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REVIEW

Climate change and forest diseases

R. N. Sturrocka*, S. J. Frankelb, A. V. Brownc, P. E. Hennond, J. T. Kliejunasb†,

K. J. Lewise, J. J. Worrallf and A. J. Woodsg

aNatural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Columbia,

V8Z 1M5, Canada; bUSDA-Forest Service, Pacific Southwest Research Station, 800 Buchanan Street, Albany, California 94710, USA;
cUK Forestry Commission, Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK; dUSDA-Forest Service, Pacific

Northwest Research Station, Forestry Sciences Laboratory, 2770 Sherwood Lane, Suite 2A, Juneau, Alaska, USA; eUniversity of

Northern British Columbia, Prince George, British Columbia, Canada; fUSDA-Forest Service, Rocky Mountain Region, 216 N.

Colorado St., Gunnison, Colorado 81230, USA; and gBritish Columbia Ministry of Forests and Range, Smithers, British Columbia, V0J

2NO, Canada

As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships

between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interac-

tions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and

minimize the undesirable effects of expected increases in tree mortality. We discuss four types of forest and disease manage-

ment tactics – monitoring, forecasting, planning and mitigation – and provide case studies of yellow-cedar decline and sud-

den aspen decline to illustrate how forest diseases might be managed in the face of climate change. The uncertainties

inherent to climate change effects can be diminished by conducting research, assessing risks, and linking results to forest

policy, planning and decision making.

Keywords: forest management, forest pathogens, plant disease management, plant pathogens, sudden aspen

decline, yellow-cedar decline

Introduction

Forests provide critical refuges for terrestrial biodiversity,
are a central component of the earth’s biogeochemical
systems, and are a source of ecosystem services essential
for human wellbeing (Shvidenko et al., 2005). Forests
also have the potential to mitigate global climate change
by serving as net carbon sinks (IPCC (Intergovernmental
Panel on Climate Change), 2007). Global forest area has
been reduced by 40% over the last three centuries, pri-
marily as a result of human activities, particularly the
conversion of forested land to agricultural usage (Shvi-
denko et al., 2005). Today, less than one-third of the
earth’s land area is covered by forests (FAO, 2001). Dis-
turbance agents such as pathogens, insects and fire can
decrease the ability of forests to provide goods and ser-
vices, especially when the natural disturbance patterns or
regimes of these agents are altered by human activities
(Lewis & Lindgren, 2000; Bentz et al., 2010).

Climate has always shaped the world’s forests (Bhatti
et al., 2006), but today the world’s climate has become
warmer and will change further and at an unprecedented
rate (Pachauri & Reisinger, 2007). For example, for the
next two decades a warming of about 0Æ2�C per decade is
projected for a range of emissions scenarios (Nakicenovic
& Swart, 2000; Pachauri & Reisinger, 2007). Recent
extensive tree death events in North America have been
associated with climate change (Kurz et al., 2008; van
Mantgem et al., 2009). Climate change has the potential
to initiate multiple, interacting processes that affect for-
ests (Williamson et al., 2009), some positive and others
negative. For example, higher atmospheric CO2 concen-
trations can result in increased growth rates and water
use efficiency of trees (Rogers & Dahlman, 1993), or
there may be a reduced effect of carbon fertilization on
tree productivity over time and in older trees (Boisvenue
& Running, 2006). Elevated CO2 was shown to increase
host resistance to two forest diseases in the southern USA
(Runion et al., 2010). Because responses to CO2 enrich-
ment may differ among species and locations, a wide
range of responses to increased atmospheric CO2 should
be expected worldwide.
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The purpose of this paper is to improve understanding
and management of forest tree diseases under a changing
climate. We do this by reviewing knowledge of relation-
ships between climate variables and several forest patho-
gens and by examining current evidence demonstrating
climate change, host and pathogen interactions. We also
recommend and discuss forest health and forest manage-
ment strategies that should be integrated to better con-
tend with forest diseases and climate change.

The literature on climate change and forest and tree
diseases has recently been synthesized (for example:
Boland et al., 2004; Desprez-Loustau et al., 2007; Stur-
rock, 2007; La Porta et al., 2008; Moore & Allard, 2008;
Dukes et al., 2009; Kliejunas et al., 2009; Tubby & Web-
ber, 2010) and some general predictions can be made:
d Because most plant diseases are strongly influenced by

environmental conditions, climate change will affect
the pathogen, the host and the interaction between
them, resulting in changes in disease impact.

d Because abiotic factors such as temperature and
moisture affect host susceptibility to pathogens and
pathogen growth, reproduction and infection, changes
in interactions between biotic diseases and abiotic
stressors may represent the most substantial drivers of
disease outbreaks.

d The distribution of hosts and diseases will change.
Increases in temperature and changes in precipitation
may allow the ranges of some species to expand, per-
haps whilst contracting elsewhere, but models fre-
quently predict a reduction in potential geographic
distribution of tree species (e.g. Rehfeldt et al., 2009)
or diseases (Venette, 2009) as a result of climate
change. This question has also stimulated debate with
regard to infectious diseases of humans (Epstein,
2010). Pathogens may play key roles in this range
reduction in forest trees.

d Pathogens that typically affect water-stressed hosts are
likely to have an increased impact on forests in regions
where precipitation is reduced.

d The roles of pathogens as disturbance agents will prob-
ably increase, as their ability to adapt to new climatic
conditions will be greater than that of their long-lived
hosts.

d Most pathogens will be able to migrate to locations
where climate is suitable for their survival and repro-
duction at a faster rate than tree species.

d Climate change will affect the life cycles and biological
synchronicity of many forest trees and pathogens,
resulting in changes in the distribution and phenology
of events such as budbreak in tree hosts, spore release
by pathogens, and activities of insects that serve as vec-
tors of pathogens; this may significantly alter disease
incidence and severity.

Definitions

A plant disease is defined as ‘‘any malfunctioning of host
cells and tissues that results from continuous irritation by
a pathogenic agent or environmental factor and leads to

the development of symptoms’’ (Agrios, 2005). Three
interrelated elements result in disease: a susceptible host
plant, a virulent pathogen and a favourable environment
or climate and are often visualized as the ‘disease
triangle’.

Forest pathogens include fungi, oomycetes, bacteria,
phytoplasmas, parasitic higher plants, viruses and nema-
todes. Native forest pathogens, which are integral com-
ponents of many forest ecosystems (Hansen & Goheen,
2000), influence species richness and abundance, and for-
est succession, structure and composition at the stand
and landscape levels (Winder & Shamoun, 2006). They
also strongly affect animal populations, nutrient and
water cycling, and overall ecosystem function. Native
forest pathogens sometimes conflict with management
objectives and the pathogens can damage valued forest
resources.

Non-native or introduced forest pathogens are also
widespread globally and strongly influence forest struc-
ture and composition (Dukes et al., 2009). These patho-
gens have the potential to kill many trees, sometimes
almost all individuals of a given species in a stand or land-
scape, because novel hosts have not coevolved with the
pathogens and have limited resistance (Hansen, 2008).
A similar dynamic may be observed when non-native
hosts are infected by native pathogens.

Noninfectious or abiotic forest diseases are caused by
persistent, nonliving factors that are directly deleterious
to tree health (for example, drought, nutrient deficiency
and pollution) (Boyce, 1961).

