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Abstract Large wildfire occurrence and burned area are modeled using hydroclimate and
landsurface characteristics under a range of future climate and development scenarios. The
range of uncertainty for future wildfire regimes is analyzed over two emissions pathways
(the Special Report on Emissions Scenarios [SRES] A2 and B1 scenarios); three global
climate models (Centre National de Recherches Météorologiques CM3, Geophysical Fluid
Dynamics Laboratory CM2.1 and National Center for Atmospheric Research PCM1); three
scenarios for future population growth and development footprint; and two thresholds for
defining the wildland-urban interface relative to housing density. Results were assessed for
three 30-year time periods centered on 2020, 2050, and 2085, relative to a 30-year reference
period centered on 1975. Increases in wildfire burned area are anticipated for most
scenarios, although the range of outcomes is large and increases with time. The increase in
wildfire burned area associated with the higher emissions pathway (SRES A2) is
substantial, with increases statewide ranging from 36% to 74% by 2085, and increases
exceeding 100% in much of the forested areas of Northern California in every SRES A2
scenario by 2085.
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1 Introduction

The climate system interacts with various factors such as soils, topography, available plant
species, and sources of ignition to give rise to both natural ecosystems and their fire
regimes. Long-term patterns of temperature and precipitation determine the moisture
available to grow the vegetation that fuels wildfires (Stephenson 1998). Climatic variability
on interannual and shorter scales governs the flammability of these fuels (e.g., Westerling et al.
2003; Heyerdahl et al. 2001; Kipfmueller and Swetnam 2000; Veblen et al. 2000; Swetnam
and Betancourt 1998; Balling et al. 1992). Flammability and fire frequency in turn affect the
amount and continuity of available fuels. Consequently, long-term trends in climate can have
profound implications for the location, frequency, extent, and severity of wildfires and for the
character of the ecosystems that support them (Westerling 2009).

Human-induced climatic change may, over a relatively short time period (< 100 years),
give rise to climates outside anything experienced in California since the establishment of
an industrial civilization currently sustaining a state population that has increased
approximately 41,000% since 1850. Changes in wildfire regimes driven by climate change
are likely to impact ecosystem services that California citizens rely on, including carbon
sequestration in California forests; quality, quantity and timing of water runoff; air quality;
wildlife habitat; viewsheds and recreational opportunities. They may also impact the ability
of homeowners and federal, state, and local authorities to secure homes in the wildland-
urban interface from damage by wildfires (Westerling and Bryant 2008).

In addition to climate change, the continued growth of California’s population and the
spatial pattern of development that accompanies that growth are likely to directly affect
wildfire regimes through their effects on the availability and continuity of fuels and the
availability of ignitions. They are also likely to impact both wildfire and property losses due
to wildfire through their effects on the extent and value of development in California’s
wildland-urban interface, both through their effects on the number of structures proximate
to wildfire risks and their effects on fire suppression strategies and effectiveness.

The combined effects of climate change and development on California’s future large
wildfire occurrence and burned area are the focus of the research presented here. Our modeling
projects California’s fire regimes as they are currently managed onto scenarios for future
climate, population, and development. The methodology we employ can incorporate the effects
of spatial variations in current management strategies on average fire risks. However, the
monthly and interannual variations in large wildfire occurrence and burned area that we
estimate do not reflect changes in management strategies over time, although our modeling
does have the capacity to reflect changes in the effectiveness of current management strategies
to the extent that these changes currently tend to correlate with climate and landsurface
characteristics. Thus, hypothetical effects of future changes in management in response to the
impacts of climate and development on wildfire are not considered in this work.

The metrics we model—large fire occurrence and burned area—are not the only metrics we
would wish to employ to assess the full range of the ecological and human impacts of wildfire.
In particular, metrics of fire severity (e.g., the percent of available biomass consumed,
characteristics of ecological impacts) would be highly desirable as well. These metrics are likely
to change in response to climate, may also be influenced by future management decisions, and
are key components for estimating many wildfire impacts due to climate change. The work
reported here does not consider changes in fire severity, which are the target of multiple ongoing
research efforts. However, in interpreting our results, it would be a mistake to assume a linear
correspondence between increased burned area and fire severity. Fire severity is likely to
increase in some ecosystems and decrease in others alongside increases in burned area.

S446 Climatic Change (2011) 109 (Suppl 1):S445–S463



Furthermore, severity might decrease in some ecosystems for reasons that many California
residents would find undesirable (i.e., broad-scale changes in ecosystems).

This work extends an analysis by Westerling and Bryant (2008) that considered the
effects of climate change on California large (>200 ha) wildfire occurrence and wildfire-
related damages holding development fixed at the 2000 census. In this analysis we
statistically model large (>200 and >8,500 ha) wildfire occurrence as a product of both
future climate scenarios and future population and development scenarios, using nonlinear
logistic regression techniques developed for seasonal wildfire forecasting in California and
the western United States (Preisler and Westerling 2007). We model the expected burned
area using Generalized Pareto Distributions fit to observed wildfires >200 and >8,500 ha.
We assess a range of outcomes given numerous sources of uncertainty, including three
global climate models (GCMs) with different sensitivities of temperature and precipitation
to anthropogenic forcing, two emissions scenarios, and three population growth and
development scenarios. Our goal is not to determine one most likely outcome, but rather to
define a population of plausible outcomes, which can then be used in future work to assess
the robustness of combined adaptation and mitigation policy choices.

