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1.  INTRODUCTION

Human-induced climate change is one of the main
threats to nature and human civilization (Pecl et al.
2017, Lenton et al. 2019). Each decade since the 1980s
has been warmer than any before on record, 9 of the
10 warmest years have occurred since 2005, Arctic

temperatures have likely been the warmest in the last
2000 years, and atmospheric carbon dioxide is now at
414 ppm, higher than any time in more than 100 000 yr
(https://climate.nasa.gov). This planetary-scale modi-
fication of the climate is having strong effects on
biodiversity and ecosystems, with major impacts fore-
cast (Newson et al. 2009, Walther 2010). Numerous

© The authors 2021. Open Access under Creative Commons by
Attribution Licence. Use, distribution and reproduction are un -
restricted. Authors and original publication must be credited.

Publisher: Inter-Research · www.int-res.com

*Corresponding author: mfuentes@fsu.edu

REVIEW

Climate change and marine turtles: recent
advances and future directions

Ana R. Patrício1,2, Lucy A. Hawkes3, Jonathan R. Monsinjon4, Brendan J. Godley2, 

Mariana M. P. B. Fuentes5,*

1MARE − Marine and Environmental Sciences Centre, ISPA − Instituto Universitário, 1149-041 Lisbon, Portugal
2Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, 

Penryn TR10 9FE, UK
3Hatherley Laboratories, College of Life and Environmental Sciences, University of Exeter, Streatham Campus, 

Exeter EX4 4PS, UK
4Department of Zoology and Entomology, Rhodes University, Grahamstown 6139, South Africa

5Marine Turtle Research, Ecology and Conservation Group, Department of Earth, Ocean, and Atmospheric Science, 

Florida State University, Tallahassee, FL 32306, USA

ABSTRACT: Climate change is a threat to marine turtles that is expected to affect all of their life
stages. To guide future research, we conducted a review of the most recent literature on this topic,
highlighting knowledge gains and research gaps since a similar previous review in 2009. Most
research has been focussed on the terrestrial life history phase, where expected impacts will
range from habitat loss and decreased reproductive success to feminization of populations, but
changes in reproductive periodicity, shifts in latitudinal ranges, and changes in foraging success
are all expected in the marine life history phase. Models have been proposed to improve estimates
of primary sex ratios, while technological advances promise a better understanding of how cli-
mate can influence different life stages and habitats. We suggest a number of research priorities
for an improved understanding of how climate change may impact marine turtles, including:
improved estimates of primary sex ratios, assessments of the implications of female-biased sex
ratios and reduced male production, assessments of the variability in upper thermal limits of
clutches, models of beach sediment movement under sea level rise, and assessments of impacts on
foraging grounds. Lastly, we suggest that it is not yet possible to recommend manipulating aspects
of turtle nesting ecology, as the evidence base with which to understand the results of such inter-
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species are already responding by changing their
phenology and distribution, among other adaptations
(Walther 2010, Feeley et al. 2017, Piao et al. 2019),
while others are declining (Pecl et al. 2017) or have
become extinct (Urban 2015, Waller et al. 2017). No-
tably, species responses to current rapid changes are
not necessarily effective and can lead to mismatches
between periodic events (e.g. breeding, wintering)
and resource availability (Edwards & Richardson
2004, Post & Forchhammer 2008).

Research on the effects of climate change on biodi-
versity has been disproportionately centred on ter-
restrial organisms (Feeley et al. 2017), likely due to
easier accessibility and accordingly better baseline
data on both species and climate, yet numerous im -
pacts on marine biodiversity have now been docu-
mented, from local to global scales (Poloczanska et
al. 2016, Worm & Lotze 2016, Crespo et al. 2019). Most
long-term studies have focussed on fish and plankton
(Worm & Lotze 2016), with recent re search assessing
impacts on large marine mega fauna (Erauskin-
Extramiana et al. 2019, Albouy et al. 2020), corals
(Hughes et al. 2018), seagrasses (Chefaoui et al.
2018), and seaweeds (Martins et al. 2019).

Marine turtles are a particularly interesting case
study, as they have a marine and a terrestrial phase
and depend on productive neritic or oceanic eco -
systems for foraging, and on low-lying sandy beaches
for nesting (Bolten 2003). Thus, all 7 extant species
of marine turtles, which as a group are globally dis-
tributed across the Earth’s tropical, subtropical and
temperate marine habitats (Wallace et al. 2010), will
likely be directly and indirectly affected by climate
change, with impacts varying geographically, tem-
porally, and between species and populations
(Hawkes et al 2009, Poloczanska et al. 2009, Hamann
et al. 2013, Fuentes & Saba 2016). Here, we present
a review of the most recent literature on climate
change impacts on marine turtles, providing an
update since a previous similar review by Hawkes
et al. (2009), to help guide future work on the topic.

2.  METHODS

To identify the relevant literature, we applied the
search terms ‘marine turtle climate change’ and ‘sea
turtle climate change’ in Web of Science and Google
Scholar, and then used the ‘snowball’ approach, by
thoroughly searching both the literature cited in
these articles and the articles in which they were
cited. We then screened the abstracts of each article
and rejected papers that were not related to climate

change and marine turtles. The papers that were
kept were categorized by habitat, climate change
threat, expected climate change impact, species, and
geographic location. Papers previously reviewed by
Hawkes et al. (2009), which were published between
1988 and April 2009 (n = 54), were also categorized in
the same manner and referred to as the ‘original
database’. Throughout this review, we summarize
where most research on this topic has focussed (Sec-
tion 3), review the most recent studies assessing cli-
mate change impacts on different marine turtle life
stages/parameters (Section 4), outline management
strategies to reduce predicted impacts (Section 5),
and set research priorities to improve our knowledge
on how climate change may impact marine turtles
(Section 6).

3.  SUMMARY OF MAIN RESEARCH TOPICS

Interest in the impacts of climate change on marine
turtles has increased (Fig. 1), and we found 202 peer
reviewed papers on this subject, published from May
2009 to October 2020, representing 76% of all the
peer-reviewed papers on this topic since 1988. Over-
all, the main areas of research were consistent
between the new and the original database, for all
categories, and are summarized in Fig. 2. Consider-
ing both the ‘original database’ (1988−2009) and the
new database (2009−2020), by far, most research was
focussed on the terrestrial phase only (Fig. 2). Con-
sidering climate-change-induced threats to marine
turtles or their habitats, during both periods, the
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Fig. 1. Number of peer-reviewed studies per year on climate
change impacts on marine turtles; grey bars: studies pub-
lished between 1988 and April 2009 and reviewed by
Hawkes et al. (2009), black bars: studies published from
May 2009 to December 2019. Publications from 2020 are not
included in the figure (although they have been reviewed in
the article), as the numbers would not be representative of 

the whole year
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future increase in incubation temperatures received
the most attention, followed by sea level rise and
storms and by increases in sea surface temperature
(SST). As for the potential impacts from climate
change, biased sex ratios were the most addressed
during the both periods, followed, in the new data-
base, by reduced hatching success, loss of nesting
area, hatchling morphology, survival and perform-
ance (‘hatchling condition’ in Fig. 2), changes in
breeding phenology, and strategies for impact miti-
gation. In the original database, the most researched
impacts after biased sex ratios were changes in
movements and distribution at sea, reduced hatching
success, and changes in breeding phenology. Log-
gerhead turtles Caretta caretta and green turtles
Chelonia mydas were the most researched species
during both periods. Lastly, when considering the
geographic distribution of studies, most focussed on
the North Atlantic, the West Pacific, the Mediterran-
ean, and the Caribbean, with a small number of
global assessments.

4.  CURRENT KNOWLEDGE, RESEARCH

ADVANCES, AND KNOWLEDGE GAPS

Throughout this section, we recap the base knowl-
edge on how climate change can impact different
life-stages/parameters (Fig. 3), we review the most
recent literature, highlight research advances made
in the last 11 yr, assess knowledge gaps, and briefly
suggest ways forward to improve our knowledge on
the impacts of climate change on marine turtles.

4.1.  Sex ratios

The effects of climate change on the primary sex
ratio of marine turtles, i.e. the sex ratio of offspring,
was the first parameter that researchers warned
would be affected by climate change (Davenport
1989, 1997, Janzen 1994, Mrosovsky 1994). Since
marine turtles have temperature-dependent sex
determination (TSD; Yntema & Mrosovsky 1980,

Fig. 2. Peer-reviewed papers on climate change impacts on
marine turtles published between 1988 and October 2020
(n = 256), categorized by (a) habitat, (b) species (Cc: Caretta

caretta, Cm: Chelonia mydas, Dc: Dermochelys coriacea, Ei:
Eretmochelys imbricata), (c) geographic location, (d) climate
change threats (T: temperature, SST: sea surface tempera-
ture, SLR: sea level rise), and (e) parameters expected to be
impacted by climate change (‘impact’). The sum of the per-
centages can be above 100%, as some papers assess more 

than 1 species, location, threat, or impact
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Acker man 1997), it is predicted that increases in in -
cubation temperatures will eventually lead to femi-
nization of some marine turtle populations (Janzen
1994, Santidrián Tomillo et al. 2015a). The majority
of studies estimating current primary sex ratios
reported female biases, for all species of marine tur-
tles in all ocean basins in which they occur (e.g.
Mrosovsky & Provancha 1992, Godfrey et al. 1996,
Binckley et al. 1998, Hanson et al. 1998, Broderick et
al. 2000, Sieg et al. 2011, King et al. 2013, Binhammer
et al. 2019, Monsinjon et al. 2019a, Tanner et al.
2019), with few reports of balanced to slightly male-
biased primary sex ratios (Stubbs et al. 2014, Esteban
et al. 2016, Patrício et al. 2017, Laloë et al. 2020).
Thus, when modelling primary sex ratios of marine
turtles under future climate change scenarios, sev-
eral studies projected that male production may
cease in the near future (2100; e.g. Janzen 1994,
Hawkes et al. 2007a, Witt et al. 2010, Monsinjon et
al. 2019a), particularly in populations that are al -
ready producing extremely female-skewed primary
sex ratios (Hays et al. 2017, Monsinjon et al. 2019a,
Tanner et al. 2019). For example, in one of the
world’s largest green turtle populations (northern
Great Barrier Reef, Australia; Limpus 2008), 99.1% of
the juveniles, 99.8% of the subadults, and 86.8% of
the adults were estimated to be female (Jensen et al.

2018), suggesting that the primary sex ratio has been
increasingly female skewed for around 20 to 30 yr
(Chaloupka et al. 2004), with projections indicating
the future feminization of this population (Fuentes et
al. 2010a).

