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a b s t r a c t

We have killed wild animals for obtaining food and decimated forests for many reasons. Nowadays, we

are burning fossil fuels as never before and even exploring petroleum in deep waters. The impact of these

activities on our planet is now visible to the naked eye and the debate on climate change is warming up

in scientific meetings and becoming a priority on the agenda of both scientists and policy decision

makers. On the occasion of the Impact of Environmental Changes on Infectious Diseases (IECID) meeting,

held in the 2015 in Sitges, Spain, I was invited to give a keynote talk on climate change, biodiversity, ticks

and tick-borne diseases. The aim of the present article is to logically extend my rationale presented on

the occasion of the IECID meeting. This article is not intended to be an exhaustive review, but an essay on

climate change, biodiversity, ticks and tick-borne diseases. It may be anticipated that warmer winters

and extended autumn and spring seasons will continue to drive the expansion of the distribution of

some tick species (e.g., Ixodes ricinus) to northern latitudes and to higher altitudes. Nonetheless, further

studies are advocated to improve our understanding of the complex interactions between landscape,

climate, host communities (biodiversity), tick demography, pathogen diversity, human demography,

human behaviour, economics, and politics, also considering all ecological processes (e.g., trophic cas-

cades) and other possible interacting effects (e.g., mutual effects of increased greenhouse gas emissions

and increased deforestation rates). The multitude of variables and interacting factors involved, and their

complexity and dynamism, make tick-borne transmission systems beyond (current) human compre-

hension. That is, perhaps, the main reason for our inability to precisely predict new epidemics of vector-

borne diseases in general.

© 2015 The Author. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The scientific evidence for rapid climate change is compelling
and most experts in the field have now reached a consensus: the
Earth's climate is changing. Evidence for this includes increasing
global temperature, sea level rise (Fig. 1), warming oceans,
shrinking ice sheets, declining Arctic sea ice, glacial retreat,
increasing extreme events, ocean acidification, and decreased snow
cover (http://climate.nasa.gov/evidence/).

Climate change is modifying the environment where we live
and our way of living. For instance, global warming is booming the
market for air conditioning, which is expected to grow in the

coming decades. The explosive growth of the air conditioning
market and the increased fossil fuel burning in response to
increased temperatures may contribute to greenhouse gas emis-
sions and, again, to global warming. Indeed, the discovery that
chlorofluorocarbons are major contributors to ozone layer break-
down, resulted in their replacement by hydrochlorofluorocarbons
and, more recently, by hydrofluorocarbons (Dahl, 2013). Hydro-
fluorocarbons are better coolants and have no impact on ozone
depletion, but they are super-greenhouse gases with high potential
to contribute to global warming (Dahl, 2013). Hence, the solution
for the ozone layer breakdown is contributing to the greenhouse
gas effect. It is like a dog chasing its tail.

Climate change may impact human health and wellbeing in
many ways, including by facilitating the spread of many infectious
agents. For instance, the changing scenarios of major vector-borne
diseases (e.g., malaria, leishmaniasis, Chagas disease) have been
linked to several factors, including urbanization and deforestation,
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changing demographics in both developing and developed coun-
tries, economic crisis, increased global movement of people and
animals, and climate change (Colwell et al., 2011). For quite some
time, scientists have endeavoured to predict large-scale responses
of infectious diseases to climate change (reviewed in Altizer et al.,
2013), as many components of the transmission cycles of vector-
borne diseases are inextricably tied to climate (Harvell et al.,
2002; Altizer et al., 2013). For instance, many blood-feeding ar-
thropods such as ticks spend the bulk of their life cycle in the
environment and their development, survival and population dy-
namics depend on many factors, including host availability, vege-
tation coverage, and climate (Randolph, 2009; Dantas-Torres,
2010). Climate change may influence tick distribution and density,
as well as the risk of tick-borne pathogen transmission to humans
(reviewed in L�eger et al., 2013).