Forest decline diseases are complex and involve inter-
acting factors (Manion, 1991; Manion & Lachance,
1992). Predisposing factors are long-term, static or
slowly changing factors, such as soil moisture regime
(a site factor), stand density (a stand factor) and precipita-
tion (a climate factor). Inciting factors are short-term fac-
tors, such as defoliating insects or drought, which cause
acute stress. Trees affected by inciting factors alone may
recover quickly, but recovery is much slower if the trees
also are affected by predisposing factors. Contributing
factors are usually secondary pathogens or insects that
kill trees already affected by predisposing and inciting
factors.

Climate can be narrowly defined as the average
weather, or, more rigorously, as a statistical description
in terms of the mean and variability of relevant quantities
(e.g. temperature, precipitation and wind), over a period
of, typically, 30 years (Pachauri & Reisinger, 2007). Cli-
mate change ‘‘refers to a change in the state of the climate
that can be identified (e.g. by using statistical tests) by
changes in the mean and ⁄ or variability of its properties,
and that persists for an extended period, typically decades
or longer’’ (Pachauri & Reisinger, 2007). Climate change
should be differentiated from short-term and normal dec-
adal climate cycles, such as the El Niño-Southern Oscilla-
tion and the Pacific Decadal Oscillation.

If host susceptibility or pathogen virulence and ⁄ or
aggressiveness is increased by climatic conditions, then a
disease outbreak or epidemic may result (Agrios, 2005).
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An epidemic is defined as a change of disease intensity in
populations over time and space (Campbell & Madden,
1990), but the term is usually used to describe a wide-
spread and severe outbreak. Plant disease epidemics may
become more frequent as climate changes. Epidemics of
insects and pathogens that are mobile or easily dispersed,
and can kill their hosts relatively quickly, are examples of
pests particularly likely to increase in frequency (Ayres &
Lombardero, 2000). Many forest pathogens can take
decades to spread and then to kill their hosts, yet their
long-term, cumulative effects can be serious. Rates of
spread of these agents and rates of tree mortality may be
significantly altered by climate change.

Case studies

Climate influences the dynamics of host–pathogen inter-
actions, so it is likely that climate change will have
strong effects on the distribution (Pearson & Dawson,
2003) and behaviour of plant species and pathogens. In
this section we review knowledge of relationships
between climate variables and several forest diseases, as
well as current evidence of how hosts, pathogens and
pathosystems are responding or might respond to cli-
mate change. Currently, there are several models avail-
able to project future distribution of forest trees using
climate variables (e.g. Hamann & Wang, 2006; Reh-
feldt et al., 2006), but relatively few specifically
designed for making such projections for forest patho-
gens. CLIMEX, a dynamic simulation model developed in
Australia (Sutherst et al., 1999) for predicting the
potential geographical distribution of a given species,
and widely used for weeds (e.g. Goolsby, 2004), has
been used to investigate the potential distribution of
several pathogens (e.g. Brasier & Scott, 1994; Scherm
& Yang, 1999; Venette & Cohen, 2006). Also, in Por-
tugal, under the PHRAME (Plant Health Risk and
Monitoring Evaluation) project, there has been progress
made on prediction modelling for expression of pine
wilt disease (Evans, 2007). For Swiss needle cast, Man-
ter et al. (2005) developed a temperature-based disease
prediction model in combination with geographical
information systems-linked climate databases to esti-
mate disease levels for areas in the Oregon Coast Range
of the USA.

We have divided diseases and their causal pathogens or
agents into three groups: diseases caused by pathogens
directly affected by climate; diseases caused by pathogens
indirectly affected by climate; and decline diseases. There
is wide consensus that future temperatures will be war-
mer in much of the world; there is less certainty over
future precipitation trends (IPCC (Intergovernmental
Panel on Climate Change), 2007). Thus, in Table 1, we
present predicted trends for the impacts of these forest
diseases under two climate-change scenarios, the first
with warmer and drier conditions, the second with war-
mer and wetter conditions. The effects of climate change
on forest diseases and forest ecosystems will depend on
the pathosystem and its location (Runion, 2003; Stur-

rock, 2007) and predicted changes in impact and accom-
panying uncertainty levels for sample diseases will vary
under the two scenarios.

Pathogens directly affected by climate

This group of pathogens can cause disease in a healthy,
vigorous host, if the pathogen’s environmental require-
ments are met. Their life cycles are directly affected by
temperature and moisture. For example, many pathogens
causing needle diseases are sensitive to precipitation and
humidity and their rates of reproduction, spread, and
infection are greater when conditions are moist (Harvell
et al., 2002). In these cases, changes in temperature and
moisture more directly affect the pathogen regardless of
their effects on the host.

Phytophthora root rot
Among the various species of Phytophthora infecting
woody plants the soilborne Phytophthora cinnamomi is
one of the most destructive. This pathogen is present in
most temperate and subtropical areas of the world caus-
ing disease in more than 1000 host species. Infection by
P. cinnamomi and some other related species results in
root rot and cankering, and often plant death. Tempera-
ture, moisture and pH all influence pathogen growth and
reproduction. Floods and droughts are generally
accepted as triggers of epidemics. Changes in climatic
conditions in the last 60 years, i.e. increased mean winter
temperatures, seasonal precipitation shift from summer
into winter and a tendency to heavy rain are favouring
infection by several species of Phytophthora in Central
Europe. A proliferation of phytophthora root rots may be
expected, increasing the instability and vulnerability of
forest ecosystems dominated by beech and other suscepti-
ble tree species, including oak, alder, maple, fir and pine
species (Jung, 2009).

For P. cinnamomi, Bergot et al. (2004) predict that
increasing temperatures will lead to a potential range
expansion of P. cinnamomi along the western coast of
Europe of one to a few hundred kilometres eastward from
the Atlantic coast within one century. For root rot caused
by P. cinnamomi, CLIMEX models predict more wide-
spread disease in the UK and much of coastal Europe; and
globally, a marked increase of the disease in temperate
zones of the northern and southern hemispheres, with a
reduction across the tropics and subtropics (Brasier &
Scott, 1994; Brasier, 1996).

Sudden oak death; ramorum blight
Phytophthora ramorum is an important invasive patho-
gen in both North America and Europe. In wildlands in
the USA the disease is known to occur only in central
coastal California and southwest Oregon, where infected
Notholithocarpus densiflorus and Quercus agrifolia can
die relatively soon after the onset of symptoms (crown
dieback, stem bark lesions). In Europe in the late 1990s
the pathogen was primarily found on ornamental plants
in nurseries and gardens. However, in 2003 P. ramorum

Climate change and forest diseases 135

Plant Pathology (2011) 60, 133–149



T
a
b
le

1
P

re
d

ic
te

d
c
h
a
n
g

e
in

im
p

a
c
to

n
fo

re
st

s
o
fs

e
ve

ra
le

xa
m

p
le

s
o
ff

o
re

st
d

is
e
a
se

s
a
s

th
e
y

re
sp

o
n
d

to
w

a
rm

e
r
a
n
d

d
rie

r
o
r
w

a
rm

e
r
a
n
d

w
e
tte

r
fu

tu
re

c
lim

a
te

s
(a

d
a
p

te
d

fr
o
m

D
u
ke

s
e
ta

l.,
2
0
0
9
)