4.1.1.  Direct methods to identify the sex of hatchlings:
from the examination of gonads to molecular clues

Determining primary sex ratios currently requires
sacrificing hatchlings for histological examination of
gonads. This is ethically challenging given that most
marine turtle species are protected in many countries.
Laparoscopy is a non-lethal alternative (Wyneken et
al. 2007), but is a highly skilled procedure, and is
labour and resource intensive, as sexing cannot be
carried out until hatchlings are several months old
(Wyneken & Lolavar 2015). Consequently, several
studies have explored the potential of molecular
markers, such as the accumulation of sex steroid hor-
mones in the plasma of neonates (Gross et al. 1995),
in the amniotic fluid from the egg (Xia et al. 2011),
and in eggshells (Kobayashi et al. 2015), to identify
the sex of marine turtle hatchlings, with reports of
high levels of agreement in sex identification be -
tween hormone ratios and gonad histology observa-
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Fig. 3. Generic life cycle of marine turtles with parameters expected to be impacted by climate change as reviewed in Section 4. 
Predominant associated climate threats are noted. Parameter numbers link to subsection numbers in Section 4
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tions. Other studies have looked at temperature-
dependent expression of an RNA-binding protein in
gonads (Tezak et al. 2017), and at compounds ex -
pressed at either male- or female-promoting temper-
atures (e.g. Anti-Müllerian hormone and CYP19A1
aromatase, respectively, Tezak et al. 2020a). These
methods are promising and could facilitate the iden-
tification of sex ratios in the field, but will be limited
to researchers who have access to the analytical
skills and facilities required to run such samples at
large scales, and their application at ecologically rel-
evant spatial (beaches) and temporal (nesting sea-
sons) scales may remain unrealistic in the near
future. Further, testing and modelling tools and the
potential for low-cost field assays are required to
properly extrapolate this critical population parame-
ter under climate change scenarios.

4.1.2.  Indirect methods to predict primary sex
ratios: scaling up from a clutch to the entire beach

Given the challenges in directly assessing the sex
of hatchlings, the majority of studies to date have
relied on estimating primary sex ratios from either
local air, sea surface, and/or sand temperature, or
temperature measured inside egg clutches, often
also estimating metabolic heating and the extent of
thermal heterogeneity within the nest (Girondot &
Kaska 2015, Monsinjon et al. 2017a,b, 2019a, Laloë et
al. 2020). At the scale of an embryo, sex is determined
by temperature during a thermosensitive period of
development (TSP, Mrosovsky & Pieau 1991), which
falls during the middle third of incubation under con-
stant incubation temperatures. This has often led to
the use of the mean nest temperature during the mid-
dle third of incubation to predict sex ratios (e.g. Sieg
et al. 2011, Fuller et al. 2013, Laloë et al. 2014, 2016,
Sarı & Kaska 2015, Esteban et al. 2016, Yalçin
Özdilek et al. 2016). More recent work shows that (1)
the TSP shifts away from the middle third of incuba-
tion in field conditions (i.e. under variable thermal
conditions, Girondot & Kaska 2014) and that (2) the
mean temperature does not account for the role of
embryonic growth during sex determination (Fuentes
et al. 2017, Girondot et al. 2018), so previous models
have now been improved by incorporating these
adjustments. Additionally, sex ratio estimates have
been found to vary depending on the metric used
(i.e. temperature-based or duration-based) and the
period over which it is calculated (whole incubation,
middle third of incubation or actual TSP, Fuentes et
al. 2017). It has been suggested that the constant

temperature equivalent (CTE, Georges 1989,
Georges et al. 1994), defined as the temperature
above (or below) which 50% of development occurs,
is a better metric (Fuentes et al. 2017). This method
has benefited from considerable improvements in
recent years, specifically: an understanding of reac-
tion norms that describe the progression of embry-
onic growth during incubation (Georges et al. 2005,
Mitchell et al. 2008, Woolgar et al. 2013, Stubbs et
al. 2014), a non-linear embryonic growth function
(Giron dot & Kaska 2014), a TSP based on embryonic
stages (Fuentes et al. 2017, Girondot et al. 2018), and
a new formulation of the CTE (CTEGROWTH) that
accounts for changes in the rate of embryonic growth
(Fuentes et al. 2017). The CTEGROWTH model (e.g.
using the R package ‘embryogrowth’, Girondot 2020a)
can be used to predict the sex ratio of a clutch based
on the TSD reaction norm (also called sex ratio ther-
mal reaction norm) if it has been derived from con-
stant-temperature incubation experiments for the
same population (see Abreu-Grobois et al. 2020 for a
review of existing models).

Notably, to extend primary sex ratio estimates at
the scale of an entire rookery, additional scaling
parameters must be taken in consideration, because
nests can experience different incubation conditions
on the same beach depending on thermal micro -
habitats (Fuentes et al. 2010a, Patrício et al. 2017,
Flores-Aguirre et al. 2020). Microclimate models
(e.g. NicheMapR; Kearney & Porter 2017) are prom-
ising and can be used to explicitly characterize the
heterogeneity of sand temperatures due to beach
topography, shade, moisture, presence of vegetation,
and beach-specific substrate physical properties
(Fuentes & Porter 2013, Stubbs et al. 2014, Bentley et
al. 2020, Laloë et al. 2020). However, these models
require that some parameters are measured in situ

for adequate calibration (e.g. moisture content, gravi -
metry), yet default parameters are sometimes used
when no empirical measurements are available (but
see Bentley et al. 2020). Additionally, implementing
metabolic heating in microclimate models may be an
important step forward since the heat produced by
growing embryos increases the temperature of nests
relative to their surrounding environment (Booth &
Astill 2001, Broderick et al. 2001a), and models have
to be properly parametrized for coastal environments
(Bentley et al. 2020). Lastly, studies normally produce
estimates of primary sex ratios from a subset of
clutches, which are then used to indicate the primary
sex ratio for a whole rookery and in some cases are
used to infer population-level trends (e.g. Mrosovsky
& Provancha 1989, Kaska et al. 2006, LeBlanc et al.
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2012). In the future, including clutches laid at the
beginning and end of nesting seasons, and multi-
season data from a variety of beaches, will allow
insights that fully capture seasonal variation. Some
promising studies recently benefitted from sophisti-
cated nesting dynamic models (Girondot 2017) to
hindcast or forecast primary sex ratios of loggerhead
and green turtle nesting populations (Monsinjon et
al. 2019a, Laloë et al. 2020). This remains to be con-
ducted for other marine turtle rookeries worldwide.

4.1.3.  Understanding TSD under natural conditions

Despite the volume of research focussed on the
effects of climate change on the sex ratio of hatch-
lings, several knowledge gaps still exist. First, in a
key review, Wyneken & Lolavar (2015) showed that
the majority of studies published to date have derived
sex ratio estimates from ‘second and third level prox-
ies’, for example estimating sex ratio from mean nest
temperature or from incubation duration, respectively.
Comparatively few studies have carried out hatch-
ling gonad histology to verify sex directly (a ‘first-
order proxy’) and even those that have, likely statis-
tically under-sampled each clutch and lack evidence
to suggest that the sampled individuals properly rep-
resent the sex ratio of the whole clutch in question,
let alone the rookery (Wyneken & Lolavar 2015).
Because of the lack of such studies, it is not clear how
much variation there may be in pivotal temperatures,
the transitional range of temperatures, and the slope
of the relationship between temperature and sex
ratio (i.e. parameters of TSD reaction norms) between
individuals, rookeries, and ocean basins. How widely
can an equation relating nest temperature to result-
ant sex ratio be applied? This question clearly reveals
a gap in our understanding of TSD under natural
conditions, as our assumptions mostly rely on con-
stant-temperature incubation experiments in labo-
ratory conditions (even sometimes relying on data
from a different population). Several studies have
attempted to estimate TSD reaction norms from field
data, such as mean nest temperatures (e.g. Kaska et
al. 1998, 2006, Öz et al. 2004, LeBlanc et al. 2012,
Patrício et al. 2017) or incubation durations (e.g. God-
ley et al. 2001, Fuller et al. 2013, dei Marcovaldi et al.
2014, Sarı & Kaska 2015). However, these ap -
proaches are likely biased since they do not account
for uncontrolled sources of variation (e.g. genetic
background and maternal effect) and compounding
effects of fluctuating temperatures when multiple
nonlinear and nonmonotonic reaction norms are

involved (known as Jensen’s inequality; Ruel & Ayres
1999, Martin & Huey 2008, Denny 2017), as it is the
case for sex determination in the freshwater turtle
Chrysemys picta (Neuwald & Valenzuela 2011). We
urge future studies to bridge this gap and allow for
the estimation of TSD reaction norms from in situ

temperature data. This research area should benefit
from the recent development of promising sexing
techniques (Tezak et al. 2017, 2020a) that will con-
siderably facilitate the estimation of sex ratios from in
situ nests at broad spatial and temporal scales.

Importantly, some studies have presented evi-
dence that nest humidity may play an underappreci-
ated role in modifying sex ratios, and that a male bias
can be produced at ‘female-producing’ incubation
temperatures if clutch humidity is high (Wyneken &
Lolavar 2015). This is likely due to evaporative cool-
ing (Lolavar & Wyneken 2017, 2020); further studies
will allow us to clarify the mechanism behind these
observations, as this is a major avenue for future
research (Sifuentes-Romero et al. 2018).

4.1.4.  Reconstructing past and future nest
temperature

How we trust primary sex ratio predictions under
scenarios of changing climates depends on the relia-
bility of reconstructed nest temperatures. Two ap -
proaches are commonly used to predict nest tem-
peratures: either a correlative approach (i.e. linear
relationships between sand or nest temperature and
environmental variables) or a mechanistic (process-
explicit) approach (i.e. heat balance equation, ac -
counting for heat transfers via radiation, convection,
conduction, and evaporation). Both approaches have
limitations that require further investigation. Many
studies also either predict sand temperatures at nest
depth (i.e. without accounting for metabolic heating)
or incubation temperatures experienced by embryos
within nests. Correlative models likely provide rea-
sonably accurate estimations of average daily tem-
perature in the middle of the clutch (Fuentes & Porter
2013, Girondot & Kaska 2015, Monsinjon et al. 2019a,
Laloë et al. 2020) but may not be useful outside of the
ranges over which the original models were fitted
(Fuentes & Porter 2013, Bentley et al. 2020), which
reduces their applicability under scenarios of chang-
ing climates. Air temperature has been widely used
for nest temperature predictions (Hays et al. 2003,
Laloë et al. 2014, 2016, 2017, Esteban et al. 2016,
Patrício et al. 2017, 2019), and SST may improve esti-
mates (Fuentes et al. 2009, Girondot & Kaska 2015,
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Bentley et al. 2020), while other variables (e.g. sand
moisture, cloud cover, precipitation, influence of
vegetation, wind speed) are yet to be accounted for.
On the other hand, mechanistic models (Fuentes &
Porter 2013, Stubbs et al. 2014, Cavallo et al. 2015,
Whiting et al. 2018, Bentley et al. 2020, Laloë et al.
2020) hold potential for sand temperature predictions
at specified depths, provided that required input
data (e.g. sand physical properties, beach topogra-
phy, meteorological variables) are available. How-
ever, this makes such models difficult to run at large
spatial and temporal scales, since physical properties
could differ greatly across nesting beaches, and local
weather conditions are often at remote sites and can
only be predicted with limited confidence for the
future. In addition, the only model used so far for
marine turtles (NicheMapR microclimate model,
Kearney & Porter 2017) was initially developed for
terrestrial ectotherms and thus cannot yet account for
other coastal physical processes (Bentley et al. 2020),
such as tidal movements and wave action.