2 Data and methods

2.1 Domain and resolution

The spatial domain for this analysis was a 1/8-degree lat/long grid (~12 km resolution) bounded
by the political boundary for the state of California. Areas of the state outside the current
combined fire protection responsibility areas of the California Department of Forestry and Fire
Protection and contract counties (combined here and denoted CDF), the U.S. Department of
Agriculture’s Forest Service (USFS), and the U.S. Department of Interior’s National Park
Service (NPS), Bureau of Land Management (BLM), and Bureau of Indian Affairs (BIA) were
excluded. The result was a set of 2,267 grid cells within the State. Fire was then modeled over
this domain at monthly time-steps for historic and simulated climate scenarios.

Five time periods were used for this analysis. Coefficients for statistical wildfiremodels were
estimated using monthly, gridded, historical fire and climate data available for 1980–1999.
These coefficients were then applied to gridded climate scenarios derived from GCMs, and the
results for three future climate periods—2005–2034, 2035–2064, and 2070–2099 (henceforth
referred to as 2020, 2050, and 2085) were compared to a common reference period (1961–
1990, henceforth 1975) for each scenario. These comparisons used average annual fire
occurrence and burned area statistics computed for each 30-year period referenced above.

2.2 Fire history

A comprehensive wildfire history for California for 1980–19991 was assembled from
digital fire records obtained from CDF, USFS, NPS, BLM, and BIA. The CDF records
included perimeters for large fires under both direct CDF and contract counties’ fire
protection responsibility (obtained online at http://frap.cdf.ca.gov/). Federal fires were

1 Comprehensive data prior to 1980 are not available from some of these sources. Fire data after 1999 are
available, but the hydrologic simulations forced with historic climate data used here were developed for the
California Scenarios Project, of which this research is a component. These data ended in 1999, so the
common period of overlap between the available fire history and the hydroclimatic data was 1980–1999.
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sourced from point data records compiled from individual fire reports. The methods used in
compiling these data are described in Westerling et al. (2006, online supplement) and
Westerling and Bryant (2008). Westerling et al. (2002) describe in detail the federal data in
this sample and their response to climate variability.

Our wildfire history was aggregated to a 1/8-degree gridded monthly data set of
frequencies of fires >200 ha in burned area and the total burned area in these large wildfires
(544,080 data points=2,267 grid points × 20 years × 12 months/year). Wherever we refer to
fire occurrence in the text, we are referring to the occurrence of wildfires greater than
200 ha, unless otherwise specified. For federal-sourced wildfire data, fires were allocated to
the grid cell in which they were reported to have ignited. For CDF fires reported as polygon
perimeters, fires were allocated to the grid cell corresponding to their centroid. Fires were
assigned to the month in which they were discovered. In many cases fires continued to burn
for additional months, but we did not have the means to apportion burned area by month.

Wildfires managed by the Fisheries and Wildlife Service (FWS), the Department of
Defense (DOD), and the Bureau of Reclamation (BOR) were not included because they
were not available with sufficient comprehensiveness and quality. The FWS and BOR lands
are relatively small in area and—particularly in the case of FWS—located in areas (e.g.,
California’s Central Valley) that would likely have been excluded from this analysis for
other reasons. The Department of Defense lands in California are significant, similar in
scale to those of NPS. We could extend our analysis spatially to DOD lands by applying
model coefficients estimated using other agencies’ fire histories to DOD lands, for which
we have the explanatory variables. However, the vast majority of DOD lands in California
lie in southeastern desert areas of the state, which show negligible changes in fire risks by
the end of the twenty-first century under many, though not all, of our scenarios.

2.3 Land surface characteristics

2.3.1 Vegetation

Coarse vegetation characteristics used here were compiled from the Land Data Assimilation
System (LDAS) for North America’s 1/8-degree gridded vegetation layers that use the
University of Maryland vegetation classification scheme with fractional vegetation
adjustment (UMDvf) (Mitchell et al. 2004; Hansen et al. 2000) (For an analysis of how
our modeling relates to the LDAS vegetation categories, see the supplemental materials.)

In our modeling, the primary variable we use from LDAS is the fraction of each grid cell
that is vegetated and not used for agriculture (V). In our model for estimating fire
probabilities, V plays an important role. In the limit of complete urbanization, it is clear that
this variable is affected by encroaching human development, because a grid cell entirely
covered by dense population would lack any sufficiently large vegetated space in which
wildfires could exist. However, vegetation cover may be reduced by encroaching human
development at intermediate scales as well, depending on how new growth is allocated. In
Section 2.4 and the supplemental materials we describe how scenarios for allocating
projected growth within a grid cell affect the vegetation fraction.

2.3.2 Topography

Topographic data on a 1/8-degree grid were also obtained from LDAS. The LDAS
topographic layers are derived from the GTOPO30 Global 30 Arc Second (~1 km)
Elevation Data Set (Mitchell et al. 2004; Gesch and Larson 1996; Verdin and Greenlee
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1996). We tested mean and standard deviation of elevation, slope, and aspect as explanatory
variables in our wildfire model specification.

