations in global average yields for the world’s 6

most widely grown crops. Furthermore, this method

has the advantage of taking into account management

level and infrastructure improvement in the assess-

ment, as these factors are directly reflected in the ob-

served crop yield data. Both production management

and infrastructure are the main adaptation measures

that can be applied for improving or stabilizing crop

yield during adverse climatic conditions, such as

drought. Therefore, these factors need to be integrated

in the assessment of crop yield (Lobell & Asner 2003).

Various methods have been applied to study the

relationship between climate variability and change

and drought in different regions (Cole et al. 2002, Li et

al. 2004, 2005, Wu et al. 2004, Zhang 2004, Lehner et

al. 2006, Singh 2006, Alcamo et al. 2007, Prabhakar &

Shaw 2008). A common feature of these studies is that

the assessments focus mainly on the impacts of mean

climate change (Alcamo et al. 2007), i.e. they have not

considered the possibility of magnitude and/or fre-

quency changes of extreme events, nor have they con-

sidered scenarios of abrupt climate or socio-economic

change; yet any of these scenario variants is likely to

have a significant impact on world crop production.

The present study aims to assess the impact of global

drought risk on major crop production for current and

future climates through an integrated approach, which

includes several steps: (1) calculating drought disaster

frequencies by employing a revised Palmer Drought

Severity Index (PDSI); (2) establishing a drought risk

index (DRI ) which incorporates drought disaster fre-

quencies, drought severity and levels of production,

management and irrigation; (3) analyzing the relation-

ship between historical crop yield reduction and the

DRI; and (4) predicting the impacts of future climate

change scenarios on crop yields.
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2.  MATERIALS AND METHODS

2.1.  Revision of PDSI

The PDSI (Palmer 1965) has been successfully

applied to quantify the severity of droughts across dif-

ferent climates (Wells et al. 2004) and has become a

standard for measuring meteorological drought, par-

ticularly in the USA. It uses both precipitation and sur-

face air temperature as input, in contrast to many other

drought indices that are based on precipitation only

(Keyantash & Dracup 2002). This allows the PDSI to

take into account the effect of surface warming on

droughts and wet spells, which makes it suitable for

future climate change impact assessments.

By developing a global PDSI dataset, Dai et al. (1998,

2004) provided a detailed evaluation of the PDSI

against available soil moisture and stream flow, and

investigated the impact of surface warming of the lat-

ter half of the twentieth century on global drought and

wet areas. Dai et al. (2004) emphasized that the PDSI is

better used on annual time scales and should not be

used as a measure for soil moisture content during

cold seasons at high latitudes. In addition, quantitative

interpretations of dryness or wetness for a given PDSI

value depend on local climate conditions. For example,

a PDSI value of 4 may imply floods in the central USA,

but only moderate rainfall in northern Africa.

2.1.1.  PDSI calculation

For a given year, 4 values relating to soil moisture were

computed along with their complementary potential val-

ues for each month. They were: evapotranspiration (ET),

recharge (R), runoff (RO), loss (L), potential evapotran-

spiration (PE), potential recharge (PR), potential runoff

(PRO) and potential loss (PL). PE was estimated using

Thornthwaite’s method (Thornthwaite 1948). The calcu-

lation of these values depends heavily on the available

water holding capacity (AWC) of the soil. The 4 potential

values were weighted using α, β, γ and δ, based on local

climates that reflect the ‘Climatically appropriate for ex-

isting conditions’ (CAFEC) values (Palmer 1965). In the

present study, the observed baseline climate data were

used for the calibration of these 4 potential coefficients.

The coefficients were then used in PDSI calculation un-

der both present climate and climate change scenarios.

The soil moisture departure (d) was calculated from

the difference between actual precipitation (P) and the

computed CAFEC precipitation :

(1)

Since the same d will have different meanings at dif-

ferent times and locations, it is difficult to make

straightforward comparisons. To allow for reasonable

comparisons to be made over time and space, the mois-

ture departure was weighted with the climatic charac-

teristic K, a refinement of Palmer’s general approxima-

tion for the climate characteristic of a location for a

month i, K ':

(2)

(3)

where D
–

j is the average moisture departure for month j.