The choice of input data used to drive a model
(being correlative or mechanistic) is also a critical
step. So far, the field has not considered environmen-
tal variation at spatial and temporal scales that are
relevant for marine turtles. For instance, monthly
mean temperatures derived from global climate
datasets have previously been used to project sand
temperatures (Laloë et al. 2014, 2016, 2017, Esteban
et al. 2016). Yet short-term exposure to high temper-
atures can lead to a higher proportion of females
than what would be expected from average temper-
atures (Georges 1989, Georges et al. 1994), and rain-
fall spikes throughout a nesting season can provide
short periods of cooling and thus decrease incubation
temperatures (Houghton et al. 2007). Daily beach-
scale temperature variations have important implica-
tions for biological and ecological processes (Ruel &
Ayres 1999, Martin & Huey 2008, Denny 2017, 2019),
including incubation and sex determination in mar-
ine turtles. Using daily temperatures should improve
both correlative and mechanistic models (Monsinjon
et al. 2019a, Laloë et al. 2020). Additionally, global
climate reanalysis products can be used to provide a
clear picture of thermal microhabitats (Carter et al.
2015), according to species’ size and ecology, thus
avoiding spatial mismatches between the size of
organisms and the scale at which climate data are
modelled (Potter et al. 2013). We encourage future
studies to (1) thoroughly characterize nesting beach
microclimates that comprise the spatial and temporal
distribution of clutches for a population using in situ

temperatures and local weather data, and (2) take

advantage of the latest release of gridded climate
datasets with the finest spatial (<0.5° × 0.5°) and
temporal (<daily) resolutions (e.g. ECMWF ERA5 re -
analysis; Hersbach et al. 2019), for a better under-
standing of the physical and meteorological pro -
cesses at play in such highly dynamic environments
(land−sea interface). Achieving such model improve-
ments should enhance our ability to predict primary
sex ratios with better accuracy, and at finer spatio -
temporal scales.

4.1.5.  Population persistence under female-biased
sex ratios

How seasonal primary sex ratios translate into
adult sex ratios remains largely unknown and may
vary within and among species (Hawkes et al. 2009,
Hamann et al. 2010, 2013). Recent studies suggest
that some populations with female-biased primary
sex ratios have balanced or male-biased adult sex
ratios (Schofield et al. 2017, Lasala et al. 2018).
Importantly, whether there are sex-specific differen-
tial mortalities across age classes requires further
investigation. For instance, male leatherback turtle
Dermochelys coriacea hatchlings may exhibit higher
fitness than females (Rivas et al. 2019), while adult
loggerhead females might exhibit higher annual sur-
vival rates than males (Schofield et al. 2020).

If adult sex ratios were to become extremely
skewed, population-wide detrimental effects, such as
reduced fertilisation rates (Bell et al. 2010) and in -
creased genetic drift via a reduction of effective pop-
ulation size (Girondot et al. 2004), could theoretically
occur. However, the operational sex ratio (OSR), i.e.
the proportion of males and females successfully
breeding each year, is likely to differ from the adult
sex ratio in marine turtles because males may breed
annually with several females, while females do not
breed every year (Hays et al. 2010a, 2014, Casale et
al. 2013). The OSR is currently best estimated by
genetically reconstructing parentage of nests to
identify the number of male sires (Wright et al.
2012a, Phillips et al. 2013). This approach provides a
robust estimation of the OSR because marine turtles,
unlike freshwater and terrestrial turtles, do not gen-
erally store sperm between nesting seasons that they
could use to fertilise clutches in years without males
present (Phillips et al. 2013, 2014, 2017, Sakaoka et
al. 2013). For instance, a ratio of 1.3 breeding males
for each nesting female was determined at a fine
scale using genetic reconstruction of paternity in 94
green turtle nests (from an estimated 92% of all tur-
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tles nesting at the study rookery) across 3 years
(Wright et al. 2012a,b). Other studies have reported
similar relatively balanced to male-biased OSRs
(Hays et al. 2010a, Lasala et al. 2013, 2018, Schofield
et al. 2017). Additionally, multiple paternity has been
demonstrated in all 7 species of marine turtles (Lee et
al. 2018), varying from 9% in hawksbill turtles Eret -

mochelys imbricata (Phillips et al. 2013) to 93% in
loggerhead turtles (Zbinden et al. 2007), likely as a
consequence of the incidence of male−female en -
counters (Lee et al. 2018). It thus seems sensible to
suggest that male turtles are not currently scarce at
breeding grounds.

Female bias in primary sex ratios in marine turtles
is frequently referred to as a vulnerable life history
trait, whereas there is no evidence at present to sug-
gest this is true. A female-biased sex ratio could ben-
efit populations in the short-term by enhancing their
growth rate (Rankin & Kokko 2007, Boyle et al. 2014a,
Hays et al. 2017, Patrício et al. 2019); however, sus-
tained warming could overrun this demographic
advantage (Saba et al. 2012, Laloë et al. 2014, San-
tidrián Tomillo et al. 2015a). Either way, an important
question is yet to be elucidated: under what range of
adult sex ratios is the persistence of populations max-
imized? Modelling studies indicate that we can ex -
pect enhanced population growth and range expan-
sion in reptiles with TSD under a warming scenario,
assuming male dispersal and no shortage of breed-
ing males (Boyle et al. 2014a,b, 2016). Male-biased
dispersal is likely to be the rule in marine turtles, as
suggested from male-mediated gene flow (Karl et al.
1992, Casale et al. 2002, Bowen & Karl 2007), and
could prevent highly female-biased populations from
collapsing (Doody & Moore 2010, Boyle et al. 2016).
Thus, TSD in marine turtles could allow for a coadap-
tation mechanism, by enhancing the fecundity of a
population (through female production) when hatch-
ing success is lowered under extreme high tempera-
tures (Santidrián Tomillo & Spotila 2020). However,
whether those highly female-biased populations
have (or will) become population sinks (i.e. popula-
tion numbers falling below replacement level) needs
to be investigated. In addition, Boyle et al. (2016)
suggested that 3°C warming over the next 100 yr
may be a ceiling at which population declines should
be expected to occur for species with TSD, but also
that in reptiles with a male/female TSD reaction
norm, it may be possible to model what the optimal
marine turtle adult sex ratio should be. Thus,
although the impacts of climate change on marine
turtle primary sex ratio have been widely studied, we
suggest that much work remains to be done to fully

understand how this parameter might be affected
and elucidate the resultant consequences.

4.2.  Hatching success

Hatching success (the proportion of eggs that pro-
duce viable hatchlings) can be highly variable within
and between species, but rates in excess of 65% of
eggs producing viable hatchlings appear to be nor-
mal (Bell et al. 2010). However, if even small changes
to the nest environment occur at the upper end of the
incubation range of temperatures, they can affect
hatching success. For example, at incubation temper-
atures above 30°C, an increase to 31°C can decrease
hatching success by up to 25% (reviewed by Howard
et al. 2014). The lethal upper thermal limit that
embryos can withstand and still successfully hatch
appears to vary within and between species (Pike
2014). Additionally, this threshold seems to depend on
the duration over which the eggs are subjected to
high temperatures, and it can be modulated by rain-
fall and nest humidity (Lolavar & Wyneken 2017). If
mean incubation temperatures are above 35°C, hatch-
ing success may be close to zero, but nests can expe-
rience higher transient temperatures (e.g. 37°C) with-
out them being lethal (Howard et al. 2014). In the
context of climate change, the lethal upper thermal
limit is extremely important to determine, because it
underlies modelling efforts to predict the proportion
of nests that may become unviable in the future
(Hawkes et al. 2007a, Laloë et al. 2017, Laloë & Hays
2017, Monsinjon et al. 2019a, Tanner et al. 2019). 

A thorough characterization of thermal microhabi-
tats should elucidate temperature-induced incubation
failure, which is important because some warmer
‘female-producing’ clutches might approach lethal
temperatures more often (and thus experience higher
mortality rates) than cooler ‘male-producing’ clutches.
For example, models of thermal tolerance that allow
for the estimation of both lower and upper lethal tem-
perature thresholds could be useful when extrapolat-
ing primary sex ratios under shifting phenology sce-
narios towards cooler or warmer parts of the year
(Monsinjon et al. 2019a). To date, most of the pub-
lished estimates of upper thermal threshold limits are
from loggerhead and green turtles (e.g. Matsuzawa
et al. 2002, Weber et al. 2012, Read et al. 2013), but
perhaps more importantly, the mechanistic basis for
decreasing hatching success with increasing mean
incubation temperature is not understood for any
species. It may relate to oxygen availability within
the nest (Ackerman 1980) but may also relate to in -
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creases in abnormalities that inhibit development
(Packard et al. 1977). Surprisingly, with few excep-
tions (Chen et al. 2010, Cheng et al. 2015, Stewart et
al. 2019), there is a lack of studies using oxygen sen-
sors in turtle nests, and the rates of abnormality in
failed hatchling turtles have yet to be synthesised
across species and populations. An important re -
search line is the possibility of increasing thermal tol-
erance as a response to climate change. Tedeschi et
al. (2016) assessed the capacity of loggerhead embryos
to adapt to increasing temperatures, by assessing the
expression of heat shock-genes, which mitigate dam-
age to cells under heat stress. They found within-
clutch plasticity in gene expression and showed that
this plasticity was heritable, thus demonstrating the
presence of molecular mechanisms for tolerating
and, potentially, adapting to future rises in incuba-
tion temperatures (Tedeschi et al. 2016).

Average humidity and accumulated precipitation
also affect hatching success (Santidrián Tomillo et al.
2012, Ra�erty et al. 2017, Montero et al. 2018a). At
drier sites, heavy rainfall was shown to increase
hatching success, while the opposite was observed at
high-humidity sites (Santidrián Tomillo et al. 2015b,
Montero et al. 2019). Future increases in extreme
weather events with protracted rainfall may enhance
hatchling production at temperate beaches and lower
it at tropical beaches (Montero et al. 2019). Addition-
ally, Rivas et al. (2018) noted that deeper nests suf-
fered higher mortality due to increases in the water
table, so interactions between biological (e.g. nest
depth, location) and environmental factors should be
considered.

In summary, because the eggs of marine turtles in-
cubate at the mercy of their local environment (Miller
1997), overall patterns of hatching success are related
to local climatic factors such as temperature, rainfall,
inundation, and storminess (Caut et al. 2010, San-
tidrián Tomillo et al. 2012, Ahles & Milton 2016, Mon-
tero et al. 2018a,b, 2019), but the effect of climate ap-
pears to be variable (Santidrián Tomillo et al. 2015b)
and may not entirely explain hatchling production
failure (Ra�erty et al. 2017). Metabolic heat can also
significantly increase incubation temperatures to-
wards the end of development, and therefore impact
hatching success (Zbinden et al. 2006, Gammon et al.
2020). Future work could seek to comprehensively
describe how local climate influences the incubation
environment in detail, i.e. not using a single average
nest temperature but describing the full variation in
temperature between all eggs in a clutch, along with
humidity and groundwater inundation, and consider
metabolic heating as well (Gammon et al. 2020).