The climate change debate is warming up in the scientific
meetings and becoming a priority on the agenda of both scientists
and policy decision makers. On the occasion of the Impact of
Environmental Changes on Infectious Diseases (IECID) meeting,
held in the 2015 in Sitges, Spain, I was challenged to give a 20-
min keynote talk on climate change, biodiversity, ticks and tick-
borne diseases. Because 20 min is not enough to deal with such a
complex subject, the objective of this article is to logically extend
my rationale presented on the occasion of the IECID meeting. This
article is not intended to be an exhaustive review, but an essay on
climate change, biodiversity, ticks and tick-borne diseases.

2. Our planet, our future

Over the past 4.5 billion years, our planet has passed through ice
ages, warmer interglacial periods, such as the present Holocene
epoch that began about 10,000 years ago (Thompson, 2010). The

planet has also witnessed at least five big mass extinctions
(Jablonski, 2002) and, throughout these years, it has shaped its
surface, pretty much helped by the world's most dominant species:
Homo sapiens. Indeed, when our ancestors took the decision to
move out from Africa (Shriner et al., 2014), humankind embarked
on a journey of no return (Diamond, 1997). In fact, many of the
global changes we are witnessing in the present days may be partly
attributed to anthropogenic factors.

Since ancient times, humans have killed wild animals for
obtaining food and decimated forests for many reasons, including
for building villages (...towns, cities, metropolis and megalopolis),
crop plantation, cattle grazing, and road construction (Diamond,
1997). And the impact is impressive. Amazingly, it is estimate
that over 475 million wild animals (Fig. 2) are killed on Brazilian
roads each year (http://cbee.ufla.br/portal/atropelometro/).
Furthermore, modern humans are also currently obtaining natural
gas and oil by utilizing hydraulic fracturing (Ellsworth, 2013),
burning fossil fuels as never before and even exploring petroleum
in deep waters (Fisher et al., 2014). The impact of these human
activities is unpredictable in the long term, but will certainly in-
fluence the course of our existence on Earth.

Tropical deforestation, mainly for grazing cattle and cropland
expansion (Morton et al., 2006; Armenteras et al., 2013), creates a
drier, hotter climate in the tropics. For instance, land surface acts as
a strong global carbon sink and a recent study reported a long-term
decreasing trend of the Amazon carbon sink (Brienen et al., 2015),
underscoring the importance of preserving tropical forests, not
only to protect our global biodiversity but also to mitigate eminent
deleterious effects on Earth's climate.

Human development may benefit our way of living today, but
also affect our future. All these changes, including our changing
behaviour in response to these changes, may affect all kinds of

Fig. 1. Climate change is contributing to sea level rise. The Boa Viagem beach is a tourist destination in Recife, north-eastern Brazil. If current trends in sea level rise persist, cities

like Recife may be literally swallowed the sea in the coming decades.
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living creatures, including wild animals (potential hosts for deadly
pathogens) and arthropods such as ticks and mosquitoes, the most
important groups of vectors of pathogens from amedico-veterinary
perspective (Dantas-Torres et al., 2012; Caraballo and King, 2014).

3. Human development and climate change: threats to

biodiversity

Human development is a major threat to global biodiversity.
Transformation of natural environments (e.g., tropical forests) into
farming lands and urban settlements, introduction of invasive alien
species, pollution of land, air and water, sustained over-exploration

of natural resources, and unsustainable harvesting of wild plants
and animals are among themain drivers of biodiversity loss (http://
www.iucn.org/what/biodiversity/). For example, across the tropics,
between 1980 and 2000, more than 55% of new agricultural land
(Fig. 3) became available at the expense of intact forests (Gibbs
et al., 2010). Furthermore, using a global Earth-system model
coupled with fine-scale habitat suitability models and parameter-
ized according to four global scenarios of human development,
Visconti et al. (2011) identified future hotspots of terrestrial
mammal loss worldwide, particularly in Africa and the Americas. It
may be anticipated that the growing world human population and
the consequently increasing demand for food will cause profound
changes in terms of hydric resources, land cover, and global
biodiversity in the coming years.

The increased amount of greenhouse gases in the atmosphere,
which is also intimately linked to human development (Fig. 4), is
among the man-made causes of climate change (Shepherd, 2012;
Müller et al., 2013). Since the Industrial Revolution, increased
greenhouse gas emissions (e.g., combustion of fossil fuels for
electricity and heat generation, transportation, and manufacturing,
land use changes) have greatly contributed to the natural green-
house gas effect (Malhi et al., 2002).