The value of 17.67 in Eq. (3) is an empirical constant

derived from 9 different locations in 7 states of the USA

(Palmer 1965). The result of multiplying the soil mois-

ture departure, d, by K is called the soil moisture

anomaly index, or the Z index, shown as:

Z = dK (4)

The Z index is a measure of how wet or dry a given

area is for a given month without regard to recent pre-

cipitation change trends. The PDSI value for a given

month Xi is then calculated as:

(5)

This PDSI is then capable of representing drought

conditions for different locations at different times and

a value of –3 indicates an extreme dry condition. By

applying the original PDSI, we found that the frequen-

cies of extreme dry conditions were unreasonably low

for arid areas, such as western China and the central

Australian desert, because the moisture departure in

these areas is small due to the low soil AWC and rela-

tively small precipitation variability. The original PDSI

cannot represent the true drought condition in these

areas, where drought events occur frequently.

In the present study, the Z index was adjusted by a

climatic mean Humid Index (HI) in order to improve

the spatial comparability of the PDSI. The revised Z

index, Z', is formulated as:

(6)

HI is the ratio of precipitation to potential evapotran-

spiration (P/PE) (Hulme et al. 1992); it is a form of

moisture index described by Thornthwaite (1948). The

square root transformation was used to avoid the

unreasonably large PDSI changes in extreme dry (e.g.
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1.0 indicates that precipitation and potential water loss

through evapotranspiration are equal. Values above

1.0 indicate a potential water surplus and values below

1.0 a potential water deficit. Hulme et al. (1992) devel-

oped a climatic classification, with different climate

zones being identified on the basis of annual values of

their HI values.

HI is the mean value of the entire calculation period.

Thus this revision does not change the correlation

between PDSI and the soil moisture anomaly calcu-

lated by the original PDSI program. As an index, the

PDSI cannot be validated directly; however, its perfor-

mance can be demonstrated by validating the Z value,

which was carried out by Dai et al. (1998, 2004). The HI

used in the present study was validated by Hume et al.

(1992). Similar to the original PDSI, the revised PDSI

cannot be validated directly. However, the soil mois-

ture anomaly (Z) results in the original PDSI calcula-

tion have not been changed and, with the validated HI,

we have assumed that the constructed index would

reveal the spatial relationship between drought and

crop yield at the global level, if such a relationships

exists.

2.2.  Relationship between drought risk and crop

yield variability

2.2.1. Definition of DRI

Risk can be expressed as the product of the prob-

ability of a hazard and vulnerability (Jones & Mearns

2004). Hence, the risk of drought disaster can be

defined as the combination of both the probability (fre-

quency) of drought disaster occurrence and the degree

of damage caused by drought disasters. In the present

study, a DRI was used to reflect the potential adverse

effects of drought. For a specific region or country i,

its DRI was formulated as:

DRIi = DDFi × DXi(1–PDLi)(1–ACi) (7)

where DDF is the drought disaster frequency, calcu-

lated as the proportion of the number of observed

drought-affected years to the total number of observa-

tion years. For a given year, if there was one or more

months in which the monthly PDSI was <–3 in the

growing season, that year was counted as a drought-

affected year. DX is the potential extent (or degree) of

the drought. It was counted as the number of months in

which PDSI was <–3 in the growing season in a year.

For the northern hemisphere, the growing season was

defined as May–September in temperate regions and

March–November in tropical regions. The southern

hemisphere has a season difference of 6 mo to the

northern hemisphere. The production level (PDL) is the

normalized value of the average yield of a specific crop

for each country and has a range of 0.01 to 0.99, which

reflects the production and management level for each

country. Irrigation is the main measure used to cope

with drought disaster. In the present study, drought

adaptive (or coping) capacity (AC) is simply defined

as, for the sown areas, the proportion of area equipped

for irrigation, which also has a range of 0.01 to 0.99.

Clearly, this definition is based on the assumption that

there are unlimited water resources available for irri-

gation, which could be an over-simplified assumption

for the complex water resource availability.

2.2.2.  Extraction of meteorological yield

In the present study, meteorological yield (MY) was

used to analyze the variations of crop yield over time.