4.3.  Hatchling morphology, survival, and 

performance

In both freshwater and marine turtles, incubation
temperature has been shown to affect hatchling size
and locomotory performance (on land and in water,
Booth 2018), as well as the prevalence of scute abnor-
malities (Miller 1985, Reid et al. 2009, Telemeco et al.
2013). This is to be expected because the rates at
which biochemical reactions take place increase at
warmer temperatures (Vleck & Hoyt 1991). Maximal
rates of oxygen consumption during development
are higher in warmer loggerhead turtle nests (Reid et
al. 2009), and embryonic development is thus likely
also faster. However, because cooler nests incubate
over a longer duration, it appears that more yolk is
converted to somatic tissue (hatchlings have less
residual yolk left at hatching), and consequently
hatchlings from cooler nests appear to be marginally
larger, but usually about the same mass (reviewed by
Booth 2018). Additional work on this topic (Booth &
Evans 2011, Maulany et al. 2012, Fisher et al. 2014,
Horne et al. 2014, Sim et al. 2015, Rivas et al. 2019,
Salleh et al. 2019) has suggested, however, that the
effect of incubation temperature on hatchling size
and locomotory performance is likely small. The
impact of incubation temperature on hatchling mor-
phology, survival, and performance has now been
investigated in 5 of the 7 marine turtle species (to
date there appear to be no studies on hawksbill or
Kemp’s ridley Lepidochelys kempii turtles), and the
basis and consequences of these differences (e.g.
whether a larger body size confers better defence
against gape-limited predators) remains to be
demonstrated for any population of marine turtles.
The effect of moisture has been less studied, but a
positive correlation between moisture and hatchling
size was recently observed in natural nests (Tezak et
al. 2020b).

Hatchling marine turtles are precocial and need to
be capable of escaping predators from the moment
they leave their nest, and thus rapid terrestrial and
aquatic dispersal to offshore habitats is a key life his-
tory trait (Booth 2018). The relationship between in -
cubation temperature and performance appears to
be complex, likely an inverted ‘U’-shaped relation-
ship, where performance optima lie at intermediate
temperatures (likely between 28 and 32°C; Booth
2017, 2018). This means that as ambient tempera-
tures increase above this optimum with climate
change, hatchlings (which are more likely to be
female at warmer temperatures) could perform more
poorly in the initial hatchling frenzy. Studies examin-
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ing terrestrial dispersal tend to use 2 metrics to quan-
tify performance: righting from dorsal recumbency
(which simulates tripping over beach obstacles) and
running speed. To date, the effect size measured
appears to be relatively small and variable (e.g. vary-
ing between 0.08 and 11.5 s longer to right, Maulany
et al. 2012, Staines et al. 2019; and between 0.5 m s−1

slower and 1.5 m s−1 faster, Sim et al. 2015, Rivas et
al. 2019) and is almost certainly complicated by spe-
cies differences and rookery to rookery variation in
physiological parameters. Other reptiles (e.g. fresh-
water turtles, lizards, and snakes) have varying
directions of change in locomotor performance as a
result of warmer incubation conditions (reviewed by
Booth 2006), and future comparative studies between
marine turtles and other reptile groups may prove
fruitful for identifying underlying drivers. For a vari-
able that is so easy to measure, it is surprising that
there are still few studies for marine turtles, on lim-
ited numbers of nests, to facilitate such a comparison.

Swimming performance in hatchling turtles has
been less studied to date, with most studies focussing
on green turtles (Booth et al. 2004, Burgess et al.
2006, Ischer et al. 2009, Booth & Evans 2011). Hatch-
lings swimming in water do not appear to exhibit
symptoms of thermal stress until 41.7°C, which is
outside of the range normally measured in natural
nests and certainly far warmer than experienced in
seawater (Drake & Spotila 2002). Hatchlings from
warmer nests have between 5 and 12% higher stroke
frequency (the rate at which hatchlings flap their
flippers) than hatchlings from cooler nests when
swimming in the same temperature water (Booth et
al. 2004, Burgess et al. 2006, Ischer et al. 2009), but
water temperature has a 3−4 times greater effect on
stroke frequency, so the nest temperature effect is
dwarfed in comparison (Booth & Evans 2011). This is
because water temperature has a strong effect on
whole-body metabolism in ectotherms (Ultsch 2013);
for example, loggerhead turtle metabolic rates in -
crease 2.4- to 5.4-fold for a 10°C increase in water
temperature (Lutz et al. 1989, Hochscheid et al. 2004).
Hatchlings from warmer nests appear to produce
lower mean thrust per flipper beat than hatchlings
from cool nests (Booth & Evans 2011), suggesting that
some physiological property unrelated to metabolism
may differ with incubation temperature − for exam-
ple, that the swimming muscles of hatchlings from
warmer nests may have fewer ‘fast twitch’ Type II
muscle fibres, which produce greater peak force (Hill
et al. 2012), or that hatchlings from warmer nests
may have proportionally fewer mitochondria, or lower
capillary to muscle fibre ratios (thus supplying less

oxygen to each muscle fibre). In addition, some lim-
ited evidence (Fisher et al. 2014) suggests that the
proportion of time spent power stroking (the domi-
nant propulsive swimming stroke) may be reduced
with nest incubation temperature, which could sug-
gest that hatchlings from warm nests could have less
‘slow-oxidative’ Type I muscle fibres, which produce
lower peak forces, but fatigue more slowly. An
understanding of how these physiological proper-
ties change with the incubation regime, and how
they may be genetically encoded, will be fundamen-
tal to unravelling the downstream fitness conse-
quences of the incubation environment. It is of note
that such measurements would be necessarily inva-
sive (requiring hatchling sacrifice) but would likely
yield significant additional insights to complement
the non-invasive work that has been completed.

4.4.  Movements and distribution at sea

The behaviour and spatial distribution of marine
turtles are largely affected by seawater temperature
and ocean circulation patterns (Luschi et al. 2003,
Hawkes et al. 2007b). As marine turtles migrate over
thousands of kilometres (Plotkin 2003, Godley et
al. 2008), and carry out variable foraging strategies
throughout their life cycle (Bolten 2003), climate
change impacts and potential responses may vary
across ontogenetic stages and habitats.

Being ectothermic, seawater temperature can radi-
cally impact marine turtle physiology (Milton & Lutz
2003). Normal vital function is probably impaired
below a thermal threshold of around 10−15°C (meta-
bolic rates decrease, and turtles become less mobile,
Schwartz 1978, Witt et al. 2007a), and colder waters
can thus serve as barriers for the distribution of mar-
ine turtles (Polovina et al. 2004, McMahon & Hays
2006, Hawkes et al. 2007b). The leatherback turtle is
the exception, being able to maintain its body tem-
perature well above that of the surrounding ambient
water (up to 18°C higher, Bostrom & Jones 2007), and
is thus capable of foraging in colder waters (10−12°C,
Witt et al. 2007b). Báez et al. (2011) found increases
in stranding events among Mediterranean juvenile
and adult loggerheads associated with regional
decreases in SST, resulting from an increasing fre-
quency of North Atlantic Oscillation (NAO) positive
phases. Atmospheric CO2 concentrations seem to be
the underlying cause of the current positive NAO
index trend, creating colder and drier conditions over
the Mediterranean region (Gillett et al. 2003), so
despite a generalized increase in ocean SST, some
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regions will experience colder seawater in the future
(Gillett et al. 2003). Gri�n et al. (2019) found that
warmer SST during autumn months surprisingly in -
creased the risk of cold-stunning in Kemp’s ridley
turtles, because they dispersed further north to for-
age, but then retreated away from winter cold waters
too slowly. Higher temperatures, on the other hand,
can induce indirect stress by promoting the growth of
pathogens and of toxic phytoplankton (Plotkin 2003);
however, the seawater temperature corresponding to
the upper thermal maximum in marine turtles is
unknown, likely because such extremes are not ex -
perienced under present conditions. Yet recent re -
search suggests that SST at inter-nesting sites in
Southeast Asia will exceed the critical thermal maxi-
mum of leatherback turtles under future climate sce-
narios (Dudley & Porter 2014, Dudley et al. 2016).
Increases in SST along post-breeding migration cor-
ridors may also increase basal metabolic rate of post-
nesting females (Almpanidou et al. 2019), because
they are ectothermic (Milton & Lutz 2003). However,
this would likely be tempered by the ability of turtles
to exploit thermally variable habitats at depth and in
different water bodies (e.g. Schofield et al. 2009).
Some species/populations may already be adapting
to changing ocean temperatures; for example, East-
ern Pacific olive ridley turtles Lepidochelys olivacea

foraged further north during an El Niño year, avoid-
ing warmer waters while seeking more productive
upwelling areas (Plotkin 2010), while hawksbills in
the Gulf of Arabia avoid warmer foraging areas dur-
ing the summer months, when seawater tempera-
tures exceed 33°C (Pilcher et al. 2014).

Sea surface currents near nesting beaches are
known to facilitate the oceanic dispersal of post-
hatchlings (Putman et al. 2010, Scott et al. 2014, Wil-
dermann et al. 2017), likely influencing the ensuing
spatial distribution of juveniles and their recruitment
to suitable foraging grounds (Hamann et al. 2007).
Yet small juveniles and even post-hatchlings are
capable of oriented swimming (Putman & Mansfield
2015, Briscoe et al. 2016, Lalire & Gaspar 2019),
allowing them to stay within preferred thermal con-
ditions (Mansfield et al. 2014, 2017) and potentially
to respond to some level to future changes. However,
strong sea surface currents near the nesting beach
and high-intensity storms may still mediate the initial
dispersal of post-hatchlings (Hays et al. 2010b,
Monzón-Argüello et al. 2012, Ascani et al. 2016,
DuBois et al. 2020). Models have shown that patterns
of dispersal are already likely highly variable be -
cause of short-term variation (Scott et al. 2017). For
example, variations in sea surface current strength,

associated with the Pacific Decadal Oscillation was
shown to impact the dispersal of first-year logger-
head turtles in relation to a high productivity oceanic
front (Ascani et al. 2016), while storms were shown to
influence the dispersal of post-hatchling Atlantic log-
gerhead turtles (Monzón-Argüello et al. 2012), and
Gulf of Mexico Kemp’s ridley turtles (DuBois et al.
2020). The direction of the impacts from climate-
forced dispersal is not well understood, and it is
unclear whether juvenile turtles will end up in sub-
optimal (Monzón-Argüello et al. 2012, Ascani et al.
2016, DuBois et al. 2020), or in more favourable con-
ditions (Ascani et al. 2016, DuBois et al. 2020). Either
way, climate-forced dispersal could influence sur-
vival and thus population recruitment (Ascani et al.
2016). Notably, breeding loggerhead turtles in the
Mediterranean were found to follow dispersal pat-
terns similar to post-hatchlings, associated with pre-
vailing currents near the nesting beach, suggesting
that the initial phase of dispersal can be very im -
portant to imprint possible future foraging grounds
(Hays et al. 2010b).