G
ro

u
p

F
o
re

st
d

is
e
a
se

(p
a
th

o
g

e
n
)

C
lim

a
te

c
h
a
n
g

e

W
a
rm

e
r

⁄D
ri
e
r

W
a
rm

e
r

⁄W
e
tt

e
r

P
re

d
ic

te
d

c
h
a
n
g

e

in
im

p
a
c
ta

L
e
ve

l
o
f

u
n
c
e
rt

a
in

ty
b

P
re

d
ic

te
d

c
h
a
n
g

e

in
im

p
a
c
ta

L
e
ve

l
o
f

u
n
c
e
rt

a
in

ty
b

D
is

e
a
se

s
c
a
u
se

d
b

y
g

ro
u
p

-1

p
a
th

o
g

e
n
s

(t
e
m

p
e
ra

tu
re

a
n
d

m
o
is

tu
re

d
ir
e
c
tly

a
ff

e
c
t

p
a
th

o
g

e
n

re
p

ro
d

u
c
tio

n
,

sp
re

a
d

,
in

fe
c
tio

n
a
n
d

su
rv

iv
a
l)

P
h
yt

o
p

h
th

o
ra

ro
o
t

ro
t

(P
h
yt

o
p

h
th

o
ra

c
in

n
a
m

o
m

i)

)
⁄0

L
+

L

S
u
d

d
e
n

o
a
k

d
e
a
th

⁄r
a
m

o
ru

m
b

lig
h
t

(P
h
yt

o
p

h
th

o
ra

ra
m

o
ru

m
)

)
M

+
L

D
o
th

is
tr

o
m

a
n
e
e
d

le
b

lig
h
t

(D
o
th

is
tr

o
m

a
se

p
to

sp
o
ru

m
,

D
o
th

is
tr

o
m

a
p

in
i)

0
⁄)

M
+

L

S
w

is
s

n
e
e
d

le
c
a
st

(P
h
a
e
o
c
ry

p
to

p
u
s

g
a
e
u
m

a
n
n
ii)

)
M

+
L

W
h
ite

p
in

e
b

lis
te

r
ru

st
(C

ro
n
a
rt

iu
m

ri
b

ic
o
la

)

)
L

0
M

D
is

e
a
se

s
c
a
u
se

d
b

y
g

ro
u
p

-2

p
a
th

o
g

e
n
s

(t
e
m

p
e
ra

tu
re

a
n
d

m
o
is

tu
re

m
o
re

d
ir
e
c
tly

a
ff

e
c
t

h
o
st

su
sc

e
p

tib
ili

ty
to

p
a
th

o
g

e
n
)

A
rm

ill
a
ri
a

ro
o
t

d
is

e
a
se

(A
rm

ill
a
ri
a

sp
p

.)

+
L

0
M

S
p

h
a
e
ro

p
si

s
sh

o
o
t

b
lig

h
t

(S
p

h
a
e
ro

p
si

s
sa

p
in

e
a
)

+
L

0
M

C
h
a
rc

o
a
l
c
a
n
ke

r
(B

is
c
o
g

n
ia

u
xi

a

m
e
d

ite
rr

a
n
e
a

)

+
L

0
M

B
o
tr

yo
sp

h
a
e
ri
a

c
a
n
ke

r

(B
o
tr

yo
sp

h
a
e
ri
a

sp
p

.)

+
L

0
M

P
itc

h
c
a
n
ke

r
(F

u
sa

ri
u
m

c
ir
c
in

a
tu

m
)

+
M

+
H

S
e
p

to
ri
a

c
a
n
ke

r
(S

e
p

to
ri
a

m
u
si

va
)

+
M

0
M

D
e
c
lin

e
a
n
d

a
b

io
tic

d
is

e
a
se

s
Y

e
llo

w
-c

e
d

a
r

d
e
c
lin

e
+

L
+

M

S
u
d

d
e
n

a
sp

e
n

d
e
c
lin

e
+

L
0

⁄+
M

O
a
k

d
e
c
lin

e
+

M
0

M

a
+

,
in

c
re

a
se

in
im

p
a
c
t;

)
,

d
e
c
re

a
se

in
im

p
a
c
t;

0
,

n
o

c
h
a
n
g

e
in

im
p

a
c
t.

b
T
h
e

e
ff

e
c
ts

o
f

c
lim

a
te

c
h
a
n
g

e
o
n

p
a
th

o
g

e
n

⁄h
o
st

in
te

ra
c
tio

n
s

a
re

c
o
m

p
le

x
a
n
d

u
n
c
e
rt

a
in

.
D

u
ke

s
e
t

a
l.

(2
0
0
9
)

lis
ts

fo
u
r

ty
p

e
s

o
f

u
n
c
e
rt

a
in

tie
s:

th
o
se

a
ss

o
c
ia

te
d

w
ith

(i
)

in
te

rn
a
l
e
c
o
sy

st
e
m

p
ro

c
e
ss

e
s,

(i
i)

c
lim

a
te

p
ro

je
c
tio

n
s

(g
e
n
e
ra

l
a
g

re
e
m

e
n
t

th
a
t

m
e
a
n

a
n
n
u
a
l
su

rf
a
c
e

te
m

p
e
ra

tu
re

s
w

ill
in

c
re

a
se

b
u
t

a
m

o
u
n
t

o
f

w
a
rm

in
g

a
n
d

n
a
tu

re
o
f

p
re

c
ip

ita
tio

n
c
h
a
n
g

e
is

le
ss

c
e
rt

a
in

),
(i
ii)

fu
tu

re
h
u
m

a
n

a
c
tio

n
s,

a
n
d

(i
v)

a

la
c
k

o
f

d
a
ta

o
n

th
e

p
a
th

o
g

e
n
s

th
e
m

se
lv

e
s.

T
h
e
se

fo
u
r

ty
p

e
s

o
f

u
n
c
e
rt

a
in

ty
w

e
re

c
o
n
si

d
e
re

d
w

h
e
n

e
st

im
a
tin

g
p

re
d

ic
te

d
c
h
a
n
g

e
s

in
im

p
a
c
t

b
y

th
e

c
a
se

st
u
d

y
d

is
e
a
se

s;
a
ss

o
c
ia

te
d

u
n
c
e
rt

a
in

ty
le

ve
ls

w
e
re

e
st

im
a
te

d
to

b
e

lo
w

(L
),

m
o
d

e
ra

te
(M

)
o
r

h
ig

h
(H

).

136 R. N. Sturrock et al.

Plant Pathology (2011) 60, 133–149



was found infecting mature Quercus falcata in the UK
and Quercus rubra in the Netherlands. In subsequent
years, over 20 different species of broadleaved trees
(mainly mature Betula) were found to be infected with
P. ramorum in the south of England (Webber, 2008).
Since autumn 2009 there have been dramatic outbreaks
of the disease in the UK, affecting stands of Larix kaemp-
feri (Webber et al., 2010) (Fig. 1) and several new host
species (e.g. Tsuga heterophylla) (Brasier et al., 2010). In
the USA and Europe, eradication and containment strate-
gies are being used. Regulations on movement of nursery
stock and forest materials have been imposed in more
than 50 countries (Kliejunas, 2010).