2.3.3 Protection responsibility

Logistic regression techniques attempt to estimate probabilities of wildfires occurring at a
given time and location as a function of predictor variables. The predictand is always
valued zero or one, and in this case most data points are zero, since fires are relatively rare
occurrences at ~12 km × monthly scales. It is important to distinguish between data points
that are zero because no fire occurred, and data points that are zero because the fires that
may have occurred there are not reported by the agencies included in our sample. The
practical effect of including in our modeling areas for which we do not have good fire
reports is to underestimate the probability of fire occurrence everywhere on average. We
used the fraction of each grid cell’s area covered by the protection responsibility of the
agencies in our sample to estimate the area over which fires could occur.

A GIS layer of Local, State, and Federal protection responsibility areas in California was
obtained online from the CDF Fire and Resource Assessment Program (http://frap.cdf.ca.gov/).
The polygons in this layer were extracted and intersected with our 1/8-degree grid to obtain
the fraction of each grid cell in Local (LRA), State (SRA), and Federal (FRA) protection
responsibility areas. Since federal protection responsibility includes agencies excluded from
our sample, we obtained GIS layers of federal and Indian lands online from the United States
National Atlas (http://nationalatlas.gov/). These were also extracted and intersected with our
grid in order to determine what fraction of the federal responsibility area in each grid cell
corresponded to the federal agencies in our sample.

Our analysis was limited to the SRA (for which we have CDF wildfire histories) and
those parts of the FRA administered by the federal agencies for which we have wildfire
histories (USFS, NPS, BLM, BIA). The LRA was excluded both because we do not have
wildfire histories for those lands and because they are predominately developed for urban
and agricultural uses. We limited our analysis to grid cells with a combined protection
responsibility (SRA, USFS, NPS, BLM, BIA) exceeding 15% of the total grid cell area.

2.4 Growth and development scenarios

We employed spatially explicit 100 m-resolution twenty-first century population growth
and development scenarios based on work by Theobald (2005) and developed by the U.S.
EPA (2008) as the Integrated Climate and Land Use Scenarios (ICLUS) for the United
States. These scenarios incorporate assumptions about future trajectories with regards to
sprawl as well as population growth rates based on the Intergovernmental Panel on Climate
Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and
demographic storylines, downscaled to the United States. We report results here for ICLUS
scenarios with growth and sprawl that would be consistent with the global A1 and B2
SRES scenarios, and an intermediate base case trajectory (Table 1). While we do not model
spatial variation in wildfire below the 1/8-degree grid threshold, we do consider effects of
assumptions about the allocation of new development below that level (see supplemental
materials). Our scenarios for allocating development consider the effects of expanding the
wildland-urban interface into areas that are currently vegetated versus siting new
development in areas that are currently bare or agricultural land. For the intermediate case,
we allocate new development proportionately across baseline vegetated, bare and
agricultural areas. For the high growth and sprawl scenario (A2), we allocate new
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development to vegetated areas, and for the low growth and sprawl scenario (B1) we
allocate new development within bare and agricultural areas. Additionally, we use two
different thresholds for describing when a 100 m pixel is fully “urbanized,” such that a
wildfire cannot occur there: 147 and 1000 households per square kilometer (the limits used
in the ICLUS scenarios to define suburban areas).

2.5 Climate and hydrologic data

2.5.1 Historical data

A common set of gridded historical (1950–1999) climate data including maximum and
minimum temperature, precipitation (PCP), radiation, and wind were designated for the
Second California Assessment (see Maurer et al. 2002; Hamlet and Lettenmaier 2005). We
used these data with LDAS vegetation and topography to drive the Variable Infiltration
Capacity (VIC) hydrologic model at a daily time step in full energy mode, generating a full
suite of gridded hydroclimatic variables such as actual evapotranspiration (AET), soil
moisture, relative humidity (RH), surface temperature (TMP) and snow-water equivalent
(SWE) (Liang et al. 1994). Because Potential Evapotranspiration (PET) was not easily
extracted from the version of the VIC model used here, we used the Penman-Monteith
equation to estimate PET directly (Penman 1948; Monteith 1965). Moisture deficit (D) was
then calculated from PET and AET (D = PET - AET).

As indicators of drought stress, we calculated the cumulative water-year moisture deficit
for each of the preceding 2 years (D01 and D02). Water year (October - September), rather
than calendar year, moisture deficit is used because in California most of the precipitation
that affects fuel availability and flammability falls between October and April. We also
calculated the standardized cumulative moisture deficit from October 1 through the current
month (CD0). The 30-year means for 1961–1990 for moisture deficit (D30), AET (AET30),
PCP (PCP30), and TMP (TMP30) were also used below to analyze the spatial distribution
of climate-vegetation-wildfire interactions to be represented in the wildfire model
specification (Electronic Supplementary Material).

2.5.2 Climate scenarios

As described by Cayan et al. (2009), several GCMs and emissions scenarios were selected
for the Second California Assessment. In this report we describe results across three models
—CNRM CM3, GFDL CM2.1, NCAR PCM—and two emissions scenarios—SRES A2 (a
medium-high emissions trajectory) and SRES B1 (a low emissions trajectory) comprising
six realizations for future climate. Daily climate data from these models were downscaled to
the 1/8-degree grid using the Constructed Analogues method (see Hidalgo et al. 2008; Maurer
and Hidalgo 2008). After downscaling, the VIC model was used to simulate the same suite of

Table 1 ICLUS growth and development scenarios for California

Scenario 2100 CA Population Change vs 2000 Description (identifier)

A2 81 million +154% high growth & sprawl (HIH,HIH)

Base Case 62 million +84% medium growth & sprawl (MID,MID)

B1 50 million +54% Low growth & sprawl (LOW,LOW)
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hydrologic variables for each target time period (1975, 2020, 2050, 2085) in each climate
scenario as described for the historical period (Section 2.5).