Multiple approaches have established our knowl-
edge of the spatial ecology of marine turtles. Satel-
lite tracking has become common for studying mar-
ine turtle movements (Je�ers & Godley 2016, Hays &
Hawkes 2018), providing a bulk of data on their spa-
tial distribution, connectivity, and foraging strate-
gies. Molecular analyses have also been essential
to un ravel patterns of connectivity between nesting
beaches and foraging areas, often coupled with
ocean circulation models, allowing inferences on
dispersal routes (Blumenthal et al. 2009, Putman &
Naro-Maciel 2013, Putman et al. 2014). These spa-
tial data, in combination with satellite-based envi-
ronmental data, have been used to generate eco-
logical niche models of marine turtle populations
(Witt et al. 2010, Pike 2013b, Pikes ley et al. 2013,
Mansfield et al. 2014, Varo-Cruz et al. 2016), pre-
dicting where future suitable foraging habitats may
be located in response to increasing sea water tem-
peratures. For example, the foraging thermal niche
of Atlantic leatherback turtles, and that of Atlantic
and Mediterranean loggerheads, is predicted to
expand northwards (Witt et al. 2010, Dudley &
Porter 2014, Pikesley et al. 2015), while for Eastern
Pacific leatherbacks, range contraction has been
predicted (Willis-Norton et al. 2015).

Despite great technological and analytical ad -
vances, there is still need for synthetic information on
the spatial distribution of marine turtles at sea at
ocean scales and across life stages, to improve in -
ferences on how they may be affected by climate
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change during their marine life stage. To carry out
modelling to investigate this, more data on the spa-
tiotemporal distribution of marine turtles are re -
quired. Telemetry data can provide invaluable infor-
mation (but usually only describe a limited number of
individuals that may not be representative of the
population-level spatial distribution, Lascelles et al.
2016), and standardised surveying (Thomas et al.
2010, Buckland et al. 2015) either by boat-based or
aerial distance sampling methods (Beavers & Ramsey
1998, Eguchi et al. 2007, Lauriano et al. 2011,
Fuentes et al. 2015, Williams et al. 2017, Vandeperre
et al. 2019) allow for in-water estimations of both
population abundance and distribution (within the
survey region). Additionally, both the use of un -
manned aerial vehicles and underwater video (Dun-
stan et al. 2020) have been proposed as cost-effective
alternatives to standard surveying. We suggest that
the wealth of turtle tracking data that already exist, if
aggregated across the decades and ocean basins
over which they have been collected (Godley et al.
2008, Hays & Hawkes 2018), could go a long way to
improve our understanding on the climatic drivers of
spatial distribution.

Importantly, expected increases in seawater tem-
perature will differentially affect primary production
and composition of prey communities across geo-
graphic regions, with consequences for the spa-
tiotemporal distribution of current foraging areas
(Polovina et al. 2011, Poloczanska et al. 2016). Yet,
estimations of future suitable habitat under climate
change have broadly relied on thermal niche model-
ling (Witt et al. 2010, Pikesley et al. 2015, Dudley et
al. 2016), while changes in hydrological processes,
which will determine the magnitude and distribution
of ocean productivity, and consequently the avail-
ability of prey, have been less considered. However,
the strongest impacts of increases in seawater tem-
perature may be mediated through food availability
(Stubbs et al. 2020), at least for some species. In such
a scenario, turtles that find prey less available may
not meet summit energy reserves for reproduction
and will thus have increased remigration intervals
and reduced reproductive lifetime (Stubbs et al.
2020). The opposite could potentially be possible if
food availability, or its quality, were increased, as
this could lead to faster growth, younger age at
maturity, and more frequent breeding. This may be
particularly important for species or populations with
specialist diets (Witt et al. 2010, Bell 2013). Ideally,
estimates of future resource availability, coupled
with information on foraging strategies and diet
com position, would be integrated in spatial distri-

bution forecasts. There is, however, a lack of re -
search on marine turtle foraging habitat quality
under climate change scenarios and on the potential
consequences for somatic growth, limiting such inte-
grated approaches.

4.5.  Breeding patterns

Marine turtles perform cyclic migrations to breed-
ing sites and display significant inter-population
variability in the start and duration of nesting sea-
sons (Miller 1997). Body condition determines when
breeding can occur (Miller 1997, Broderick et al.
2001b), and is likely driven by resources at forag-
ing areas which, in turn, may depend on mid-
to long-term environmental conditions (Limpus &
Nicholls 2000). For example, cooler waters have been
shown to enhance food availability for loggerheads
in the Pacific, boosting their breeding capacity
(Chaloupka et al. 2008). The precise timing of nest-
ing may depend on short-term environmental cues,
such as seawater temperature (Weishampel et al.
2004, Pike et al. 2006, Hawkes et al. 2007a, Mazaris
et al. 2008). Understanding how climate variables
impact the breeding phenology of marine turtles is
crucial, as changes in the timings of migration,
courtship, and the onset and duration of nesting can
exacerbate or reduce climate change impacts on the
nesting beach (Pike et al. 2006, Mazaris et al. 2008,
Pike 2009, Weishampel et al. 2010, Patel et al. 2016).

With the increase in research looking at pheno-
logical responses to global warming, 2 things have
become clear: there are both inter- and intra-specific
differences in responses, and it is not straightforward
where to look for environmental drivers of breeding
cycles. While previous research has focussed on
environmental conditions near the nesting beach,
recent work indicates that conditions at distant forag-
ing grounds are more likely to influence the timing of
migration and arrival at the breeding area for the
start of courtship and nesting (Mazaris et al. 2009b,
Neeman et al. 2015a, Monsinjon et al. 2019b). It is
intuitive that the onset of the breeding migration is
triggered by environmental conditions experienced
at foraging areas (provided that suitable energetic
conditions for reproduction are met), yet, once near
breeding sites, where females and males aggregate
for courtship and mating (Limpus 1993, Fitzsimmons
et al. 1995, Arendt et al. 2012), the local seawater
temperature seems to influence the timing of nesting,
potentially because temperatures regulate the rate of
egg maturation (Weber et al. 2011, Valverde-Cantillo
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et al. 2019). Thus far, loggerhead turtle populations
have consistently been found to begin nesting earlier
in response to higher annual SST, both near the nest-
ing beach (Weishampel et al. 2004, 2010, Pike et al.
2006, Hawkes et al. 2007a, Mazaris et al. 2008, 2013,
Lamont & Fujisaki 2014, Patel et al. 2016), and at for-
aging sites (Mazaris et a. 2009b, Monsinjon et al.
2019b), albeit at different rates (Mazaris et al. 2013).
Among green turtles, however, except for 1 study
(Weishampel et al. 2010), no phenological changes in
response to inter-annual SST near breeding sites
(Pike 2009, Dalleau et al. 2012), or at foraging areas
(Valverde-Cantillo et al. 2019) have been reported,
and at least 1 population of leatherback turtles has
demonstrated delayed onset of nesting following
warmer SST at foraging areas (Neeman et al. 2015a).

Some studies have also reported a correlation
between higher SST and fewer clutches (Mazaris et
al. 2009b, Reina et al. 2009, Patel et al. 2016), likely
as a result of fewer turtles nesting. These observa-
tions could indicate an indirect effect of seawater
temperature on the availability of food resources at
foraging habitats (Chaloupka et al. 2008, Neeman et
al. 2015a), leading to delays in the build-up of energy
reserves for reproduction (Neeman et al. 2015b,
Stubbs et al. 2020). Another study found that more
clutches were laid at a green turtle rookery following
warmer SST during the winter prior to the nesting
season (Bruno et al. 2020). As seawater temperature
is likely to impact different trophic levels in different
ways, depending on their prey, marine turtle popula-
tions may be differentially affected. It is also possible
that increases to seawater temperature will enhance
food resources for turtles particularly at higher lati-
tudes, near the current limits of their distribution or
beyond. Increases in re-migration intervals due to
slower build-up of energy reserves can lead to shorter
nesting seasons (Robinson et al. 2014), presumably
because fewer females undertake the breeding
migration (Limpus & Nicholls 2000, Neeman et al.
2015a). Conversely, nesting years with more turtles
breeding lead to longer nesting seasons (Pike 2009).
In fact, the size of the nesting population can be a
predictor of both nesting season onset (Robinson et
al. 2014) and length (Monsinjon et al. 2019b). How-
ever, because higher SST can reduce inter-nesting
intervals, likely by enhancing metabolic rates and
the rate of oogenesis (Weber et al. 2011, Valverde-
Cantillo et al. 2019), during a warm year, the same
number of clutches could be laid in a shorter period
(Pike et al. 2006). Results thus far are not conclusive,
as both longer (Weishampel et al. 2010, Lamont &
Fujisaki 2014) and shorter nesting seasons (Pike

2009, Weishampel et al. 2010) have been observed in
warmer years. Geography may account for some of
the observed discrepancies, as latitudinal variation in
phenological responses to SST have been observed
among loggerheads, with the response of poleward
populations being stronger (i.e. greater adjustment
in the nesting date, Mazaris et al. 2013). Closer to the
equator, on the other hand, likely due to a wider tem-
poral range of suitable thermal conditions, popula-
tions show less sensitivity to increases in SST (Mazaris
et al. 2013), or perhaps they are harder to detect. A
latitudinal gradient (associated with an SST gradi-
ent) in the onset of nesting has also been observed
among green turtles (Dalleau et al. 2012).

The onset and duration of the nesting season may
also depend on age, as remigrant turtles tend to
begin nesting earlier and lay more clutches than neo-
phytes (Ra�erty et al. 2011, Stokes et al. 2014). It is
thus clear that breeding phenology depends on a
diverse suite of factors, including resource avail-
ability, resource acquisition, environmental cues at
both foraging and breeding sites, courtship, popula-
tion demography (i.e. abundance and age of nesting
females) and geography, and this complexity needs
to be taken into consideration in future assessments.
On the other hand, understanding the dynamic re -
sponses of breeding turtles to environmental condi-
tions is critical to interpret the inter-annual variabil-
ity in clutch numbers, and to improve estimates of
population trends based on nesting data (Neeman et
al. 2015a).