The life cycle of P. ramorum, an organism with optimal
growth between 18 and 22�C, is similar to that of other
aerial Phytophthora species. Sporangia produced on the
surfaces of infected leaves and twigs of foliar hosts can be
splash-dispersed to neighbouring hosts or conveyed
longer distances by windblown rain (Davidson et al.,
2005). Moisture is essential for survival and sporulation,
and the duration, frequency, and timing of rain events
during the winter and spring play a key role in inoculum
production. In N. densiflorus forests of central coastal
California, winter rains are critical to persistence of the
pathogen, whereas in coastal evergreen forests rain must
fall in March, April and May. Increases in precipitation
will probably produce optimal conditions for the patho-
gen in some areas, resulting in an increase in rates of infec-
tion. Scenarios of climate change produced by CLIMEX

projected that the area favourable or very favourable for
P. ramorum will decrease substantially in the eastern
USA, but will increase in the west-coast states of Wash-
ington, Oregon and California (Venette & Cohen, 2006;
Venette, 2009).

Dothistroma needle blight
Dothistroma needle blight – also referred to as red band
needle blight – affects primarily pines (Pinus spp.), but
also species of spruce (Picea), larch (Larix) and Douglas
fir (Pseudotsuga menziesii) (Watt et al., 2009). The

disease is caused by the needle pathogens Dothistroma
septosporum and Dothistroma pini (Barnes et al., 2004).
The disease causes premature defoliation and reduction
in rates of growth, resulting in economic and aesthetic
losses and, in some situations, mortality. Although the
disease has a global distribution (Gibson, 1974;
Bradshaw, 2004), until recently it was primarily consid-
ered a problem in the southern hemisphere, where it was
introduced in commercial plantations of non-native
Pinus radiata. Trees in Africa, Chile and New Zealand
have suffered major damage from this needle blight since
the 1960s.

The geographic range and intensity of dothistroma
needle blight, particularly in the northern hemisphere,
has increased dramatically since the late 1990s (Brown
et al., 2003; Woods, 2003; Bradshaw, 2004). In France,
the impact of the disease was minimal during the late
1960s to 1980s, but has rapidly increased since, particu-
larly on plantations of Pinus nigra ssp. laricio (Villebonne
& Maugard, 1999). In Britain, an increase in the disease
since 2000 has resulted in a moratorium on planting of
P. nigra ssp. laricio and Pinus contorta var. latifolia in
public forests. A rapid expansion of dothistroma needle
blight was initially observed on P. nigra ssp. laricio, with
intense infection and mortality on the extensive planta-
tions in eastern England. Since 2006, when the disease
was reported on P. contorta var. latifolia in Scotland, the
distribution and intensity of the disease has increased
appreciably, with mortality of approximately 90%
occurring in some areas in trees aged 50 years or older.
Although the disease has been observed since the early
1800s in British Columbia, Canada (Welsh et al., 2009),
its range and intensity have increased considerably since
2000, particularly on P. contorta var. latifolia (Woods
et al., 2005).

The increase in distribution and intensity of dothistro-
ma needle blight is attributed to multiple synergistic fac-
tors. In British Columbia and the UK, the spread of the
disease appears to have been facilitated by large planta-
tions of highly susceptible species. Until recently, British
Columbia’s forest management policies promoted the
establishment of P. contorta var. latifolia, even in areas
where it was not naturally the dominant species (Woods,
2003). In the UK, P. nigra ssp. laricio was widely planted
for timber as a key species in a climate-change adaptation
strategy (Broadmeadow, 2002). However, climate in par-
ticular appears to be driving the disease. Climate models
developed by Watt et al. (2009) indicated that dothistro-
ma needle blight can survive in diverse environments,
including sub-Arctic, temperate, Mediterranean, conti-
nental, subtropical and dry tropical. Rates of infection
depend on temperature, including overnight minimum
temperature; the period of needle wetness; and the quan-
tity of spores present. Ten or more consecutive hours of
needle wetness are usually required for infection by
D. septosporum (Gadgil, 1974; Bulman, 1993). The suit-
able temperature range for infection is 5–25�C, with an
optimum of 16–20�C (Bulman, 1993). Rainfall is particu-
larly critical for infection; amount of summer rainfall and

Figure 1 Phytophthora ramorum affecting a stand of Japanese larch

(Larix kaempferi) in Plym Woods, east of Plymouth, UK.
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rates of infection in the following year are positively cor-
related (Bulman, 2006). In British Columbia and the UK
(Woods et al., 2005; Archibald & Brown, 2007; Brown
& Webber, 2008), an increase in disease intensity has
coincided with an increase in spring and summer rainfall
and increases in daily minimum temperatures during late
summer since the 1990s. The positive correlation
between daily minimum temperature and intensity of the
disease may decrease if summer rainfall decreases.

Swiss needle cast
Swiss needle cast of Douglas fir is caused by Phaeocrypto-
pus gaeumannii and symptoms include chlorosis, reduced
needle retention, and reduced tree growth. Boyce (1940)
reported that the native pathogen was widespread but
had little impact throughout the P. menziesii region of
western North America. However, a severe epidemic
began in the coastal fog belt of Oregon in the early 1990s
and has persisted since (Hansen et al., 2000). In the Pacific
Northwest, high levels of Swiss needle cast usually occur
at low elevations (for example, in close proximity to the
Pacific Ocean or Puget Sound), often in areas with sum-
mer fog and high rainfall and on sites formerly occupied
and better suited to Tsuga and Picea spp. or to hardwoods
(Hansen et al., 2000). Occurrence of this disease in the
Pacific Northwest is also positively correlated with
degree-day accumulation during winter and leaf wetness
hours during spring to autumn (Manter et al., 2005).
Winter temperatures and spring precipitation have
increased by 0Æ2–0Æ4�C and 0Æ7–1Æ5 cm, respectively, per
decade since 1970 in the Oregon Coast Range, suggesting
that regional climate changes may be influencing the dis-
tribution and severity of the disease in the Oregon Coast
Range (Stone et al., 2008). Further increases in winter
temperature of approximately 0Æ4�C per decade through
to 2050 are projected for the Pacific Northwest, suggest-
ing that the severity and distribution of Swiss needle cast
also are likely to increase (Stone et al., 2008).

A positive correlation between spring precipitation
and relative abundance of Phaeocryptopus gaeumannii
was found in southern British Columbia (Hood, 1982). In
New Zealand, where P. menziesii is not native, the cli-
mate variable with the strongest positive correlation with
severity of disease was winter mean temperature, which
explained about 80% of the variation in infection and
damage (Stone et al., 2007).

White pine blister rust
Cronartium ribicola, a fungus native to Asia and causing
blister rust of white pines (Pinus spp.), was introduced
into Europe in the mid-1850s and to North America in
the early 1900s. Infection by C. ribicola results in branch
dieback, reproductive failure and tree mortality (Fig. 2).
In North America, white pine blister rust has caused more
damage and costs more to control than any other conifer
disease (Bega, 1978). In many regions of Canada, mortal-
ity of Pinus monticola and Pinus strobus has been so
extensive that the species no longer are considered com-
mercially viable. In the western USA, the number of

P. monticola grown for reforestation has been reduced by
95% because forest managers consider it too risky to
plant (Kinloch, 2003). Synergistic effects of C. ribicola,
drought, increasing temperatures and outbreaks of
mountain pine beetle (Dendroctonus ponderosae) are
thought to drive extensive mortality in high-elevation
Pinus albicaulis populations (Logan & Powell, 2001;
Kegley et al., 2004; Gibson et al., 2008).