Firstly, to calculate MY, the time series of crop yield

was detrended, assuming that the trend of the yield

(which most likely is increasing) can be generally

explained by technological progress and infrastructure

improvement. Then, the residuals of the series were

examined as the MY, which was postulated to depend

mainly on the short term meteorological conditions

(Wang et al. 2000). We employed the linear moving

average method (Xue et al. 2003) for trend yield calcu-

lation. After testing with 3, 5, 10 and 20 yr linear

moving averages, a 20 yr linear moving average of the

annual actual crop yield per unit area (AY) was

selected to calculate the crop trend yield (TY). Corre-

spondingly, the MY can be expressed as:

MYi = AYi – TYi (8)

where i is year.

As a measure of crop yield fluctuation, MY reflects

favorable and unfavorable climatic conditions and

their impacts on crop production each year. Positive

values of MY indicate increases in crop yield due to

favorable climatic conditions, and negative values

indicate a reduction in crop yield due to unfavorable

climatic conditions, such as a drought. Finally, yield

reduction rate (YRR) was determined as the ratio of

reduced yield (the negative value of MY) to TY:

YRR = –MYi/TYi when MYi < 0 (9)

2.3.  Data sources

2.3.1.  Baseline climate data

Global data on the sown area of major crops were ob-

tained from Leff et al. (2004). Six of the 19 available

crops were selected for the present study — rice, maize,
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wheat, barley, sorghum and soybean — because they

have the highest production and are widely sown. Only

the grid cells where crop-sown area was >0.5% were

analyzed. The global irrigation area proportion data for

the turn of the 20th century were obtained from AQUA

STAT (www.fao.org/nr/water/aquastat/irrigationmap/

index10.stm). Global crop yields for the period 1961–

2006 were obtained from FAOSTAT (http://faostat.

fao.org/site/567/DesktopDefault.aspx?PageID=567) for

>180 countries; crop yield data were used to analyze

the relationship between crop YRR and the DRI. Ob-

served land-surface monthly precipitation data for the

period 1961–2006 was obtained from the National Cen-

tres for Environmental Prediction (NCEP; ftp://ftp.cpc.

ncep.noaa.gov/precip/50yr/gauge/0.5deg/) at a spatial

resolution of 0.5 × 0.5° latitude/longitude. Monthly

time-series data of global terrestrial air temperature for

the period 1961–2006 were at a spatial resolution of

0.5 × 0.5° (Legates & Willmott 1990). The observed

monthly precipitation and temperature were then used

as input to calculate the baseline PDSI.

2.3.2.  Construction of future climate change data

The ensemble method was used to construct the

future climate change scenarios to address the key

uncertainties of GCM projections. The 20 GCMs from

the Climate Model Inter-comparison Project (Covey et

al. 2003) were used in the climate change projection

ensemble. The relative temperature and precipitation

change is expressed as the absolute change relative to

change in global mean temperature from MAGICC/

SCENGEN (Wigley 2007, T. M. L. Wigley 2007 pers.

comm.). This method is called pattern scaling, and is

used as a convenient solution to the scarcity of GCM

experiments that have sampled the range of climate

projection uncertainties, in particular uncertainties

caused by different emissions scenarios. Pattern-scal-

ing techniques have been developed to provide a low

cost alternative to expensive atmosphere–ocean GCM

and regional circulation model experiments, and for

creating a range of climate scenarios that embrace

uncertainties relating to different emissions concentra-

tions and forcing scenarios (Lu & Hulme 2002, Mitchell

2003, IPCC-TGICA 2007).

This relative change pattern (or normalized pattern)

is preferable to averaging GCM outputs because it

controls for differences in climate sensitivity across

models. SCENGEN uses results from experiments of a

1% compound CO2 increase developed for the IPCC

AR4 climate change patterns. The original resolution

of these change patterns in SCENGEN is 2.5 × 2.5°,

and was regridded to 0.5 × 0.5° by linear interpolation

in the present study.

For the calculation of future climate PDSI, the normal-

ized monthly change patterns of temperature and pre-

cipitation for each GCM for 12 mo were added to the

baseline monthly temperature and precipitation as input:

T1 = T0 + ΔT × ΔGMT1 (10)

P1 = P0 + P0(ΔP/100) × ΔGMT1 (11)

where T1, T0 and P1, P0 represent the future and base-

line temperature and precipitation, respectively, ΔT

and ΔP are the relative temperature and precipitation

changes per 1°C global temperature change, respec-

tively, and ΔGMT is the global mean temperature

change in a projected future time. T1 and P1 were then

were used to calculate PDSI of each grid cell for a 46 yr

simulation.