As described in Cayan et al. (2009), the models were selected for their fidelity in
representing historical California temperature and precipitation in particular, with appropriate
seasonality. Also, the selected models were required to simulate tropical Pacific sea surface
temperature variability consistent with observed ENSO variability, and to have appropriate
spatial resolution over California for the downscaling methodologies employed here. That left
a set of six models. Daily precipitation and daily maximum and minimum temperature had to
be included in the models’ historical and projection saved sets in order to use the Constructed
Analogs downscaling methodology, which narrowed the set to three models.

While we only use the three models downscaled with the Constructed Analogs
methodology, the larger set of six models show a consensus toward drier conditions in
southern and central California, but more scattered results in the region from Lake Shasta to the
northernmost parts of California. An unpublished review of a larger set of 12 models showed
similar results, increasing our confidence that the models used here are representative of what a
larger set of models project for California. So while it is true that our models do not encompass
the full range of model uncertainty of the AR4, the GCMs used here appear to cover a range of
projected temperature and precipitation that is representative of the state of the art modeling
guidance for California. A possibly more relevant concern is that the estimated emissions
growth for 2000–2007 exceeded the most fossil fuel-intensive scenario of Intergovernmental
Panel on Climate Change (Le Quéré et al 2009). The longer this trend in emissions growth
rates persists, the harder it may be to reach a future scenario like those modeled here, and the
more likely it is our results may underestimate future impacts.

Each of the GCMs evidences different sensitivities to anthropogenic forcing, with the
CNRM CM3 and GFDL CM2.1 models generally showing warmer temperatures than the
NCAR PCM, particularly in summer. The other three models assessed by Cayan et al
(2009) that are not used here were also warmer than the NCAR PCM. The GFDL CM2.1
model tended to be drier than the others in both northern and southern California in most
scenarios, while CNRM CM3 was typically drier than NCAR PCM. Compared to the larger
set of models, NCAR PCM is also the least dry by the end of the century under the A2
scenario (Cayan et al 2009). It is not clear how significant variation in precipitation across
the models is, since that variation is small compared to the potential natural variability in
precipitation in the region. Notably, the tendency towards dryness across all the models is
much more pronounced and uniform for California in the A2 emissions scenarios, when
anthropogenic forcing is higher, than for the B1 scenarios, and it seems reasonable to
speculate that the forcing is overwhelming the natural variation in the A2 scenarios.

The six climate scenarios used here encompass three separate sources of uncertainty for
our modeling: the degree of anthropogenic forcing (represented by the A2 and B1
emissions paths), the extent of climate system sensitivity to anthropogenic forcing (greater
in GFDL CM2.1 and CNRM CM3 than NCAR PCM), and the range of random variation in
climate across 30-year windows in six scenarios (unknowable for a sample of this size).

3 Modeling

3.1 Fire modeling

Because large wildfires are relatively rare events, statistical models for wildfire must
aggregate fire occurrence over space and/or time in order to avoid fitting a model of zeros.

Climatic Change (2011) 109 (Suppl 1):S445–S463 S451



Logistic regressions allow us to model wildfire occurrence at arbitrarily fine spatial and
temporal resolutions (limited only by the available data) while statistically aggregating
across locations with similar characteristics. We estimated the monthly probability of large
(>200 ha and >8500 ha) wildfires occurring as a function of land-surface characteristics,
human population, and climate on a 1/8-degree grid using generalized linear models in R.
Candidate model specifications were tested by comparing the Akaike Information Criterion
(AIC) estimated for each model. The best model specification was then tested using leave-
one-out cross-validation. That is, for each of the 20 years in the model estimation period, a
separate set of model coefficients were estimated using the other 19 years of data.

The climatic variables used here as predictors for fire occurrence (Table 2) were selected to
describe variation in moisture available for the growth and wetting of fuels over a range of
time scales, from long term averages over 30 years (D30, AET30), to interannual variations in
the 3 years through the current year (D01, D02), to seasonal variations and conditions at the
month a fire could potentially burn (CD0, PCP, RH, TMP). Westerling and Bryant (2008) and
Westerling (2009) show that long-term climate averages can serve as a proxy for coarse
vegetation and fire regime types, distinguishing between diverse fire regime responses to
antecedent and concurrent climate. Preisler et al (2011), Westerling (2009) and Westerling et
al. (2006) show that cumulative annual moisture deficits in the current and 1–2 preceding
years are strongly associated with variability in large wildfire occurrence, and the latter work
also links large wildfire occurrence to temperature and variations in spring snowmelt timing.
Finally, relative humidity (RH) is a key component of many fire weather indices, and a good
predictor of fuel moisture (e.g., Schlobohm and Brain 2002).