The environmental conditions associated with C.
ribicola infection are well documented (Spaulding, 1922;
Mielke, 1943; Van Arsdel, 1954; Bega, 1960). Infections
of pine typically occur in ‘wave’ years, when weather con-
ditions are ideal for the fungus. White pine blister rust is
considered a cool weather disease (basidiospore germina-
tion and infection occurs from about 0 to 20�C), with
spread driven largely by moisture, air temperature and air
circulation (Van Arsdel, 1965). For example, C. ribicola
basidiospore germination and pine needle infection
requires 48 h with conditions of 100% relative humidity
and temperatures not exceeding 20�C (Van Arsdel et al.,
1956). In the USA, portions of some north-central states
and southern California are too warm for infection.

Changes in temperature and the frequency of 100% air
humidity events will influence the epidemiology of C. ribi-
cola. Since infection requires a cool, moisture-saturated
environment, conditions suitable for C. ribicola to cause
infection will decrease with fewer wet periods in spring or
early summer. The probability of years when weather
conditions especially favourable for new infections result
in significant intensification and spread (wave years) will
diminish as the climate becomes warmer and drier, result-
ing in less rust infection (Kinloch, 2003). Locations in
which these changes are projected include the southern
Sierra Nevada in California.

Figure 2 White pine blister rust, caused by Cronartium ribicola on

Pinus lambertiana (sugar pine) at Happy Camp, California, USA.
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Cylindrocladium leaf blight
The fungus Cylindrocladium quinqueseptatum causes a
severe leaf blight of many tree species in tropical and sub-
tropical forests, primarily in Australia and countries in
Southeast Asia, including Laos, Thailand and Vietnam.
Severe epidemics are associated with warm temperatures
and long periods of leaf wetness. Modelling suggested
that small increases in temperature and precipitation can
substantially increase the area in which there is a high
probability of severe epidemics (Booth et al., 2000).
Based on weather records of the latter 20th century, the
only area of China considered climatically suitable for
severe epidemics is Hainan, an island off the southern
coast. However, consistent with climate change projec-
tions, temperature and precipitation recently have
increased in parts of China, especially the south. Accord-
ingly, the disease has become a substantial problem in
those areas (F. Zhang, Fujian Agriculture and Forestry
University, Fuzhou, China, personal communication).

Pathogens indirectly affected by climate

Pathogens indirectly affected by climate tend to infect
hosts that are stressed by (i) environmental factors, (ii)
pathogens directly affected by climate, or (iii) insects.
Such pathogens can sometimes infect a healthy host and
remain latent until the host is stressed. Whilst the ability
of these pathogens to sporulate, spread and infect new
hosts is affected by temperature and moisture, factors
that stress their hosts are often critical to their successful
invasion of host tissues. For example, an increased inci-
dence of summer drought will increase the probability
that trees will be infected by pathogens whose activity is
facilitated by host stresses, such as root pathogens,
wound colonizers and latent colonizers of sapwood (Bra-
sier & Scott, 1994; Lonsdale & Gibbs, 2002; Desprez-
Loustau et al., 2006).

Armillaria root disease
Armillaria species cause root disease in natural and man-
aged forests worldwide (Kile et al., 1991), infecting coni-
fers and occasionally hardwoods, and also occasionally
woody shrubs and herbaceous plants. Infection results in
wood decay, growth reduction and mortality. Armillaria
species can grow over a range of temperatures, from 10 to
31�C, although the optimal temperature for many species
is at 20–22�C (Rishbeth, 1978; Keca, 2005 as cited in La
Porta et al., 2008). Some Armillaria species are primary
pathogens and infect healthy trees in forests, whereas
other species act as secondary agents, infecting after host
immunity has been impaired by drought, temperature
extremes, other pathogens, insects or reductions in
site quality (Wargo & Harrington, 1991; Goheen &
Otrosina, 1998). Armillaria spp. can also increase the
probability that bark beetles or other insects will colonize
trees. Armillaria root disease caused by A. solidipes
(= A. ostoyae) is responsible for losses of 2–3 million m3

timber per year in Canada’s Pacific Northwest (Morrison
& Mallet, 1996). Tree failures caused by decay are

substantial hazards in recreational and urban areas. In
general, losses attributed to armillaria root disease are
greatest in relatively dry Mediterranean or continental
climates (Kile et al., 1991). The incidence of this root dis-
ease is likely to increase as temperatures increase and pre-
cipitation decreases (Shaw & Kile, 1991; US Office of
Technology Assessment, 1993; La Porta et al., 2008;
Klopfenstein et al., 2009). Klopfenstein et al. (2009) dem-
onstrated that the area in which climate supports persis-
tence of P. menziesii, a major host for A. solidipes in the
interior northwestern USA, is likely to decrease by 2060,
and suggested that the stressed P. menziesii will also be
more susceptible to armillaria root disease.

Pine wilt
Pine wilt disease, caused by the pine wilt nematode,
Bursaphelenchus xylophilus, originated in North Amer-
ica but is now found in parts of Europe (e.g. Portugal)
and East Asia (e.g. Japan, China and Vietnam). It has
long been known that, where mean July temperature is
less than 20�C, the disease is rare, even though the path-
ogen may be present (Rutherford & Webster, 1987).
Under elevated summer temperatures and seasonal
moisture stress, the pine wilt nematode may cause rapid
wilting and mortality (Evans et al., 2008). The nema-
tode was introduced to China via Japan in the early
1980s (Zhao, 2008) and has since caused mortality on
over 80 000 ha of Chinese forests. Disease occurrence
and severity in China are positively correlated with
annual mean temperature and winter and spring precip-
itation, but negatively correlated with June precipita-
tion (Xi & Niu, 2008; Zhao, 2008). Currently, climate
restricts the area suitable for pine wilt disease to less
than half of China, southeast of a line from Beijing to
Yunnan Province. Warmer temperatures and increased
precipitation, especially if combined with seasonal or
occasional moisture stress, may increase the probability
of the disease occurring in some northern and western
regions of China (Zhao, 2008).

Under the PHRAME project (Evans, 2007) in Portugal,
there has been progress made on prediction modelling for
expression of pine wilt disease. This has been achieved by
linking together models of tree suitability parameters and
tree physiological responses relative to ecological and cli-
matic conditions. This complementary modelling
approach has yielded valuable predictive tools for
improved future risk assessment of pine wilt disease for
Portugal and probably for other parts of Europe (Evans,
2007).

Canker pathogens
Although numerous canker pathogens are capable of
infecting vigorous trees, canker-causing fungi are more
likely to reach epidemic levels and cause substantial dam-
age to trees weakened by heat and drought stress (Scho-
eneweiss, 1975, 1981). Most canker diseases are caused
by facultative parasites, such as species of Biscogniauxia
(Hypoxylon), Botryosphaeria, Diplodia, Septoria (Des-
prez-Loustau et al., 2006) and Valsa.
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Biscogniauxia mediterranea causes charcoal canker in
Quercus suber and Quercus cerris woodlands in the Med-
iterranean and has recently been found on oaks with can-
kers in Slovenia (Jurc & Ogris, 2006). Disease symptoms
in Slovenia first appeared after severe drought and unusu-
ally high temperatures. Total rainfall before the onset of
symptoms in summer 2003 was significantly below the
30-year average, whilst average monthly temperatures
for the same months were 5Æ8, 3Æ6 and 5Æ6�C higher than
the 30-year average. This fungus is expected to continue
moving north as temperatures increase (Vannini &
Valentini, 1994; Desprez-Loustau et al., 2006; Vannini
et al., 2009).