2.3.3.  Emissions scenarios

The time-series ΔGMT during the 21st century for

the 6 IPCC illustrative emissions scenarios (A1B, A1F1,

A1T, A2, B1 and B2) was obtained from MAGICC/

SCENGEN (Wigley 2003). Each SRES emissions sce-

nario used in the present study had high, mid and low

climate sensitivities, and the mid sensitivity was

selected. The ‘business as usual scenario’, or SRES A1,

corresponds to the highest emissions associated with

the highest temperature change, while SRES B1 corre-

sponds to the lowest. SRES A2 assumes the highest

projected population growth and is therefore associ-

ated with the highest food demand. The model run

starts from 1990, with the global mean temperature

change set to zero for all scenarios. For 2050, there are

small differences for the increase in temperature

among the 6 SRESs, ranging from 1.14°C (B1) to 1.67°C

(A1FI). The temperature change differences increase

with time; for instance, in 2100 the temperature rise

was 4.11°C for the highest scenario, A1F1, while only

1.89°C for the B1 scenario.

Eight regions are defined in the analysis, as listed in

Table 1.
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Region Coordinates

East Asia 15.0–55.0° N, 92–147° E

South Asia 3.0–39.0° N, 47–97° E

Southeast Asia 9.5–21.5° N, 92–126° E

North America 26.0–57.0° N, 57.0–124.0° W

Africa 33.0–5.5° S, 9.0–50.5° E

South America 47–12.5° N, 81–34.5° E

Oceania 11.0–48.0° S, 113.5–178.0° E

Europe 36.5–67.5° N, 11.0–46.5° E

Table 1. Regions and their coordinates used in the present 

study
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3.  RESULTS

3.1.  Current drought risks for the sown area of

global crops

Globally, since the 1960s, the sown areas for major

crops have experienced a historical dry trend (Fig. 1).

The drought disaster-affected areas have increased

significantly since the 1970s, with a large jump in the

early 1980s primarily due to precipitation decrease and

subsequent expansion of surface warming in many re-

gions (Dai et al. 1998, 2004). Overall, areas with annual

occurrences of PDSI <–3 for ≥3 mo during growing sea-

son increased from 10.76% in the 1960s and 1970s to

17.10% after the 1980s (Table 2). Among the major

crops, the drought-affected sown areas for maize more

than doubled from 8.51 to 18.63%, and drought be-

came more widespread for the sown areas of sorghum

from 16.01 to 28.12%. The drought-affected sown ar-

eas of barley and wheat also increased significantly.

There was a dramatic increase of drought-affected

areas in east and south Asia, Europe and Oceania dur-

ing the late 1990s and early 2000s (Fig. 2), especially

for sown areas of wheat and maize. South America and

Africa were under drought conditions throughout most

of the 1990s. The percentage of drought-affected areas

in North America and Europe were relatively low.

Africa and Oceania (mainly Australia) had very large

year-to-year variability in drought-affected areas,

ranging from none to almost 90%.

The spatial DDF pattern of crop-sown area is shown

in Fig. 3. In general, the global pattern was consistent

with the spatial pattern of HI (results not shown). Areas

with HI > 1.0 normally had DDF < 0.10, mostly in

36

Barley Maize Rice Sorghum Soybean Wheat Average

1961–1979 11.23 ± 6.79 08.13 ± 3.56 08.51 ± 5.43 16.01 ± 10.04 7.31 ± 6.81 11.94 ± 3.81 10.76 ± 2.58

1980–2006 18.73 ± 7.38 18.63 ± 6.36 13.15 ± 5.18 28.12 ± 8.450 11.67 ± 8.59 20.24 ± 6.90 17.10 ± 4.48

Average 14.98 ± 7.00 13.38 ± 7.33 10.83 ± 5.97 22.07 ± 10.04 9.49 ± 7.89 16.09 ± 6.71 13.93 ± 5.44

Table 2. Percentage of drought disaster-affected areas (±SD) for the major crop-sown regions during 1961–1979 and 1980–2006

Fig. 1. Percentage of drought disaster-affected area of the major crop sown regions from 1961 to 2006. Straight lines: linear trend
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humid regions; areas with HI = 0.5 to 0.1 normally had

DDF = 0.1 to 0.3, mostly in semi-arid and semi-humid

regions; and areas with HI < 0.5 normally had DDF >

0.3, mostly in arid regions.