To date, few studies have assessed whether pheno-
logical changes by marine turtles in response to cli-
mate change will be sufficient to maintain suitable
incubation conditions (Patel et al. 2016, Almpanidou
et al. 2018, Monsinjon et al. 2019a). At higher lati-
tudes, earlier nesting may track current nesting ther-
mal conditions (Patel et al. 2016, Almpanidou et al.
2018, Monsinjon et al. 2019a), although this effect
may be temporary (Patel et al. 2016), and dependent
on the severity of future climatic change (Monsinjon
et al. 2019a). On the other hand, Monsinjon et al.
(2019a) estimated that under an optimistic climate
warming scenario, 6 out of 7 loggerhead populations
may not be able to cope with the impacts of climate
warming on hatching success and primary sex ratio
by adjusting their breeding phenology. A different
study suggested that loggerhead turtles may not be
able to track current precipitation conditions (Alm-
panidou et al. 2018), known to also impact hatching
success (Santidrián Tomillo et al. 2015b, Montero et
al. 2018a) and primary sex ratio (Lolavar & Wyneken
2017, 2020).
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Geographic and species disparities persist in the
available research on the impacts of climate change
on the breeding patterns of marine turtles, which
limits generalized assumptions. There is thought to
be a genetic basis to the plasticity of breeding
phenology (Visser et al. 2010), but this remains to
be thoroughly investigated for marine turtles.
Some studies have tested this hypothesis using
mitochondrial DNA control region haplotypes (Dal-
leau et al. 2012, Mazaris et al. 2013), which trace
the dispersal of female lineages, and are the most
commonly used markers in marine turtle popula-
tion genetics re search (Bowen & Karl 2007, Ti -
kochinski et al. 2018). However, this marker repre-
sents a very small portion of the genome, greatly
limiting the chances to detect variability. Recent
advances in next-generation se quencing provide
reliable and relatively low-cost genomic data,
which coupled with new analytical approaches
allow genome-wide association studies to detect
polymorphisms that are associated with observed
inter-population differences in a trait, such as phe-
nology (Visser et al. 2010, Ahrens et al. 2018). We
also have yet to investigate how climate change
may impact courtship behaviour and mating suc-
cess (which is particularly difficult because the
information on breeding males is very limited) and
what may be the advantages of seasonal versus bi-
modal versus all-year nesting and the drivers of
these different breeding patterns.

In addition, there is a lack of standard metrics to
define breeding phenology parameters (e.g. the start
and duration of the nesting season), making compar-
isons between studies almost impossible. Some ap -
plied metrics include ‘median nesting date’ (Pike
2009, Weishampel et al. 2010, Lamont & Fujisaki 2014,
Robinson et al. 2014), ‘date of first nest’ (Mazaris et
al. 2009b, 2013), and ‘peak nesting period’ (Dalleau
et al. 2012). We suggest that using first nesting event
can be problematic, as this reflects atypical events
(outliers). Thus, for populations with nesting seasons
delimited in time, we recommend using the 2.5th per-
centile of nesting date as a proxy for the beginning of
nesting, to avoid outlying data. Using the median
nesting date can also be ambiguous, as this metric is
influenced both by the onset and by the duration of
the nesting season (Mazaris et al. 2013) and survey
effort. Furthermore, several populations have bi-
modal or year-round nesting (Dalleau et al. 2012),
making most of these metrics impractical. Future
studies could benefit from models based on a biolog-
ically meaningful description of nesting phenology
dynamics, which can accommodate missing data

(e.g. due to uneven monitoring effort or to very high
nesting density, Girondot 2010, 2017, Laloë et al.
2020) that are freely available (R package ‘phenol-
ogy’; Girondot 2020b).

4.6.  Nesting area availability

The area available for marine turtles to nest is
likely to be reduced by sea level rise (SLR, Fish et al.
2005, Baker et al. 2006, Fuentes et al. 2010b), with
beaches in developed regions being likely the most
vulnerable, since coastal development can prevent
the natural movement of sediment, causing coastal
squeeze and exacerbating impacts from SLR (Fish et
al. 2008, Mazaris et al. 2009a, Biddiscombe et al.
2020). Reductions in available nesting area may also
amplify density-dependent issues at marine turtle
nesting beaches (e.g. risk of infection in clutches and
accidental destruction of eggs by nesting females),
and create suboptimal nesting habitats (Girondot et
al. 2002, Tiwari et al. 2010). SLR may also increase
exposure of clutches to saltwater inundation, ulti-
mately affecting hatching success and hatchling fit-
ness (Patino-Martinez et al. 2014, Pike et al. 2015).
Storms (tropical storms, hurricanes, cyclones, or
typhoons) can cause further impacts on marine turtle
nesting beaches and their reproductive output, with
storm frequency and intensity expected to increase
in future warmer environments (Webster 2005, Van
Houtan & Bass 2007, Fuentes & Abbs 2010, Fuentes
et al. 2011a, Long et al. 2011).

Despite the potential impacts of SLR and storms on
marine turtle nesting grounds and their reproductive
output, only a few studies have projected how these
climatic processes will impact marine turtles. This is
likely a reflection of the challenges inherent in suc-
cessfully predicting shoreline response to SLR and
storm activities (Cooper & Pilkey 2004, Von Holle et
al. 2019), and the inability to couple projections with
biological information (e.g. nest site choice, re -
sponses to changes in beach morphology). Most of
the studies to date (e.g. Baker et al. 2006, Mazaris et
al. 2009a, Fuentes et al. 2010b, Reece et al. 2013,
Varela et al. 2019, Veelenturf et al. 2020) have used
the Bruun rule or ‘bathtub’ models to determine the
potential loss of marine turtle nesting beaches to var-
ious scenarios of SLR. However, these approaches do
not account for natural beach movement and sand
transport, and consequent changes in beach profiles
(Cooper & Pilkey 2004, Woodro�e 2008), although
some studies have considered the extent to which
nesting areas may shift in relation to natural and arti-
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ficial physical barriers (Fish et al. 2008, Katselidis et
al. 2014, Biddiscombe et al. 2020, Lyons et al. 2020).
These assessments have often been coupled with
data from field survey methods (e.g. beach profiles,
using Emory or Abney Level methods; see Fish et al.
2005, 2008), which tend to be limited to discrete
beach transects and are subject to systematic errors
and low accuracy (Isaak et al. 1999), or from terres-
trial and airborne light detection and ranging (LiDAR,
Long et al. 2011, Yamamoto et al. 2015), which has
higher accuracy, as well as cost (Varela et al. 2019).
To offset some of the issues from traditional ap -
proaches, a novel combination of drone-based photo -
grammetry and a low-cost and portable real-time
kinematic GPS has been suggested to develop the
digital terrain models needed to assess the impacts
of SLR on marine turtle nesting grounds (Varela et
al. 2019).

Recent studies (Butt et al. 2016, Von Holle et al.
2019, Lyons et al. 2020) have taken advantage of
other novel sophisticated approaches (e.g. coastal
vulnerability index, storm surge models, SLR cal-
culators) and open-access geomorphology datasets
(e.g. LiDAR, digital elevation models) combined
with turtle nest location data to assess the impacts
of SLR on rookeries. However, these are generally
developed for broad-scale assessments (e.g. conti-
nental, global); therefore, finer-scale analyses are
necessary to improve current assessments of the
impacts of SLR on marine turtles. Process-based
models (e.g. Delft3D and XBeach) can directly
simulate beach hydrodynamics and sediment trans-
port, and provide more robust assessments of the
potential impacts of SLR on marine turtle nesting
areas. For example, these models account for non-
erodible portions of the beach (due to shoreline
protection strategies such as sea walls, groynes,
and other hard sea defences), which will become
more prevalent as sea level rises and storms be -
come more frequent, and evaluate how current or
proposed installation of these interventions could
alter the risk of habitat loss under various scena -
rios of SLR and storm activity, which remains a big
gap in our knowledge.

In addition to the uncertainty in how SLR/storms
will affect specific nesting beaches, there is still con-
siderable uncertainty on how marine turtles will
respond to changes in beach profiles, and the avail-
ability of nesting areas as well as the effects of syner-
gistic and cumulative impacts from other climatic
pressures (e.g. temperature, rainfall, Fuentes et al.
2011a). The threat of SLR/storms coupled with con-
temporary anthropogenic threats (e.g. coastal devel-

opment or pollution), may weaken the ability of mar-
ine turtles to cope with climate change (Reece et al.
2013, Fuentes et al. 2016a, Biddiscombe et al. 2020,
Fuentes et al. 2020). While marine turtles can buffer
effects from individual storm events, by laying multi-
ple clutches spaced throughout the nesting season
(Dewald & Pike 2014, Fuentes et al. 2019), climate
change scenarios suggest that this threat will become
of greater concern in the future (Fuentes & Abbs
2010, Fuentes et al. 2019). Therefore, there is a need
to understand the magnitude of the potential impact
from storms at a rookery level (e.g. loss of eggs and
habitat) and across populations. Some studies have
looked at the exposure of marine turtle nesting
beaches to storms (Fuentes et al. 2011a, 2019, Dewald
& Pike 2014), but these do not usually quantify the
actual loss in turtle reproductive output, or they focus
on single nesting beaches (for examples, see Foley et
al. 2006, Caut et al. 2010, Long et al. 2011, Ehrhart et
al. 2014). Future research should focus on the long-
term impact of storms and implications at a popula-
tion level. Such assessments would benefit from
improvements in our understanding of how well eggs
can withstand inundation. Recent studies have found
that short periods of inundation (1−6 h) did not signif-
icantly reduce hatching success (Pike et al. 2015,
Limpus et al. 2020), and that embryos may be more
vulnerable at the beginning and at the end of devel-
opment (Limpus et al. 2020). Tolerance thresholds
could then be integrated with inundation models,
such as wave run-up models, to better identify areas
at significant risk of wave exposure from SLR/storms
(Ware et al. 2019).

As nesting beaches become unsuitable or unavail-
able, marine turtles may respond by shifting their
range to climatically suitable areas (Hamann et al.
2013, Abella Perez et al. 2016, Mainwaring et al.
2017). Some studies also suggest that marine turtles
may respond to changes in beach profiles (due to
SLR/storms) through nest-site selection, as some
populations seem to favour elevated sites for nesting,
increasing clutch survival (Santos et al. 2017, Patrício
et al. 2018). To date, only a few studies have ex -
plored potential range shifts as suitability of nesting
beaches changes, and predicted that some popula-
tions may be able to shift their nesting distribution
as climate change progresses (McMahon & Hays
2006, Pike 2013a, Butt et al. 2016, Fuentes et al.
2020). Newly colonized areas must provide the nec-
essary conditions for egg incubation (Katselidis et
al. 2012) and hatchling dispersal, but other factors
will influence the potential for rookery establish-
ment, such as the presence of other hazards.
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This is important because range shifts may result in
increased exposure to anthropogenic threats, such as
coastal development (Pike 2013a, Biddiscombe et al.
2020, Fuentes et al. 2020). Our current lack of under-
standing of the synergistic effects of multiple climatic
processes with other anthropogenic factors hinders
our ability to identify suitable areas that will allow
turtle nesting to persist (Fuentes et al. 2013). Thus, a
future emphasis should be on coupling predicted
range shift studies with assessments of exposure to
threats with considerations to the interconnected
nature of impacts and responses for a multitude of
processes.