Botryosphaeria dothidea causes serious damage only
to weak, stressed or off-site trees (Ma et al., 2001).
Drought stress and winter injury have been associated
with increased rates of infection and canker expansion of
B. dothidea on apple trees (Malus) in the eastern USA
(Brown & Hendrix, 1981). Severity of diplodia shoot
blight, caused by Diplodia sapinea, has consistently been
associated with water stress (Bachi & Peterson, 1985;
Blodgett et al., 1997a,b; Paoletti et al., 2001). Similarly,
cankers caused by Septoria musiva on inoculated, water-
stressed trees were significantly larger than those on non-
stressed trees (Maxwell et al., 1997).

Cytospora canker of Alnus incana subsp. tenuifolia,
caused by Valsa melanodiscus, is currently epidemic in
the southern Rocky Mountains, Alaska, and other areas
of western North America (Trummer, 2006; Worrall,
2009). In Colorado and adjoining areas, over 60% of
standing stems are dead or diseased. Recent evidence sug-
gests that warm temperatures in midsummer, even for a
few weeks, are associated with explosive canker growth
and host mortality (Worrall et al., 2010a).

Decline diseases

Forest declines are diseases caused by a complex of pre-
disposing, inciting and contributing factors. As these dif-
ficulties accumulate the tree gradually becomes less able
to produce, store and mobilize carbohydrates. It typically
develops symptoms of ‘dieback’, and unless the situation
improves significantly the tree eventually dies. Three for-
est decline diseases are considered: The first – oak decline
– is described below whilst descriptions for yellow-cedar
decline and sudden aspen decline are included later in
management case studies.

Oak decline
Decline of Quercus spp. worldwide is caused by interac-
tions among environmental stressors (e.g. drought, pollu-
tion, low minimum winter temperatures, and flooding)
(Brasier & Scott, 1994), insects and pathogens (e.g.
Armillaria and Phytophthora spp.). In the USA and
throughout Europe, episodic, extensive decline and death
of oaks has been recorded since around 1900 (Wargo
et al., 1983; La Porta et al., 2008). Additional drivers of
oak decline in Mediterranean regions of Europe include
changes in land use (Brasier, 1996). Studies of oak decline

in Mexico (Alvarado-Rosales et al., 2007) concluded that
low temperatures and water deficits cause stress and, in
some cases, result in death of oaks. Furthermore, the fun-
gus Biscogniauxia atropunctata is associated with some
stressed trees; in other cases, P. cinnamomi was identified
as a primary pathogen (Manion & Lachance, 1992; Tho-
mas et al., 2002).

Climate and forest tree death

Whether climate ‘alone’ causes tree mortality is difficult
to evaluate, yet the number of reports of forest dieback,
decline and mortality attributed to climatic drivers is
increasing. Because the role of climate cannot be demon-
strated as definitively as that of pathogens, the scientific
community often must rely on circumstantial evidence.
Evaluating whether climate change drives tree mortality
is even more difficult. For instance, tree mortality in
response to drought and heat has recently been associated
with climate change, but episodic droughts have long
been implicated in mortality independent of climate
change. Thus, in the literature it is frequently unclear
whether effects of climate are direct or synergistic. For
example, mortality rates increased in 87% of 76 plots,
and on average doubled, in unmanaged old-growth for-
ests in western North American sampled over an average
of 23 years (van Mantgem et al., 2009). An increase in
mortality occurred among trees of all sizes; warm temper-
atures and consequent moisture deficits were considered
likely causes. A recent assessment of drought- and heat-
induced mortality concluded that some of the world’s for-
ested ecosystems may already be affected by climate
change, and that further increases in mortality should be
expected even in environments that are rarely water-
limited (Allen et al., 2010).

In China, substantial tree mortality thought to be a
result of climate change has been reported, but the mech-
anisms and biological details are unclear. In many areas
of China, increases in temperature and precipitation over
the past 50 years (Yang, 2008) may have increased the
incidence of some forest diseases. In recent decades,
the distribution of forests has changed substantially. In
the Qi Lian Shan Mountain area of northeastern Qinghai
Province and western Gansu Province of western China,
forest area was reduced by 16Æ5% and the lower elevation
limit of the forest increased from 1900 to 2300 m
between 1950 and 1992, reportedly as a result of com-
bined effects of climate change and local human develop-
ment (Wang et al., 2002). A northward shift between
1966 and 2003 in the distribution of species including
Larix gmelinii, Picea jazoensis, Abies nephrolepis and
L. potaninii was documented in Heilongjiang Province of
northern China (Zhu et al., 2007). Budbreak has
occurred earlier in response to warmer spring tempera-
tures in some areas, but has been later in other areas in
response to cooler temperatures. Forest productivity
increased between 1981 and 2000 because of the
increased length of the growing season. Inland ecosys-
tems have been particularly sensitive to climate change
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(Zhu et al., 2007). Severe droughts have led to mortality
on a regional scale (Wang et al., 2007).

Managing forest diseases as climate
changes

Given the numerous examples of interactions between
forest disease and climate change, the ecological, eco-
nomic and social value of forests, and the role that forests
may play in mitigating global climate change, it is valu-
able to conduct a comprehensive assessment of manage-
ment options for forest diseases. Although trees in much
of the world’s forests will have to adapt to climate change
without human intervention (Spittlehouse, 2009), many
forested areas can be managed to minimize the undesir-
able effects of projected increases in tree mortality driven
by biotic and abiotic phenomena. Implementation of
management approaches that enhance tree species rich-
ness across forested landscapes can help minimize
adverse consequences of pathogen activity when there is
uncertainty about effects of climate on forest ecosystems.

Assuming that a forest unit is managed to meet a given
objective, such as timber, habitat for specific animals,
watershed protection or recreational use, and further-
more, that models project that within the next 70 years,
the climate will no longer support many of the tree species
currently present, then a gradient of potential manage-
ment responses exists between two unrealistic extremes.
One extreme, if confidence in the models is extremely
high, is to promote the rapid transition of the species com-
position of the site. The other extreme is to make no
changes in management, assuming that the approach can
be changed if and when species distributions change. Pro-
jections about the magnitude, location and timing of cli-
mate change are highly uncertain at all spatial extents and
resolutions. In some regions there is even uncertainty over
the direction of changes in precipitation (IPCC, 2007)
which strongly influences rates of disease incidence and
severity. Indeed, the potential for forests to mitigate cli-
mate-change effects should be considered carefully, as
shown by recent research suggesting that afforested sites,
particularly in temperate and boreal forests, may actually
contribute to local surface warming from the positive
radiative forcing effect of albedo (Betts, 2000; Thompson
et al., 2009).