3.2.  GCM-projected changes to drought-affected

areas and DDF

PDSI values were calculated by applying the GCM

projected temperature and precipitation changes over

the 2050 and 2100 time period. According to the statis-

tical results, drought disaster will become more severe

for most of the crop sown area, so for most of the

regions drought-affected area will double (Table 3).

The hotspots of future drought include southeast North

America, southern China, Central America, the Medi-

terranean and southern Brazil, where the GCMs un-

animously project higher drought disaster frequencies

than under current climate conditions. For some re-

gions, the increased drought frequencies are due to

both precipitation decrease and temperature increase,

such as the Mediterranean and southern Brazil, while

in others the drought is primarily due to enhanced

evapotranspiration due to the warming air, even when

precipitation is projected to increase slightly (e.g. most

areas of China) (see Fig. 3).

Despite the high degree of consistency in projecting

the direction of drought changes over many regions,

the 20 GCMs also produced a high standard deviation

37

Fig. 2. Percentage of drought disaster-affected area of major cropland areas (3 mo Palmer Drought Severity Index <–3, in growing 

season) in different regions
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Fig. 3. Global drought disaster frequencies for the cropland growing season (3 mo Palmer Drought Severity Index <–3, in growing 

season) for baseline (1949–2006), 2050 and 2100 projections
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in calculating the drought changes for central-eastern

North America, eastern South America, southern

China, Japan, North Europe and areas in eastern

Africa (Fig. 4). In parts of southern China and around

Uruguay the standard deviation exceeded 100%.

The global mean temperature change for 2050 and

2100 projected by the 6 SRES scenarios and the ensem-

ble GCM patterns were used to construct future cli-

mate change scenarios, and in turn used as input to

calculate the PDSI for major crop sown areas in the

39

Fig. 4. Relative standard deviation (%) of drought disaster frequency change of general circulation model patterns and scenarios

Baseline 2100 Lowest (GCM) Highest (GCM)

East Asia 10.41 26.97 ± 4.99 16.02 ± 2.47 (CCSM-30) 46.20 ± 7.45 (CNRM-CM)
South Asia 22.31 48.41 ± 6.56 32.48 ± 5.04 (CSIRO-30) 74.72 ± 5.43 (GISS-EH)
Southeast Asia 09.94 25.47 ± 5.93 10.11 ± 2.58 (GFDLCM21) 40.12 ± 20.63 (GISS-ER)
North America 12.02 36.71 ± 4.84 9.23 ± 4.42 (GISS-ER) 64.83 ± 7.51 (IPSL_CM)
Africa 22.01 58.80 ± 6.53 44.19 ± 4.84 (GISS-ER) 75.03 ± 6.84 (UKHADCM3)
South America 17.08 49.08 ± 7.00 36.08 ± 12.38 (GISS-ER) 61.67 ± 7.05 (IPSL_CM)
Oceania 14.89 58.54 ± 3.10 27.02 ± 5.73 (GISS-ER) 82.58 ± 3.55 (CNRM-CM)
Europe 11.13 47.26 ± 5.87 17.84 ±12.35 (GISS-ER) 67.43 ± 6.26 (UKHADCM3)
Global cropland 15.40 44.00 ± 5.78 31.31 ± 11.41 (GISS-ER) 59.47 ± 6.24 (IPSL_CM)

Table 3. Changes in percentage of drought-affected area (±SD) for baseline and selected general circulation model (GCM) 

predictions
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world (Fig. 5). By aggregating each GCM spatial result

globally, on average the DDFs of all major crop-sown

areas become more severe than they are currently

under all SRES emissions scenarios, although some

GCM results show reduced DDFs (as indicated by the

error bars in Fig. 5). In 2100, A1F1 gives the highest

DDF value, because it has a greater temperature-

increase rate than other emission scenarios, while B1

gives the lowest increase of the DDF value.

Spatially, the ensemble GCM projection results

show a significant increase in drought-affected areas

for all regions (Table 3), from 15.40 to 44.00%, by 2100.