Vegetation fraction and population are indicators of burnable area, availability of human-
origin ignitions, and accessibility. Other variables we tested—such as total protection
responsibility area, and mean and standard deviation of elevation—were not included in the
model specification because they did not substantially improve model fit as measured by
the AIC. The climatic and land surface variables we selected are not independent of
topography and protection responsibility area. Federal protection responsibility and U.S.
Forest Service protection responsibility area were highly significant, and may be indicative
of differences in management or resources across protected areas, or they may be proxies
for other spatial variables such as accessibility, vegetation type, sources of ignitions, etc.

The model specification employed here for estimating fire occurrence builds on Preisler
and Westerling (2007) and Westerling and Bryant (2008), and adopts methodologies
presented in Brillinger et al. (2003), and Preisler et al. (2004):

LogitðΠ200Þ ¼ b � ½1þ D30þ D01þ D02þ PCPþ X D30;AET30ð Þ
� 1þ TMPþ CD0ð Þ þ P TMPð Þ þ P RHð Þ
þP POPð Þ � 1þ D30ð Þ þ X Vð Þ þ FRA�

where Π200 is the probability of a fire >200 ha occurring, Logit(Π200) is the logarithm of
the odds ratio ðΠ200=ð1�Π200ÞÞ, β is a vector of parameters estimated from the data, and
X(•) and P(•) are matrices describing basis spline and polynomial transformations of the
data. The interaction terms:

X D30;AET30ð Þ � 1þ TMPþ CD0ð Þ
result in estimation of a set of constants and a set of coefficients on average monthly
temperatures and cumulative moisture deficits that are associated with the distribution of
vegetation types and patterns of fire regime response to climate variability.
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The interaction terms:

P POPð Þ � 1þ D30ð Þ
capture direct effects of local population on the probability of large fire occurrence, which
vary in this specification with the average summer moisture deficit in any given location.
These factors may be indicative of several effects, including ignitions, accessibility,
suppression resources, and suppression strategies.

We also estimate the probability that one or more very large fires burning in excess of
8,500 ha in aggregate may occur, conditional on there being at least one fire exceeding
200 ha:

LogitðΠ8500 200j Þ ¼ b � 1þ RHþ Aspectþ USFS½ �

This model says that whether or not a large fire becomes a very large fire or not depends
on the relative humidity, the north/south facing, and whether the fire is on Forest Service
land or not. The latter variable might be related to management strategies, or it could simply
be that so much of the forested area of the state, especially in less accessible locations, is
managed by the Forest Service.

The probabilities estimated in this way can be summed to get an expected number of
fires. For example, the number of wildfires >200 ha expected in California in a given year
is just the sum of the probabilities Π200 for each of 12 months and 2,267 grid cells. The
probabilities can also be used to simulate fire histories, drawing [0,1] randomly from
binomial distributions with probabilities Π200 for each grid cell and month.

Table 2 Predictor variables

Variable Description >200 ha1 >8,500 ha2

D30 30-year average cumulative Oct.–Sep. moisture deficit √
AET30 30-year average cumulative Oct.–Sep. actual evapotranspiration √
D02 Cumulative 0ct.–Sep. moisture deficit, 2 years previous √
D01 Cumulative 0ct.–Sep. moisture deficit, 1 year previous √
CD0 Current water-year cumulative moisture deficit, Oct. through current

month
√

PCP 2-month cumulative precipitation, through current month √
RH Monthly average Relative Humidity √ √
TMP Monthly average surface air Temperature √
V3 Vegetation Fraction √
POP Total population (2000) √
FRA3 Federal protection responsibility area as percent of total area √
USFS3 USFS protection responsibility area as percent of total area √
Aspect4 Average north/south facing √

1 Predictors for logistic regression estimating probability of a fire exceeding 200 ha
2 Predictors for logistic regression estimating probability total burned area exceeds 8,500 ha conditional on
one fire having exceeded 200 ha
3 Fractions are transformed using log fractionþ :002ð Þ= 1� fractionþ :002ð Þð Þ to generate a continuous
variable centered around zero
4 The transformation cos pi=2þ aspect»pi=180ð Þ yields the north/south component of aspect
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We also estimated generalized Pareto distributions (GPDs) for the logarithm of burned
area for fires >200 ha and for fires >8,500 ha (for a discussion of methodology as it applies
to wildfire and evidence that fire size regimes are consistent with heavy-tailed Pareto
distributions, see Straus et al. 1989; Malamud et al. 1998; Ricotta et al. 1999; Cumming
2001; Song et al. 2001; Zhang et al. 2003; Schoenberg et al. 2003; Holmes et al. 2008).
From these we estimated the expected burned area for a fire given that its area is greater
than 200 ha and less than 8,500 ha, and the expected burned area for fires given that they
are >8,500 ha. Expected burned area in any grid cell and month is thus:

ExpectedBurnedArea ¼ Π200 � bA > 200;<8500 þΠ200 �Π8500 200j :
�

� � bA >8500j
where the probabilities Π are as above, bAj>200;<8500 is the expected burned area less than
8,500 ha given that there is at least one fire greater than 200 ha, and bAj>8500 is the expected
burned area given that at least 8,500 ha burned.

We use a two-step process like this because the empirical distribution of fire sizes in
California appears to be non-stationary. Extremely large fires are governed by different
processes than are more frequent large fires. As with the logistic regression results above,
we can also draw randomly from the GPDs to simulate fire histories, generating a random
burned area for each fire simulated with the binomial distributions.