Regardless of these uncertainties, impacts of climate
change on forest health must be mitigated. This will
require proactive thinking and a modified suite of forest
management approaches, because status quo manage-
ment strategies will not protect forest values in a changing
climate. Climate change is already disrupting practices
and policies for managing commercial and non-commer-
cial forests, such as forest classification systems, projec-
tions of growth and yield and subsequent models of
supply for timber and other forest products, plans and
projections for managing habitat for different species
of animals, and cycling of carbon, nutrients and water
(Graham et al., 1990). That restoration may no longer
be a universally useful concept or goal for forest

management, because climate is not static, must also be
acknowledged. The health of forests should be evalu-
ated in terms of how future climate may influence the
overall ecology of forest vegetation and pathogens, not
how forests can be maintained or returned to some cur-
rent or past condition. As damage increases in a forest
type, managers will need a triage or similar prioritiza-
tion system to decide which tree species have a long-
term future and are worthy of management, and on
which sites the forest type or species may be lost and
therefore should not be promoted. Increased disease
activity caused by climate change will probably exacer-
bate the extent and impact of these disruptions and it is
not appropriate to set aside forests as refugia for biodi-
versity or other goals without a full evaluation of the
impacts of future climatic conditions.

Essential components for managing forest diseases
as climate changes

We recommend four categories of management tactics:
monitoring, forecasting, planning and use of mitigating
strategies. Implementation of these tactics will vary,
depending on the ‘state of the science’ to support the activ-
ities, where forests and their stewards are on the globe,
what financial, human and other resources exist, and what
resource-management objectives are intended. Regard-
less, action must begin, with the most critical first step
being identification of locations suitable for the deploy-
ment of as wide a range of forest tree species that are as
ecologically resilient and stress-tolerant as possible.

Monitoring
Monitoring the spatial occurrence of forest diseases rela-
tive to both the ranges of host trees and annual weather
patterns will inform adaptive management. The reliabil-
ity of monitoring data will be maximized if systematic
surveys of tree health, mortality and growth, whether
remote or ground-based, are conducted by skilled person-
nel, ideally at stand, watershed and landscape levels, at
regular intervals. Forest inventory plots also can be used
to detect trends in growth and mortality for individual
species and incidence of diseases or other disturbance
agents. The ability of these activities to effectively inform
the long-term management of forests might be increased
by coordinating with monitoring for other disturbance
agents, such as insects or fire, and by monitoring across
jurisdictional boundaries.

Forecasting
The profound changes in environmental conditions
expected from global climate change mean that forest
professionals cannot rely on historical observations and
experiences to forecast and plan for the future, but
instead must develop and use a variety of modelling tools
(Beukema et al., 2007). Models of diverse phenomena,
from climate to vegetation to disturbance agents, can
guide management of forests under a changing climate,
especially when they are well integrated. Bioclimatic
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envelope models, for example, which integrate spatially
explicit historic and contemporary data from weather
stations, general circulation models and other sources,
can be used to correlate current tree and pathogen species
distributions with climate variables or to project future
distributions on the basis of understanding of species’
physiological responses to environmental variables (Pear-
son & Dawson, 2003). Modelling pathogens’ climate
envelopes alongside host reactions to climate can thus
enhance the ability to predict disease outcomes.

Despite their power as predictive tools, models have at
least three continuing problems: model inputs may have a
high degree of uncertainty (e.g. disease distribution); non-
linear relationships between climatic variables and epide-
miological responses are common, which means there
may be insufficient data for clear projections; and the
potential for genetic adaptation by both plants and
pathogens is often ignored in models (Scherm, 2004).
Efforts to improve modelling of climate change and forest
pests (diseases and insects), such as those outlined in a
workshop report by Beukema et al. (2007), are under-
way. Whilst models cannot provide certainty, they can
provide qualitative insights on the magnitude and direc-
tion of changes, give focus to monitoring activities, and
aid in the evaluation of management strategies (Woods
et al., 2010).

Planning
Jurisdictions that already have forest health strategies
must ensure that they are maintained and adequately
funded. Also, they should review and revise pertinent leg-
islation and policies to ensure that forest health problems
can be responded to quickly and effectively (Woods et al.,
2010). The success of management intended to minimize
the potential undesirable effects of climate change on for-
est pests on large spatial scales depends, in part, on the
synergistic effects of other major disturbances, such as
wildfire (Lertzman & Fall, 1998; Peterson & Parker,
1998). Climate change-induced increases in tree mortal-
ity from pathogens and insects may increase the occur-
rence and severity of fires (Bergeron & Leduc, 1998;
Kliejunas et al., 2009).

Hazard- and risk-rating systems are integral compo-
nents of forest management plans and can be applied in
the absence of disease epidemics, and have proven useful
for projecting effects of climate change on forest pests
(Woods et al., 2010). Pest risk analysis processes have
been established in the European Union. Nevertheless,
methods are being reviewed and improved (Baker et al.,
2009). Rating systems for most pathogens either have not
been developed or do not account for climate change.

Strategies for mitigating effects of climate change
Ecological resilience is the capacity of an ecosystem to
absorb disturbance without shifting into a qualitatively
different state (Campbell et al., 2009). Adaptive capacity,
by contrast, is a property of individuals, populations or
species. The establishment and maintenance of forests
with diverse species and age classes can help maintain

resilience to mortality and reduction in growth rates of
trees in response to diseases and climate change.

Facilitated or assisted migration of trees may be an
effective and cost-effective strategy to increase the proba-
bility of persistence of populations or species (Woods
et al., 2010). Facilitated migration is the deliberate move-
ment by humans of genotypes and species into areas
where the projected climate is believed to be associated
with high probabilities of persistence. In some cases,
genotypes and species currently present in those areas are
believed to be unlikely to persist as climate changes. Facil-
itated migration may be emphasized for species with nar-
row resource requirements or poor dispersal ability
(Warren et al., 2001). However, facilitated migration can
have unintended consequences. For example, new patho-
gens may be introduced along with the target species. The
introduced trees may have little immunity against
diseases in the areas into which they are moved. Also, it is
highly uncertain which pathogens will become more
evident as climate changes. In British Columbia, for
example, pines such as P. contorta var. latifolia that
originated in wet ecosystems, where foliar diseases are
relatively common, were more resistant to dothistroma
needle blight diseases, and had higher levels of defensive,
secondary metabolites, than pines from comparatively
arid ecosystems (Wallis et al., 2008, 2010).

Breeding programmes for forest trees can promote
genetic diversity, disease resistance and tolerance to envi-
ronmental stresses. A tree’s resistance to pathogens
depends on stochastic genetic variation, evolved immu-
nity, plasticity and environmental conditions (Yanchuk
et al., 1988; Liu & Ekramoddoullah, 2003; Cruickshank
et al., 2010). Fungicides may be an effective method of
controlling forest diseases in forest nurseries and in natu-
ral forests, especially in the short term, despite negative
public perception.

Management case studies

Yellow-cedar decline
Since the early 1900s, there has been extensive mortality
of Chamaecyparis nootkatensis (yellow cedar), a cultur-
ally and economically important species, over more than
250 000 ha of forests in southeast Alaska (Hennon et al.,
2006) (Fig. 3) and nearby British Columbia (Hennon
et al., 2005). Yellow-cedar decline is characterized by
slow decline in tree condition over several years. These
forests are composed of standing long-dead and recently
dead and dying C. nootkatensis and other tree species.
Insects (Phloeosinus beetles) and pathogens (Armillaria
spp. and other fungi) are contributing factors in yellow-
cedar decline, but are less aggressive against unstressed
trees. Predisposing factors include landscape, site and
stand conditions (Hennon et al., 2008) that increase the
probability that the fine roots of C. nootkatensis will
freeze during cold weather events in late winter and early
spring (Schaberg et al., 2008).