DDF increases in East Asia from 10.41 to 26.97% and

in Southeast Asia from 9.94 to 25.47%; the 2 driest

regions, South Asia and Africa, increase from 22.31 to

48.41% and 22.01 to 58.54%, respectively.

For the year 2100, the GCM GISS-ER projected the

lowest drought-affected area percentages of all the

GCMs and is even lower than baseline values in North

America (Table 4). GFDLCM21 projected the lowest

value for Southeast Asia, while CSIRO-30 and CCSM-

30 projected the lowest values for South and East Asia,

respectively. UKHADCM3 had the highest projections

for Africa and Europe. Other GCMs which had the

highest projections for different regions were CNRM-

CM, IPSL_CM, GISS-EH and GISS-ER. Globally,

GISS-ER had the lowest projection and IPSL_CM the

highest among all GCMs.
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Fig. 5. Change in global drought disaster frequencies (3 mo Palmer Drought Severity Index <–3, in growing season) of major crop

sown areas for 20 general circulation model (GCM) patterns and 6 SRES emissions scenarios (A1B, A1F1, A1T, A2, B1 and B2). 

BL: baseline. Data are average of 20 GCMs; error bars: the range of individual GCM results

Baseline 2050 2100

East Asia 33.74 42.14 (24.90) 50.03 (48.28)

South Asia 30.34 59.95 (97.59) 71.89 (136.95)

Southeast Asia 27.73 50.81 (83.23) 67.48 (143.35)

North America 35.43 67.25 (89.81) 88.81 (150.66)

Africa 95.77 175.77 (83.53) 205.46 (114.53)

South America 41.18 98.08 (138.17) 120.68 (193.05)

Oceania 08.99 15.66 (74.19) 22.81 (153.73)

Europe 27.95 71.98 (157.53) 102.81 (267.84)

Central Asia 48.06 75.15 (56.37) 89.02 (85.23)

Middle East 45.97 85.26 (85.47) 106.24 (131.11)

Global average 52.45 104.60 (99.43) 129.24 (146.41)

Table 4. Drought risk index (and change, %) of different 

regions and future projections
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3.3.  Probability density distribution of future DDF

predicted by GCMs

The standard non-parameter Gauss kernel density

estimation (Parzen 1962) was employed to investigate

the probability density distribution of DDF of the 120

projections, using 20 GCMs and 6 SRES emissions sce-

narios. For most regions, the probability density func-

tion (PDF) of the 120 projections for 2100 shows a

quasi-normal distribution (Fig. 6). In Europe, there is a

left tail on the distribution curve caused by some

extreme GCM change patterns (e.g. GISS-ER). For

most of the regions, the DDF projections of 2100 for

each GCM are higher than the baseline average,

which indicates an overall enhanced drought risk in

the future climate change. In the DDF 2100 projections

for Southeast and North America, there are some por-

tions of the PDF curves lower than the baseline aver-

age line, indicating that some GCMs projected a

reduced drought risk under future climate change.

3.4.  Country-specific DRI and its relationship with

crop yield reduction

A country-specific DRI (Eq. 7) is shown in Fig. 7.

DRI is a synthesis of drought disaster probability,

drought degree and crop land management and irri-

gation levels; therefore, it can be used as an indica-

tor for yield reduction caused by meteorological

drought. As shown in Fig. 7, almost all the African

countries have high DRI values due to their arid cli-

mate, insufficient agricultural infrastructure and rela-

tively poor management levels. Mongolia and Kaza-

khstan are the hotspots of drought risk in Asia,

demonstrated by their high DRI values. South and

middle Asian countries also have high DRIs, except

those countries that have a higher percentage of irri-

gated cropland, e.g. Turkmenistan and Iran. The

Caribbean region and parts of South America includ-

ing Bolivia, Venezuela and Nicaragua have medium

DRI values.
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Fig. 6. Probability density function (PDF) distribution of the drought disaster frequency (DDF) for the different regions, predicted

by 20 general circulation models and 6 SRES emissions scenarios (120 predictions in total) for 2100. The left vertical line shows 

the average DDF of the baseline; the right vertical line shows the average DDF in 2100 under all scenarios
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Fig. 7. Global country-specific drought risk index (DRI) of cropland for baseline (1961–2006), 2050 and 2100 projections
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The DRI projections for all the regions are listed in