3.2 Summary of scenarios

To summarize, we estimate 108 future scenarios, considering two emissions scenarios, three
GCMs, two thresholds for defining urbanization, three scenarios for growth rates and the
allocation of development, and three future time periods (Table 3).

4 Results and discussion

4.1 Model fit

The statistical significance of coefficients for the wildfire model specification was very
stable across sub-samples, using cross-validation. The logistic regression for fires greater
than 200 ha fit the observations well (Fig. 1), and the maximum probability of predicted fire
occurrence was over 33%, which compares well with earlier fire models for climate change
impact assessments in Westerling and Bryant (2008) and for seasonal forecasting in Preisler
and Westerling (2007). The scale of interannual variation in expected fires aggregated
statewide was comparable to that of observed fire. Forty-two percent of interannual
variability in statewide large (>200 ha) wildfire occurrence was explained by the predicted
probabilities, and the correlation between annual observed fire occurrence and predicted fire
occurrence was highly significant (Spearman’s ρ=0.73, p-value=0.0003). For monthly fire

Table 3 Summary of scenarios

Emissions Model Urban Threshold (households/km2) Growth Rate & Allocation Period

SRES A2 CNRM CM3 147 LOW, LOW 2020

SRES B1 GFDL CM2.1 1,000 MID, MID 2050

NCAR PCM1 HIH, HIH 2085
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occurrence aggregated statewide, 58% of month-to-month variability was explained, and
the correlation was also highly significant (Spearman’s ρ=0.84, p-value=2e-16). The
additional skill at the monthly time scale is due to the model fitting the seasonal cycle in the
incidence of fires >200 ha, as well as the interannual variability.

Results for our estimation of the frequency of fires greater than 8,500 ha were also
significant, but the skill was lower. This is likely due to both the small number of observed
fires of this magnitude, and also it is likely that the size of these fires is highly sensitive to
factors we are not able to consider here, such as the management strategy on individual
fires, meteorological conditions on hourly to daily timescales during the fire, and
landsurface characteristics at finer scales than those practical here (~12 km). Twenty
percent of interannual variability in statewide very large (>8,500 ha) wildfire occurrence
was explained by the predicted probabilities, and the correlation between annual observed
and predicted very large fire occurrence was significant (Spearman’s ρ=0.46, p-value=
0.04). Similarly, monthly predicted very large fire occurrence explained 23% of the
variation in observed monthly values, and the correlation was highly significant (Spear-
man’s ρ=0.46, p-value<7e-14).

While the Generalized Pareto Distribution fit the logarithm of monthly burned areas
exceeding 200 ha and 8,500 ha very well (Fig. 2), the empirical fire size distributions still
have a “fatter” right tail (i.e., higher probability of extremely large fires) than estimated by
the modeled distributions, as indicated by the values to the far right in the Quantile plots
sitting above the 1:1 ratio line (Fig. 2). This under-prediction of the extremes in fire size
appears to be associated with two factors that are not captured in our modeling—a high
degree of clustering in lightning-caused ignitions in some years, and high wind events (e.g.
Santa Ana winds in coastal Southern California). Management factors may also play a role,
such as the use of backfires, variation in the availability or effectiveness of suppression
resources, and also a lack of consistency in reporting as fires both individual ignitions
versus fire “complexes” resulting from multiple, coincident ignitions. The correlation
between predicted and observed burned area was, however, highly significant (Spearman’s
ρ=0.82, p-value<2e-16).

Fig. 1 Logistic regression model
fit for fires>200 ha: Observed
fire frequency (vertical axis)
versus predicted probabilities
(horizontal axis), binomial 95%
confidence interval (upper and
lower lines)

Climatic Change (2011) 109 (Suppl 1):S445–S463 S455



Generalized Pareto Distributions can be fit with covariates such as climate and land
surface characteristics, such that the parameters describing the distribution vary over time
and space (see e.g., Holmes et al. 2008). We tested the full suite of predictor variables
described in the preceding sections. While some of them were highly significant
statistically, in practice including covariates had a trivial impact on our ability to predict
year-to-year variations in burned area. Consequently, the results reported here use GPD fits
assuming stationarity (i.e., that the fire size distribution does not change over time). Thus,
the interannual variation in our predicted burned area is due entirely to variation in
estimated probabilities for burned area to exceed the two specified thresholds (200 ha and
8,500 ha).

Together these four probabilistic models (logistic models of the probability of fire
occurrence >200 ha and >8,500 ha, and Generalized Pareto Distributions for burned area
>200 ha and >8,500 ha) can be used to estimate both the expected burned area at any given
time and place in our modeling domain, and the associated variability implied by the four
models around those estimates. Using random draws from binomial distributions with the
probabilities predicted by logistic regressions, and random draws from Generalized Pareto
Distributions, we simulated 1,000 fire histories over our gridded monthly model domain for
1980–1999, and aggregated them statewide by year (Fig. 3). Observed annual burned area
was more variable than median simulated values, but within the range of variability across
the simulations.