4.7.  Emerging diseases and pathogens

Infectious disease outbreaks have increased in
some marine taxa in the last few decades (e.g.
Fisher et al. 2012, Altizer et al. 2013, Sanderson &
Alexander 2020), potentially driven by either cli-
matic or anthropogenic factors, but likely by a
combination of both (Fey et al. 2015). It is clear
that stressors such as these exacerbate the impact
of disease (Hing et al. 2016) and that climate
change, particularly warming temperatures, ocean
acidification, changes in precipitation, and storm
damage, may alter marine disease dynamics (Har -
vell et al. 2009, Tracy et al. 2019). To date there is
no clear evidence of recent increases in marine
turtle diseases (Tracy et al. 2019), but this may also
be due to a lack of baselines, and/or limited re -
search in this field (Tracy et al. 2019).

One of the major diseases of marine turtles is
fibropapillomatosis (FP), a neoplastic disease charac-
terized by external and internal tumours, which
affects all 7 species, and is reported globally (Jones
et al. 2016). FP tumours, if sufficiently numerous and
large, can impede sight, swimming, feeding, and
breathing, and can suppress organ function, leading
to death (Herbst 1994). FP is linked to infection by
a herpesvirus, the chelonid herpesvirus 5 (ChHV5,
Patrício et al. 2012, Alfaro-Núñez et al. 2014, Page-
Karjian et al. 2015); however, the virus transmission
route is not clear, and environmental factors may also
play a role in disease expression (Van Houtan et al.
2010). Although widespread, FP currently does not
seem to pose a major threat to marine turtles (Patrício
et al. 2016), but if warmer seawater were to promote
tumour growth (which remains to be empirically
demonstrated, but appears possible; Herbst 1994,
1995, Foley et al. 2005), outbreaks could in crease in
severity in the future.

The prevalence of fungal infectious diseases has
increased in marine turtles in recent decades (Phillott
& Parmenter 2001, Fisher et al. 2012, Gleason et al.
2020), with a newly emerging fungal disease re -
ported worldwide to affect marine turtle clutches, the
‘sea turtle egg fusariosis’ (STEF, Gleason et al. 2020).
It appears to be caused by the Fusarium solani spe-
cies complex, a group of at least 26 common soil
fungi that colonize plant materials in the division
Ascomycota (Short et al. 2013), 2 of which have been
shown to be particularly virulent, F. falciforme and
F. keratoplasticum (Sarmiento-Ramírez et al. 2014).
The fusarium species infect incubating eggs, creating
yellowish-blue infection zones that become necrotic,
eventually leading to embryo death (Gleason et al.
2020). Pathogenic fusarium species have also been
isolated from healthy eggs, indicating that they may
be normally present, but unremarkable unless stres-
sors weaken the host immune system (Sarmiento-
Ramírez et al. 2014). Notably, tidal inundation was
shown to correlate with STEF prevalence, leading to
higher clutch mortality (Sarmiento-Ramírez et al.
2014), implying that future SLR and storm surges
may influence disease spread. Additionally, future
loss of nesting area may increase nest density (Patrí-
cio et al. 2019), favouring pathogen spread among
neighbouring clutches (Sarmiento-Ramírez et al.
2017).

Climate change can also alter host−pathogen inter-
actions, either by impairing host immune systems or
by altering the virulence of pathogens, and this has
been documented in shellfish, coral, and some fish
species (Burge et al. 2014), but not yet in marine tur-
tles. Warming seas may also allow pathogens to
increase their range, while simultaneously, poleward
shifts in host species range in response to climate
change may bring them into more frequent contact
with known or novel pathogens (Cohen et al. 2018).
Marine diseases may also impact foraging habitats
on which marine turtles depend, for example sea-
grass meadows (Sullivan et al. 2018) and coral reefs
(Precht et al. 2016, Tracy et al. 2019), but much work
remains to demonstrate how and at what magnitude
climate change may impact these habitats, and
determine what capacity marine turtles have to
broaden their diets. Future research should focus on
understanding which environmental factors favour
the colonization and infection of clutches by patho-
genic fungal species, and which factors promote FP
tumour growth. Disease monitoring using standard
operational protocols should also be encouraged to
improve baselines, essential to detect change, under
future climatic conditions.
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5.  STRATEGIES TO REDUCE CLIMATE CHANGE

IMPACTS

Faced with the certainty of future climate change,
it seems logical that strategies to reduce the potential
negative impacts of climate change on marine turtles
should be investigated. Here we distinguish ‘inter-
vention’, which we define as the direct manipulation
of the ecological processes of turtles, and ‘mitiga-
tion’, which is the reduction of stressors on marine
turtles in order to give them the best possible oppor-
tunity to adapt by themselves. Interventions that
have been proposed so far include relocating nests to
hatcheries or artificial incubators, and manipulating
incubation temperatures using shade, water sprin-
klers, native vegetation, or the addition of sediment
with different colour (and therefore albedo) and
grain sizes (Table 1; Kamel & Mrosovsky 2006, van
de Merwe et al. 2006, Fuentes & Cinner 2010, Fuentes
et al. 2012, 2016b, Patino-Martinez et al. 2014, Wood
et al. 2014, Hill et al. 2015, Jourdan & Fuentes 2015,
Liles et al. 2019). Mitigations that have been pro-
posed include identifying and legally protecting
extant and future suitable nesting beaches (e.g.
male-producing beaches and/or areas with low risk
of inundation and erosion; Baptistotte et al. 1999, dei
Marcovaldi et al. 2016), establishing marine pro-
tected areas (MPAs) to protect both dynamic habitats
(i.e. habitats that may change in space and/or time)
and the marine turtles that occupy them (Maxwell et
al. 2020), as well as mitigating other anthropogenic
stressors (Fuentes et al. 2013).

It seems sensible to suggest that mitigation activities
can and should be used widely to help reduce the im-
pact of climate change and other stressors to marine
turtles. However, whether any interventions would be
helpful or wise to employ is still influenced by our un-
derstanding of their associated effectiveness, feasibil-
ity, and risks (see summary Table 2 in Fuentes et al.
2012, Jourdan & Fuentes 2015). For example, to
assess the utility of interventions related to changes in
sex ratio, ideally we should know what primary sex
ratio and OSR would be ‘optimal’ in the population
that we are managing, and the resulting conse-
quences of manipulating sex ratio on population dy-
namics and evolutionary potential (Fuentes et al.
2012). On the one hand, if too few males are produced
for the population to remain fertile, it risks becoming
extirpated (see Section 2.1). On the other hand, if we
assume that the survivorship between male and fe-
males is equal, if the proportion of females is reduced
in lieu of manipulation for males, the population
growth rate might slow, because the finite rate of pop-

ulation increase is set by the proportion of females
(Boyle et al. 2014a), which can eventually reduce the
capacity of the population to adapt. Thus, manipula-
tion of primary sex ratios may be risky, and lacks an
adequate knowledge base at present to be widely,
safely implemented (Santi drián Tomillo & Spotila
2020). Similarly, to determine the need for interven-
tions to address impacts from nest inundation and
wash-over associated with rises in precipitation, sea
level, and storm activities, we need to be able to pre-
dict the spatiotemporal threat of inundation/wash-
over at individual beaches and the consequent risk to
incubating eggs, based on embryonic tolerances
(Ware et al. 2019). This information must be weighed
against information on the risks of intervening (e.g.
relocating, Ware & Fuentes 2018).

Direct strategies may become necessary at some
sites, as the negative effects of climate change
become more extreme (Prober et al. 2019). For this,
decisions will need to be made at a site level and with
consideration of the environmental, social, economic,
and cultural conditions of specific locations (Fuentes
et al. 2012). As intervention strategies are trialled, it
is critical that information about their effectiveness
is documented, so that managers at other sites can
learn, and an adaptive management approach can
be taken (Fuentes et al. 2016b). Importantly, any
approach should be based on our best understand-
ing of the population level impacts of, for example,
manipulating sex ratio, and consider the long-term
(e.g. >100 yr) persistence of marine turtles. This should
also be set against the risk of creating ‘maladapted’
phenotypes and altering the gene pool by carrying
out inappropriate intervention (see Mrosovsky 2006).
Thus, it is suggested that we should not intervene
with incubating clutches until we know what the
consequences are, and instead we should prioritize
the protection of areas that will have climatically
suitable conditions for incubation over the long-term
and that will have reduced impact by SLR (Fuentes et
al. 2020), including minor rookeries, especially if
they have male-producing conditions (dei Marco-
valdi et al. 2016). As climate change progresses and
temperatures become extreme, causing high mortal-
ity rates and low production, there might be a shift in
management goal from obtaining OSRs versus pre-
serving hatching productivity. However, if the vast
majority of eggs are failing due to habitat conditions
(e.g. low beach profile leading to inundation of
clutches, or extremely high incubation tempera-
tures), it might indicate that a beach is probably no
longer suitable for incubation, so the efficacy of
increasing the production of hatchlings that might
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return to a ‘doomed’ beach should be evaluated. Per-
sistence of suitable nesting habitat is crucial for the
reproduction of marine turtles and is one of the key
factors influencing the resilience of marine turtles to
climatic changes (Fuentes et al. 2013).

Although substantial knowledge gaps remain to
efficiently manage climate-change-related threats to
incubating eggs, larger knowledge gaps remain in
relation to turtles at sea (Table 1). Large and mobile
MPAs have been suggested to protect dynamic habi-
tats and the migratory marine species that occupy
them, such as marine turtles, as climate change pro-
gresses (Davies et al. 2017, Maxwell et al. 2020).
However, design of such protected areas relies on
robust modelling of how marine turtles might re -
spond to change, and whether MPAs would be effec-
tive in reducing the impacts from climate change
(Lawler et al. 2010, Fuentes et al. 2012, 2016b). Until
we address some of these uncertainties, we suggest
focussing on enhancing marine turtle resilience by
reducing other threats that they currently face
(Robinson et al. 2009, Witt et al. 2010, Fuentes et al.
2013, Reece et al. 2013). The main challenge will be
to account for the cumulative and synergistic nature
of climate-related impacts and existing threats to mar-
ine turtles (Fuentes et al. 2011b, Reece et al. 2013).

6.  RESEARCH PRIORITIES

Based on the knowledge gaps identified in Section
4, key research questions were formulated and are
summarized in Box 1. Here we highlight what we see
as the key priorities that urgently need to be ad -
dressed and provide suggestions where research
might be best applied.