Table 4. Globally, average cropland DRI doubles from

52.45 to 104.60 in 2050 projections. In 2100, the projec-

tion for the DRI increases to 129.40. Among the

regions, Africa is ranked as the highest, with a baseline

DRI value of 95.77 which increases to 205.46 in 2100

projections. Oceania is ranked as the lowest drought

risk region, with a baseline value of 8.99, increasing to

22.81 for 2100 projections. With respect to the rate of

change among the regions, Europe has the largest val-

ues: its DRI increases by 157.53% for 2050 and

267.84% for 2100. East Asia has the lowest rate of

change values: 24.90% for 2050 and 48.28% for 2100.

The relationship between YRR and DRI of 4 major

grains (barley, maize, rice and wheat) were investi-

gated (Fig. 8) for countries that had data available;

countries that have obvious distorted statistical data

were omitted from the analysis. Overall, 60 to 75%

of the major crop yield reductions can be explained

by the DRI. From the established linear regression

between DRI and YRR, the future YRR can be pre-

dicted by knowing or setting the components in DRI. In

order to make explicit the climate change impacts, the

production level and adaptive capacity are assumed to

be kept constant during the future years. The changes

in DDF and drought disaster severity and/or degree

are the driving forces of YRR. The YRR of major crops

from major production countries for current and future

projections are summarized in Table 5. Globally, given

the 2100 drought disaster condition, the YRR will

increase from a baseline of 11.02 to 20.90% for 2100

projections for barley, from 11.98 to 26.16% for maize,

from 5.82 to 9.11% for rice and from 9.59 to 18.88% for

wheat. The changes for 2050 projections were also

very significant for all the major crops (Table 5).
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Fig. 8. Correlation between drought disaster risk index and yield reduction rate of major cropland. Dots represent different 

production countries. All correlation coefficients passed the 0.01 significance-level test. Note different axis scales

Barley Maize Rice Wheat

DDF_baseline 0.2193 0.2618 0.1594 0.2524
DDF_2050 0.3791 0.3187 0.2368 0.3767
DDF_2100 0.4673 0.3853 0.2876 0.4453
DX_baseline 0.7492 0.9183 0.5044 0.8655
DX_2050 1.4735 1.3075 0.9074 1.4468
DX_2100 1.9606 1.6781 1.1490 1.8809
DRI_baseline 29.25 56.43 26.37 32.53
DRI_2050 64.17 111.30 52.89 72.50
DRI_2100 83.82 140.22 67.98 95.57
YRR_baseline (%) 11.02 11.98 5.82 9.59
YRR_2050 (%) 17.35 21.26 7.84 15.48
YRR_2100 (%) 20.90 26.16 9.11 18.88

Table 5. Predicted global drought-induced yield reduction of

major crops for 2050 and 2100, using the drought disaster risk

index, for major production countries. DDF: drought disaster

frequency; DX: potential drought extent; DRI : drought risk 

index; YRR: yield reduction rate
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4.  SUMMARY AND DISCUSSION

Drought is a natural phenomenon, and waxes and

wanes in extent and duration in an apparently random

manner. However, drought is predominantly con-

trolled by precipitation and, to a lesser extent, by air

temperature. Both of these climate variables are pro-

jected to change along with global warming, which

will cause possible frequency and severity changes of

drought conditions. A clear understanding of drought

disaster risks to food production will enable an effec-

tive implementation of adaptive strategies to mitigate

its negative effects. Drought risk to food production is

considered the product of the potentially adverse

effects of drought, including its frequency, intensity

and severity, and the vulnerability which depends on

localized socioeconomic conditions.

In the present study, natural, social and economic com-

ponents were integrated for the assessment of climate

change risks on drought and food production analysis.

By introducing the HI into a revised PDSI calculation, we

improved the spatial comparability of PDSI for different

climate regions. The revised PDSI was used to generate

global DDF for current and future climate conditions,

and was then used in calculating the DRI. The relation-

ship between world major crop yields and DRI was es-

tablished based on specified linear regression between

the historical climate data and country-specific crop

yield. By validating against the current crop yield and

climate conditions, the established relationship was

applied to the projection of future crop yield changes un-

der climate change scenarios. This integrated method

closely links the country and regional scale drought dis-

aster risks and their impacts on crop production based on

historical data and ensemble GCM scenarios, which pro-

vide more persuasive evidence for global scale grain

production risks caused by climate change.