While for aggregate annual burned area for the state our combined models only explain
about a quarter of interannual variability, the extremes in the residuals are accounted for by
essentially two factors. Clusters of lightning-caused ignitions in a few outlying years in
northern California account for a large part of the unexplained variability in large fire
occurrence. Unexplained variability in burned area is in large part due to a combination of
the effects of these lightning ignitions, and of Santa Ana-wind driven fire events in coastal
southern California. Our climate-driven modeling is not able to predict the timing of
lightning ignitions or Santa Ana winds. However, this range of variability is represented in

GPD Fit: Burned Area > 200 ha GPD Fit, Burned Area > 8500 ha 

Fig. 2 Generalized Pareto Distributions fit to occurrence of burned area >200 ha (left) and burned area
>8,500 ha (right). Distributions are fit to the logarithm of burned area and assume stationarity
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the probabilities associated with fire occurrence and size in our models, and thus
simulations using these probabilities do encompass the variability observed in burned area
(Fig. 3).

4.2 Changes in California wildfire

Predicted large fire occurrence and total burned area increase over time for both emissions
scenarios (Fig. 4).2 Initial increases for burned area are relatively modest, with little
difference between emissions scenarios—by 2020 the increases range from 6% to 23%,
with median increases between 15% and 19%. By 2050 the spread in modeled outcomes
widens, with predicted increases in burned area ranging from 7% to 41%, and median
increases between 21% and 23%, but again differences due to emissions scenarios are
relatively small compared to other factors. By 2085, the range of modeled outcomes is very
large, with total burned area increasing anywhere from 12% to 74%. On average, the largest
increases occur in 2085 for SRES A2 scenarios, with a median statewide increase in burned
area of 44%, and the biggest increases occurring for the warmer, drier GFDL CM2.1 and
CNRM CM3 model runs (range: 38%–74%, median 56%).

The SRES A2 scenarios in 2085 seem to be qualitatively different from either earlier
periods or SRES B1 in 2085 (Fig. 4), implying that the most important policy implication
of this study may be that moving to an emissions pathway more like that in SRES B1 (or
lower) could be highly advantageous.

A robust result of this study is that forest burned area increases substantially—exceeding
increases of 100% throughout much of the forested areas of Northern California—across all
three of the GCMs analyzed here for the SRES A2 emissions scenario by 2085 (Fig. 5). To
highlight the effects of potential increases in forest burned area, we analyzed a set of
transects running from the edge of California’s Central Valley near Merced northwest
through the Sierra Foothills and Yosemite National Park to Mono Lake and Lee Vining on

2 We show results for expected total area burned only, which are similar to predicted changes in large fire
occurrence.

Fig. 3 Median (horizontal lines),
interquartile range (box),
extremes within 1.5 x interquar-
tile range (whiskers) and
extremes outside 1.5 x interquar-
tile range are shown for annual
burned area aggregated statewide
for 1,000 simulations versus ob-
served (red line) burned area for
large fires in California. Predicted
probabilities of large fires from
logistic regressions, and General-
ized Pareto distributions of fire
size, were used to generate 1,000
simulations of burned area for
each grid cell and month and then
aggregated by year for the state
for each simulation
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the eastern side of the Sierra Nevada range for a GFDL CM2.1 SRES A2 scenario with
intermediate population growth and sprawl (MIDMID) and a high threshold for
urbanization (Fig. 6). While increased temperatures and modest variations in precipitation
generally resulted in similar increases in moisture deficit across the transects, the highest
elevation sites were somewhat buffered by their greater available moisture. The largest

Fig. 4 Percentage change in
expected burned area for large
California fires from a 1961–
1990 reference period for 108
scenarios, estimated for 30-year
periods centered on the indicated
dates, by emissions scenario.
Bold horizontal lines indicate
median scenario, boxes indicate
middle 50% of values, whiskers
indicate extremes

Fig. 5 2085 Predicted burned area as a multiple of reference period predicted burned area for three SRES
A2 climate scenarios: a NCAR PCM1, b CNRM CM3, and c GFDL CM2.1, with high population growth,
high sprawl, and a high threshold housing density for defining the limit to the wildland urban interface. The
location of fire regimes is assumed to be fixed. A value of “1” indicates burned area is unchanged, while 4+
indicates that burned area is 400% or more of the reference period (i.e., a 300% increase)
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increases in burned area tended to be mid-elevation sites on the west side of the Sierras.
Much of the lower portion of these mid-elevation sites lies outside of federal reserves, and
is comprised of private land holdings with very low-density development. In consequence,
a significant portion of private households in this region of the state would be exposed to a
substantially increased threat of wildfire under the SRES A2 emissions scenarios.

To highlight the effects of growth and sprawl on fire risks in the wildland urban interface
in areas with a higher density of households, we analyzed model results for several SRES
A2 scenarios on California’s central coast, running from San Mateo County in the north
through Santa Cruz to Monterey in the south, and east to San Benito and Santa Clara
counties (Fig. 7). CNRM CM3 and GFDL CM2.1 model results were quite similar, though
with higher burned area for GFDL CM2.1 (Fig. 7a&b). For both models, the largest
increases were in Big Sur and the Ventana Wilderness, and in the redwood forests at the
northern end of Santa Cruz county. High-growth, high-sprawl scenarios in this region
tended to reduce burned area over a large region, as increased development reduced the
vegetated area available to burn (Fig. 7c&d). Notably, results for rural northern Santa Cruz
county were sensitive to the threshold set for determining when development becomes too
dense for wildfires to occur (Fig. 7c&d).