Long-term climate and short-term weather events
affect the probability that the roots of C. nootkatensis
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will freeze. The cool, moist climate that developed in the
late Holocene created bogs and forested wetlands in
which the species became abundant. However, yellow
cedar developed shallow roots to acquire nitrogen in wet
soils (D’Amore & Hennon, 2006; D’Amore et al., 2009).
Open forest canopies in bogs create microclimatic
extremes; in late winter and early spring these include
rapid warming as an inciting factor that triggers cedar
dehardening (Schaberg et al., 2005) and penetration of
cold temperatures into soils (D’Amore & Hennon, 2006;
Hennon et al., 2010). Chamaecyparis nootkatensis are
tolerant of cold temperatures in autumn and early winter
(Schaberg et al., 2005). However, roots deharden quickly
in late winter and early spring, when soil temperatures
below )5�C are lethal (Schaberg et al., 2008). These
lethal temperatures are common in shallow soil horizons,
but do not occur when snow is present to buffer soil tem-
perature (Hennon et al., 2010). The onset of yellow-cedar
decline in about 1880–1900 (Hennon et al., 1990)
corresponded with the end of the Little Ice Age. Weather-
station data indicated a trend towards warmer winters
but persistent early spring freezing events throughout the
1900s (Beier et al., 2008). Chamaecyparis nootkatensis
trees are healthy where snow persists past the last cold
period in spring, or where they are deep-rooted on
relatively well-drained soils.

Drivers of yellow-cedar decline can be reduced to two
factors for risk modelling: soil drainage and snow accu-
mulation. Planting or thinning is often needed to ensure
the initial regeneration and competitive ability of C. noot-
katensis (Hennon et al., 2009). These activities are direc-
ted at higher elevations or on well-drained soils where
snow or deeper rooting, respectively, protects C. nootkat-

ensis roots from cold temperatures. In declining forests,
salvaged wood from dead cedars is economically valuable
(Hennon et al., 2007) because the heartwood retains its
integrity for up to 100 years after death (Kelsey et al.,
2005).

Sudden aspen decline
Sudden aspen decline is a recently described disease of
Populus tremuloides. It is characterized by rapid, syn-
chronous branch dieback and tree mortality on a land-
scape scale (Fig. 4), rather than on a stand scale, without
the involvement of aggressive, primary pathogens and
insects (Worrall et al., 2008, 2010b). Typically, there is
no increase in aspen regeneration as overstory cover
decreases, and in smaller size classes there is a decrease in
recruitment. This lack of vegetative regeneration is asso-
ciated with root mortality, which in turn is correlated
with crown loss. Sudden aspen decline extends from Col-
orado into southern Wyoming, and similar damage
began around 2000 in northern Arizona and in the early
1990s in southern Utah, USA (Ohms, 2003; Bartos,
2008; Fairweather et al., 2008). Declining aspen in the
parklands and southern boreal forests of Alberta and Sas-
katchewan, Canada (Hogg et al., 2004, 2008) may be
part of this same phenomenon.

In Colorado, sudden aspen decline was first noticed in
2004. By 2008, it covered about 17% of the area domi-
nated by aspen in the state, about 220 000 ha. In 2009
the expansion appeared to stop, although severity contin-
ued to increase in many affected stands. A severe drought
and record high temperatures, centered in 2002, was sus-
pected as the cause. This drought was also the driver of
unprecedented levels of mortality in Pinus edulis associ-
ated with an outbreak of the bark beetle Ips confusus
(Breshears et al., 2005).

Spatial analysis of a moisture index provided evidence
that drought was an important inciting factor. Sites with
aspen mortality detected by aerial survey in 2008 had
greater moisture deficits in the 2002 hydrologic year

Figure 3 Yellow-cedar decline on Chichagof Island in Alaska, USA.

Figure 4 Sudden aspen decline on the Dolores Ranger District, San

Juan National Forest, Colorado, USA.
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(October 2001 to September 2002) than did sites with
healthy aspen (Worrall et al., 2010b). Rehfeldt et al.
(2009) showed that the mortality was consistent with
projections of the effect of climate change on aspen.
Annual values of an index of climate favourability for
aspen were lowest in 2002. Locations where sudden
aspen decline is occurring are at the edge of aspen’s cli-
mate envelope. The lower elevation at which climate sup-
ports aspen in the southern Rocky Mountains is expected
to increase by 250 m by 2030 and 750 m by 2090. Projec-
tions suggest that 82% of sites with sudden aspen decline
will be outside aspen’s climate profile by 2060. In some
areas, root systems may be able to regenerate if above-
ground biomass is cut or burned. Aspen less than about
40 years old appears to have greater tolerance to drought
and high temperatures than older aspen (Worrall et al.,
2010b). Growth of aspen also might be encouraged at
higher elevations, where conifers are expanding yet cli-
mate is expected to be suitable for aspen at least until
2100.

Summary and conclusions

Forests serve important ecological functions and also
contribute to the economic, aesthetic and spiritual health
of humans. Climate has always shaped the Earth’s for-
ests, but human activities over the past 200–300 years
have led to unprecedented changes in the world’s climate.
Climate change will interact with forest disturbances,
such as pathogens, insects and fire, to increasingly impact
the geographic distribution, growth and sustainability of
the world’s forest tree species. Outbreaks of forest dis-
eases caused by native and introduced forest pathogens
are predicted to become more frequent and intense as
drought and other abiotic stressors are amplified under
climate change. However, uncertainty pervades predic-
tions about the future impacts of these diseases, in part
because the effects of climate change on host–pathogen
interactions are complex. For example, under a climate-
change scenario of warmer and drier future conditions,
we predict that diseases caused by pathogens directly
affected by climate (e.g. dothistroma needle blight) will
have a reduced or unchanged impact on their hosts, but
an increased impact under a scenario of warmer and wet-
ter conditions. For diseases caused by pathogens indi-
rectly affected by climate (e.g. armillaria root disease)
and for decline diseases, in general, we predict an
increased impact on hosts under a climate-change sce-
nario of warmer and drier future conditions and a
reduced or unchanged impact under warmer and wetter
future conditions.

The cumulative mortality of forest trees, including tree
death potentially attributable solely to climatic drivers, is
a serious problem facing forest professionals and policy
makers. Whilst trees in much of the earth’s forests will
have to adapt to climate change without human interven-
tion, many forested areas can be managed to minimize
the undesirable effects of projected increases in tree mor-
tality. This will require proactive and ‘new’ thinking and

a modified suite of forest management approaches. We
recommend four categories of tactics for managing forest
diseases under a changing climate: monitoring, forecast-
ing, planning and use of mitigating strategies. Aspects of
these tactics have been considered or implemented in the
evolving management of yellow-cedar decline and aspen
decline in the USA. To have the best possible chance of
success in the face of global climate change, each of the
four management tactics we have recommended will
require, to varying degrees: the development of tech-
niques and tools; informed discussion of research needs
and integration of results when the research is done; pri-
oritization of research needs using risk analyses; and the
development of clear and solid links to forest policy.
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