The main finding of the present study is that by the

end of the 21st century the cropland drought-disaster

risk will double with rising temperature. Responding

to the increase in the DRI, the YRR of major crops will

increase significantly as a result of future climate

change, between 34.79 to 77.51% in 2050 and 56.51 to

118.35% in 2100, varying with crop type. Globally,

sorghum- and maize-sown areas are more sensitive

than other crop sown areas. From the viewpoint of

drought disaster per se, climate change-induced varia-

tion in crop production may appear as a major threat at

the global scale. Regions that are already under high

drought-disaster risk will be hit harder from climate

change and these regions are less developed and

therefore have insufficient adaptation measures.

Therefore, food security assessments need to be under-

taken at appropriate regional or local levels (Lobell et

al. 2008)

4.1.  Limitations and future research needs

In order to address the climate model uncertainties,

the 20 GCM patterns listed in IPCC AR4 and 6 SRES

emissions scenarios from IPCC Third Assessment

Report (IPCC 2001) were used to calculate PDSI, and

the ensemble results and the PDFs are presented in

the present study. However, the GCM results were

weighted equally. Some GCM results (e.g. GISS-ER)

are very different from the majority, and therefore in-

fluence the final results. Improvement may be achieved

through GCM screening and weighting, based on their

performance of simulating current climate condition

for different regions (Wang 2005). The present study

employed the pattern scaling method for climate

change projection; therefore, the climate scenarios

may differ from the direct GCM outputs. Subse-

quently, the PDSI estimation may differ from the direct

GCM output estimations carried out by other authors,

such as Burke et al. (2006), although this study gener-

ally showed similar results. The differences between

the pattern scaling method and direct GCM outputs

needs to be further investigated (Mitchell 2003).

The present study used PDSI <–3 as the criterion for

drought disaster for all regions over the world. The

global spatial disaster-frequency pattern simulated

with this criterion shows a reasonable fit to historical

observations. However, the model performance would

likely be further improved by using different PDSI cri-

teria, or validating and adopting different PDSI for dif-

ferent regions. In addition, the present study only

focused on the relationship between yield and drought

DRI, which explains >60% of the yield reduction.

Other affecting factors for yield reduction, including

floods, pests and diseases, need to be investigated

when the relevant data become available. In calculat-

ing the future DRI, the production level and irrigation

percentage are assumed to be constant over time.

However, actual production levels and irrigation per-

centage improve along with socioeconomic devel-

opment and human adaptation. These changes are

more complicated and harder to predict. Finally, the

assessment was based only on current agricultural

economies, over which climate changes were super-

imposed without readjustment of the economic con-

ditions of countries.

4.2.  Drought disaster risks and adaptations

Drought is a slow-onset natural hazard that allows

for the implementation of disaster risk reduction mea-

sures. Understanding drought’s evolution, complexity

and social implications, including people’s vulnera-

bility to drought, will permit planners and the public
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to implement effective adaptation and preparedness

measures to reduce drought impacts. The present

study demonstrates that, due to climate change, the

trend of increasing drought risk that began at the end

of the last century will continue in the 21st century.

Therefore, a number of adaptation measures to combat

drought disaster are called for. Adaptation refers to the

change in a system in response to some force or pertur-

bation such as climate change (Smithers & Smit 1997,

Smit et al. 2000). Adaptation is not new: throughout

history, people have been adapting to changing condi-

tions. What is needed is to incorporate future climate

risks into policy making (Lim & Spanger-Siegfried

2005). Adaptation also gives us an opportunity to

revisit some of the unresolved disaster-reduction and

sustainable-development issues. A simple way to do

this is to improve the adaptive capacities in crop pro-

duction systems, through such means as crop-produc-

tion management and improvement of irrigation

equipment, and to popularize new crop varieties. In

addition, collaboration between countries experienced

in drought risk reduction, and interaction with regional

and international initiatives, can contribute to the

development of a knowledge network to reduce the

effects of drought (UN/ISDR 2007).
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