The decrease in burned area in the southeastern deserts of California in Fig. 5 is the
effect of greater drying across the three SRES A2 scenarios, which reduces fuel availability
in these fuel-limited fire regimes.

5 Conclusion

We examine a range of future scenarios, considering multiple GCMs, emissions
scenarios, and a range of growth and development scenarios. While the range of
outcomes for these scenarios was large by the end of century, a majority of the scenarios
indicated significant increases in large wildfire occurrence and burned area are likely to
occur by mid-century. By 2085, substantial increases in large wildfire occurrence and
burned area seem likely, particularly under the SRES A2 emissions scenarios, and
particularly in forested areas of the state. This is mainly due to the effects of projected
temperature increases on evapotranspiration in this scenario, compounded by reduced
precipitation. The middle 50% of scenarios for SRES A2 in 2085 ranged from average
statewide burned area increases of 41% to 69% compared to the reference period
centered around 1975 (Fig. 4).

The spatial pattern of increased fire occurrence and burned area in the forests of
Northern California was robust across a wide range of scenarios. Wildfire burned area
increased dramatically throughout the mountain forest areas of Northern California across
most of the various 2085 SRES A2 scenarios examined here. The SRES A2 scenarios by
2085 were qualitatively different from the B1 scenarios and the earlier period A2 scenarios
in terms of the scale and spatial extent of increased fire occurrence and burned area. Given
that we do, as a species, face choices regarding future emissions pathways, it would seem
desirable to avoid persisting on a high greenhouse gas emissions pathway like A2.

Projected increases in burned area in the Sierra Nevada appear to be greatest for
mid-elevation sites on the west side of the range. These are locations with significant areas
outside of federally managed forest and park lands—and low-density development
patterns—potentially exposing private landowners to substantially increased wildfire
threats. To the extent that future low-density development in this region is vulnerable to
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losses from fire, continued growth could increase the state’s economic vulnerability to
increased wildfire due to climate change.

Forest areas in coastal California also faced increased risk of wildfires under the warmer
CNRM CM3 and GFDL CM2.1 SRES A2 scenarios, including iconic coastal redwoods and
the Ventana wilderness area in central California. In contrast to communities in the Sierra
foothills, continued sprawling growth around more densely settled communities in coastal
California could actually reduce fire risks in some areas while increasing them in others.
These results are sensitive to model assumptions that define the demarcation between areas
where increased development is threatened by wildfire, and areas where urbanization has
increased to the point where wildfires can no longer occur. This highlights an important
area for further research.

The results presented here reflect a set of illustrative models and their underlying
assumptions that together result in a cascading series of cumulative uncertainties, such that
results for any one time and location cannot be considered a reliable prediction, even
contingent on the scenario represented. While aggregating results over time and space and
comparing outcomes against a common reference period estimated with the same methods
and data sets can reduce the impact of some types of systematic error, these measures are
not foolproof. Nonlinear effects of errors, or qualitative systematic changes over time that
are not captured by our models, can lead to significant errors in future projections that are

Fig. 7 Projected wildfire burned
area around Monterey Bay
communities for four scenarios a
CNRM CM3 SRES A2, low
growth and sprawl, high thresh-
old for defining urbanized areas
(1,000 households/km2); b GFDL
CM2.1 SRES A2, low growth
and sprawl, high threshold for
defining urbanized areas; c GFDL
CM2.1 SRES A2, high growth
and sprawl, low threshold for
defining urbanized areas (147
households/km2); (D) GFDL
CM2.1 SRES A2, high growth
and sprawl, high threshold for
defining urbanized areas

Fig. 6 a Six transects through the Sierra Nevada at Yosemite National Park with four reference
communities; Color-coded by transect: b Population (log scale); c Federal area as a fraction of total area;
d Mean elevation, and range (shaded); e 30-year Mean Annual Deficit and (f) Predicted Average Annual
Burned Area

R
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not encompassed by the range of uncertainty represented in our results. That is, the results
are conditional not only on the storylines of the SRES A2 and B1 scenarios and choice of
global climate models, but also on the specifications of the statistical models of fire activity
that we have estimated from historic data. To the extent that these data reflect processes that
will no longer operate in the future because of qualitative changes to the systems we are
modeling, our results will be in error.

Our results project the current managed fire regimes of California onto future scenarios
for climate and for population and development footprint. We do not consider hypothetical
effects of future changes in management strategies, technology, or resources that might be
adopted with the intent of mitigating or adapting to the effects of climate and development
on wildfire. Our models’ implicit assumptions that such management effects are fixed may
prove untenable under some future scenarios. Explicitly including management factors that
can vary over the long term might significantly affect the outcomes modeled here in a
systematic fashion. Such an exercise is left to a future study.

While we do not model metrics of fire severity (e.g., percent of vegetation consumed,
ecological impact of burning) here, we expect that fire severity may be correlated with
increases in fire occurrence and spatial extent in some ecosystems, particularly in some
mountain forest areas of the state. It seems likely that outcomes such as those described
here would have important implications for ecosystem services such as carbon sequestration
in California forests, air pollution and public health, forest products and recreation
industries, and the quality and timing of runoff from precipitation and snowmelt. All of
these merit intensive further study.
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