6.1.  Understanding sex ratios under climate

change and associated impacts

Despite decades of meaningful research, many of
the current estimates of primary sex ratios may not
accurately reflect the reality, given that most studies
have not taken into account the large variability of
natural environments throughout the full duration of
nesting seasons or have used proxies with inherent
limitations or do not adequately cover the beaches
used by the population. What the primary sex ratios
will be in the future, and how they will vary between
species, rookeries, and individuals, are key questions
to understand the resilience of marine turtles to cli-
mate change, which remain largely unanswered. We
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thus recommend a re-estimation of primary sex ratios
globally, using improved metrics, sampling design,
and modelling approaches (see Section 2.1), and a
continuation of research on non-lethal sexing tech-
niques (Tezak et al. 2020a). The effect of humidity on
primary sex ratios also deserves more attention, par-
ticularly to clarify if there is a direct effect of water
uptake on the regulation of sex-determining genes or
if, otherwise, this is an indirect effect of evaporative

cooling. Of extreme importance is to determine what
the demographic consequences of extremely female-
skewed primary sex ratios are, i.e. how these trans-
late into OSRs. Is population growth to be expected
in the short-term and collapse in the long-term? This
will be fundamental to inform intervention strate-
gies, namely if management of incubation environ-
ments is necessary, and if so, under what conditions.
Another priority is to investigate to which extent

382

Nest area availability

How will nesting turtles respond to changing beach profiles and inundation of current nesting areas?
What are the synergetic impacts of shoreline protection strategies and sea level rise to nesting areas?
What are the long-term impacts of more frequent and intense storm activity?
What areas will be available for marine turtles as climate change progresses?
Will adaptive shifts in nesting location lead to changes in other threats?

Sex ratios

What is the variability in temperature-dependent sex determination reaction norms between individuals, rookeries, and
species?
What is the role of nest humidity in determining sex ratio?
How can models used to reconstruct nest temperature be improved?
How can we better predict beach microclimates?
What spatial and temporal scales are relevant to predict incubation temperature?
How do seasonal primary sex ratios translate into adult sex ratios?
How many males are needed to sustain populations? Is there evidence of male limitation?
What are the long-term consequences of skewed sex ratios on population dynamics and genetics?

Hatching success

Why do clutches fail at high temperatures?
What is the impact of the oxygen−temperature interaction on clutch success?
What is the lethal upper thermal limit for marine turtle clutches?
Why does the lethal upper thermal limit vary between species and populations?
Can the lethal critical thermal limit of embryos change as a result of natural selection?
How tolerant are marine turtle eggs to inundation?

Hatchling morphology, survival, and performance (hatchling condition)

Is the effect of incubation temperatures on hatchling locomotion meaningful to survival?
Do larger hatchlings from cooler incubation conditions have a reduced individual chance of predation?
How does the muscle phenotype of hatchlings vary with incubation temperature?

Movements and distribution at sea

What will be the impact of climate change on hydrological processes?
How will climate change impact foraging grounds?
How will climate-forced dispersal influence recruitment to juvenile/adult foraging grounds?
Will adaptive shifts in foraging location lead to changes in other threats?

Breeding patterns

How does latitude/local climate relate to phenological responses to climate change?
What are the drivers of seasonal, bimodal, and year-round nesting strategies?
How is courtship timing and duration affected by climate factors?
Will phenological changes be sufficient to maintain suitable incubation conditions?
Is there a genetic basis for phenological behaviour?

Emerging diseases and pathogens

Are diseases/infections of marine turtles increasing due to climate change?
Does fibropapillomatosis prevalence/severity increase with temperature?
What climate conditions favour the survival of egg fungal pathogens?

Strategies to reduce climate change impacts

What are the effectiveness, feasibility of implementation, and ecological risks associated with strategies to reduce
impacts from climate change?

Box 1. Priority research questions to improve our understanding of how climate change will impact marine turtles, for each 
parameter expected to be impacted, and for strategies to reduce the impact of climate change
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male abundance limits female fecundity (Boyle et al.
2014a) and the importance of timed courtship. While
male turtles are much less tractable to study (i.e. they
never come ashore), given their wide-scale distribu-
tion, indirect approaches can be immediately ap -
plied, such as estimating the proportion of infertile
eggs within clutches (as a proxy for fertilisation suc-
cess; Phillott & Godfrey 2020) combined with genetic
assessments of effective sex ratios (Lasala et al.
2018). Notwithstanding, the lack of information on this
demographic group (adult males) must be addressed,
particularly given their role for population persist-
ence under future climate change. For this purpose,
the Global Male Sea Turtle Initiative was created, to
promote the study of male marine turtles worldwide
(García-Cruz et al. 2018).

6.2.  Understanding climate change impacts on

embryo and hatchling survival

Severe weather conditions (extreme high incuba-
tion temperatures, storm surges, and protracted
inundation), are often predicted to cause clutch mass
mortality; however, the lethal upper thermal limits of
some species are yet to be estimated, and the toler-
ance of marine turtle clutches has rarely been stud-
ied (but see Pike et al. 2015 and Limpus et al. 2020).
Reports on these parameters are essential, assessing
variability between species and populations and the
influence of environmental factors (e.g. clutch size,
nest depth, and sediment type). More consideration
should be given to the role of the oxygen−tempera-
ture interaction on the thermal tolerance of embryos
and on hatchling muscle performance (Liang et al.
2015, Booth 2017, Stubbs & Mitchell 2018), as a
warmer climate may simultaneously increase oxygen
consumption rates, while contributing to oxygen de -
pletion (e.g. due to SLR/storm-related inundation or
to metabolic activity of nearby eggs at high nest den-
sity sites). Additionally, improved models of beach
sediment movement in response to SLR are critical
for robust estimations of clutch flooding/nesting area
loss. The information relative to the impacts of dis-
eases and pathogens is also scarce, and despite the
increase in fungal infections among incubating
clutches, there is a lack of baselines precluding the
estimation of change under future conditions, and
more importantly, there is no clear understanding of
how pathogens will respond under a warmer climate.
There is likewise a need for research on the down-
stream consequences of the incubation environment
on hatchlings; particularly, it is critical to discern if

body size has an impact on the relative predation
risk, and if the amount of yolk reserves is important
for dispersal and survivorship.

6.3.  Assessing the potential for adaptation

Understanding the capacity for physiological adap-
tation to future climate change is a major priority;
specifically, studies should assess the plausibility for
adaptation of critical thermal limits of incubation
through natural selection, suggested by plasticity in
the expression of genes that mitigate cell damage
under heat stress (heat-shock genes, Tedeschi et al.
2016). Possibly, however, marine turtles will respond
more rapidly to adverse climatic conditions by shift-
ing their spatiotemporal distribution and/or chang-
ing their nesting/foraging behaviour, but there is still
limited information on their expected responses to
climate change, and even more so, on the efficacy of
such responses (Fuentes et al. 2020). Future research
should thus assess how nesting females and foraging
animals respond to climate-related changes, such as
rising sand temperatures, altered beach profiles, in -
undation of current nesting areas, and increasing sea-
water temperatures, taking into account site-specific
sensitivities (e.g. Dalleau et al. 2012, Mazaris et al.
2013). Genome-wide association studies will also be
key to assess if relevant behaviours (e.g. nest-site
choice, phenological responses to temperature) have
a genetic basis, and are thus susceptible to evolution
by natural selection. Perhaps even more important will
be to quantify the efficiency of potential (and ob -
served) responses to climate change. For instance,
will marine turtles shift their distributions to areas
where anthropogenic disturbance is high (Fuentes et
al. 2020)? Will phenological changes be sufficient to
maintain suitable incubation conditions (Monsinjon et
al. 2019a)? Answering these questions will be critical
to anticipate the need for mitigation strategies. Lastly,
a key action is to identify (and legally protect) beaches
that will become (or remain) suitable for nesting under
climate change. This may imply surveying beaches
with current very little to no nesting, yet it may be
the single most important strategy to enhance the
resilience of these animals in the long-term.

6.4.  Understanding climate change impacts on

foraging ecology

The lack of information regarding the impacts of
climate change on foraging grounds and the interac-
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tions between food availability and the somatic
growth of marine turtles is a considerable obstacle to
predicting the responses of marine turtles to future
conditions. Somatic growth is a key demographic
parameter, as it will impact the age at maturity, and
thus the reproductive output of populations. Decreases
in somatic growth among Pacific green turtle forag-
ing aggregations have been associated with an El
Niño event, leading to cooler SST and lower net pro-
ductivity (Chaloupka et al. 2004). In the Western
Atlantic, on the other hand, declining somatic growth
rates across multiple foraging grounds and 3 marine
turtle species (green turtles, hawksbills, and logger-
heads), occupying different trophic positions, have
been associated with warming SST (Bjorndal et al.
2013, 2016, 2017), and the authors suggested that
indirect effects of the seawater temperature on net
productivity may be driving these declines. Recent
research has further highlighted that food limitation
due to climate change is likely to have the strongest
impact on population persistence among herbivorous
green turtle populations (Stubbs et al. 2020), but
more research is needed, encompassing more popu-
lations and wider geographic scales. The additional
layers of trophic complexity for carnivorous and
omnivorous species like ridley, flatback Natator

depressus and loggerhead turtles may make such
modelling efforts more difficult. It is fundamental to
assess how the distribution and abundance of food
resources will change under future climate scenarios.
For instance, some seagrass species are predicted to
decline with increases in seawater temperatures
(Jordà et al. 2012), but there is insufficient informa-
tion to make predictions at a global level (Unsworth
et al. 2019). Some food resources may become more
abundant under future climate change (Bell et al.
2013), which, coupled with faster metabolism, could
increase food intake and enhance growth rates, and
lead to lower age at maturity and thus to longer
reproductive periods and higher breeding rates. We
need basic knowledge on how climate change will
impact hydrological processes, such as ocean circula-
tion and mixing, turbidity, upwelling regimes, water
column stratification, and the distribution of frontal
and convergence zones, as these processes, com-
bined with changes in SSTs and in water acidity, will
affect ocean productivity and consequently, the
availability of food for marine turtles. This type of
assessment will benefit from collaborations between
transdisciplinary research teams. It is also essential
to study the diet and foraging plasticity of different
species and populations, as opportunistic diets
should increase resilience, while a combination of a

specific diet with declines of a major food source
is cause for concern.

6.5.  Final remarks

Following their 120 million years of existence
(since early Cretaceous), marine turtles have sur-
vived major past climate changes (Scheyer et al.
2014), including the dramatic changes leading to the
Cretaceous-Paleogene mass extinction (~66 Mya),
responsible for the disappearance of 75% of life on
earth (Schulte et al. 2010). Yet, they now face a much
faster rate of change (IPCC 2018, Cheng et al. 2019)
along with several human-induced threats that may
act synergistically with climate change impacts
(Fuentes et al. 2013, Rees et al. 2016). Even if marine
turtles survive as a group, species with restricted dis-
tribution ranges (i.e. flatback and Kemp’s ridley tur-
tles), and individual populations that have been
depleted (Hamann et al. 2010), are likely to be most
vulnerable. Some populations may be more resilient,
however, having spatial and temporal microrefugia
that allow for optimal incubation conditions, and may
also exhibit foraging plasticity (Abella Perez et al.
2016, Patrício et al. 2019). As the knowledge gaps
identified here are addressed, our understanding of
what the future will look like for marine turtles will
increase. Importantly, future research efforts should
be global in scope, rectifying current geographic and
species biases (Je�ers & Godley 2016), with more
research funded and supported in Africa, Asia, and
Central and South America. New techniques, en -
hanced data sharing, and meta-analytic approaches
will all afford excellent possibilities for breaking
down the barriers to understanding what the impacts
of climate change will be on this charismatic group,
and how these impacts may be effectively reduced.
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