Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.
Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.
The publication may also be distributed here under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license.
More information can be found on the University of Groningen website: https://www.rug.n//library/open-access/self-archiving-pure/taverne-
amendment.

Link to publication in University of Groningen/UMCG research database

Publication date 2006

Document Version
Publisher's PDF, also known as Version of record
IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.
10.1038/nature04539
Published in
Nature
Climate change and population declines in a long-distance migratory bird
Both, C; Bouwhuis, S; Lessells, CM; Visser, ME

2月

Supplementary information by Both et al: Climate change and population declines in a long-distance migratory bird

Table 1A: characteristics of the nest box study areas and the pied flycatcher populations using the nest boxes in the ten areas in the Netherlands that were used in the analyses.

Area	Data collector ${ }^{1}$	Longitude	Latitude	Number of nest boxes	Caterpillar peak date ${ }^{2}$	Prop. of Great Tit Second broods	Maximum number of pairs ${ }^{4}$	${ }_{5}{ }_{5}$ Population trend$(\mathrm{Slope} \pm \mathrm{SE})$		Proportional population change	Effect of temperature on laying date ${ }^{6}$ (Slope + SE)	
Buunderkamp	NIOO-KNAW	050 45' E	52o 01' N	260	57.5	0.12	93	-0.0284	0.005	-64\%	-1.309	0.34
Deelerwoud	Dekhuijzen	050 55' E	520 $05^{\prime} \mathrm{N}$	200	57.5		110	-0.0025	0.004	-9\%	-1.827	0.27
Ginkel	Stel \& Van Laar	050 45' E	52o 04' N	240	57.5	0.33	106	0.0052	0.003	+21\%		
Hoge Veluwe	NIOO-KNAW	050 51' E	$52^{\circ} 02^{\prime} \mathrm{N}$	370	51.5	0.22	125	-0.0071	0.003	-23\%	-1.929	0.32
Keppel	VWG Doesburg	060 13' E	$52^{\circ} 00^{\prime} \mathrm{N}$	54	37.5		11	-0.062	0.01	-90\%		
Liesbos	NIOO-KNAW	040 40' E	$51^{\circ} 35{ }^{\prime} \mathrm{N}$	102		0.07	9	-0.060	0.01	-89\%	-0.41	0.57
Oldhorst	Vd Brink	050 57' E	$52^{\circ} 27$ N	84	39.5		26	-0.057	0.013	-88\%	-0.806	0.38
Op de Bergen	Vd Brink	050 50' E	$52^{\circ} 24^{\prime} \mathrm{N}$	39	58.0		15	0.0035	0.003	+14\%		
Staphorst	VWG Staphorst	060 17' E	$52^{\circ} 37{ }^{\prime} \mathrm{N}$	1435	52.8	0.32	356	-0.0035	0.003	-12\%	-1.672	0.27
Warnsborn	NIOO-KNAW	050 51' E	52 ${ }^{\circ} 00^{\prime} \mathrm{N}$	80	44.5	0.10	29	-0.0239	0.006	-59\%	-1.263	0.37

${ }^{1}$ Data were collected by the Netherlands Institute of Ecology (NIOO-KNAW), two local bird groups (Doesburg and Staphorst) and individual amateur bird researchers.
${ }^{2}$ Caterpillar peak date for each area is the mean of the peaks in 2003 for two trees expressed as days after 31 March. The peak dates of the two trees within the same area were correlated: $\mathrm{r}_{\mathrm{s}}=0.74, \mathrm{n}=9, \mathrm{p}=0.02$. Data were available for 9 of the 10 study populations.
${ }^{3}$ The proportion of great tits producing second broods in the years 1985-1990 (average of annual proportions). Second broods are laid after a successful first clutch has been raised, and thus prolong the breeding season.
${ }^{4}$ The maximum number of breeding pairs in the nest boxes in the period 1987-2003. In Liesbos the decline started some years earlier than 1987, and in 1984 there were still 17 pairs breeding in the area.
${ }^{5}$ The slope (\pm SE) of the regression of the logarithm (to the base 10) of number of breeding pairs in nest boxes against year in 19872003.
${ }^{6}$ The slope (\pm SE) of the regression of the annual median laying date against temperature for the period 16 April - 15 May (+ SD of the slope) for the period 1980-2002. Data were available for 6 of the 10 study populations.

Justification for using caterpillar data from only 2003

We have data for all 9 of the study populations on the caterpillar peak from only 2003. However, this value should be representative of the entire study period because:
(1) the timing of the caterpillar peak differs consistently among sites within the same forest: seven sampling sites on the Hoge Veluwe, for which we have data for 1993-2004 differ consistently in the date of peak caterpillar biomass (site: $\mathrm{F}_{6,65}=17.52, P<0.001$ correcting for year: $\mathrm{F}_{11,65}=22.35, P<0.001$; Visser,M.E., Holleman,L.J.M. \& Gienapp,P., 2006 Oecologia In Press). The mean within year difference in caterpillar peak date between the earliest and latest site in this area is 9 days, which is about half the difference of 20 days between the sites used in this study.
(2) the timing of the caterpillar peak differs consistently among areas: three widely-separated ($30-150 \mathrm{~km}$) forests in the Netherlands (of which only one (HV) had breeding pied flycatchers, the other two sites are Vlieland ($53.17^{\circ} \mathrm{N}, 5.03^{\circ} \mathrm{E}$) and Oosterhout ($51.55^{\circ} \mathrm{N}$, $5.50^{\circ} \mathrm{E}$)) for which we have data for differ consistently in the date of peak caterpillar biomass (area: $\mathrm{F}_{2,12}=3.90, \mathrm{P}=0.049$; year: $\mathrm{F}_{30,12}=5.56, \mathrm{P}=0.0016$).