Many studies have recently investigated the effects of climate
change on the Earth's biodiversity. The predicted impact of climate
change on biodiversity may vary widely, depending on several
variables (e.g., method of analysis, taxonomic group, biodiversity
loss metrics, spatial scales and time periods considered). In their
review, Bellard et al. (2012) came to the conclusion that “the ma-
jority of models indicate alarming consequences for biodiversity,
with the worst-case scenarios leading to extinction rates that
would qualify as the sixth mass extinction in the history of the
Earth”. This has been just been confirmed (Ceballos et al., 2015) and
the scenario is expected to beworse in the fore coming decades, not
only due to climate changes and but also other factors such as

Fig. 3. Deforestation of Atlantic rainforest for the establishment of banana tree plantations in Amaraji, north-eastern Brazil.

Fig. 2. Sloth found on a road that crosses a region of Atlantic rainforest in Aldeia,

north-eastern Brazil. Crab-eating foxes (Cerdocyon thous) and other wild animals are

commonly seen crossing this road and are frequently victims of car crashes.
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deforestation (Struebig et al., 2015).
One may prognosticate that human development and climate

change will negatively affect biodiversity at local to global scales.
Accordingly, there is now weighty evidence that decreases in
biodiversity increase risk of transmission of different infectious
diseases (Keesing et al., 2010; Cardinale et al., 2012; Civitello et al.,
2015). Zargar et al. (2015) highlighted that the biodiversity-disease
relationship is a multifactorial process and suggested the use of a
multidimensional approach, whereby the same disease system
could be studied in different ecological zones. New databases (e.g.,
PREDICTS and BIOFRAG databases) are being made available and
will be useful for future assessments on terrestrial biodiversity
responses to human impacts (Hudson et al., 2014; Pfeifer et al.,
2014). These biodiversity databases will also be critical for future
investigations on the relationship between biodiversity and tick-
borne pathogen transmission risk.

4. Climate change versus tick distribution and abundance

Tick questing activity, reproduction, and survival, depend on
several factors that, in turn, have a direct impact on tick distribution
and abundance (Estrada-Pe~na et al., 2013; Lauterbach et al., 2013;
L�eger et al., 2013; Medlock et al., 2013; Jore et al., 2014). These
include vegetation coverage, host availability, moisture and tem-
perature conditions, photoperiod, and human activities. A very
good account on the ecological physiology of ticks may found
elsewhere (Randolph, 2009).

Recent, long-term studies have demonstrated changes in the
distribution of the castor bean tick Ixodes ricinus in different parts of
its range. For instance, data from a 30-year study conducted in
Sweden indicated a clear expansion of the distribution range of this
tick towards northern latitudes (Jaenson et al., 2012). Indeed, the

range of I. ricinus in Sweden increased by 9.9% during the obser-
vation period andmost of expansion occurred in the north (north of
60�N) where the tick's coverage area doubled from 12.5% in the
early 1990s to 26.8% in 2008. Another long-term study carried out
from 1977 to 2011 in Russia reported an increase in the abundance
of I. ricinus in the eastern part of its range (Korotkov et al., 2015).
These studies have shown that the northward spreading of I. ricinus
in Sweden and Russia appear to be associated to climate change,
particularly to the occurrence of milder winters and extended
growing seasons. Host population dynamics, in response to climate
change or due to human activities, may also have played a role in
this process.

On the occasion of the IECID meeting in Sitges, someone asked
me about the threshold temperature for I. ricinus, considering that
winter temperatures in Sweden and Russiamay be very cold for any
living creature (a Brazilian would be inclined to agree). I probably
did not elaborate a proper answer for that question, because the
relationship between tick development rates and temperature is
nonlinear (Randolph, 2009; Estrada-Pe~na et al., 2012). Categori-
cally, Tomkins et al. (2014) stated “while the idea of fixed temper-
ature thresholds applying across populations may be a convenient
assumption from the point of view of predicting the distribution of
ticks, it may lack realism”. For instance, it has been demonstrated
that geographically separated populations of I. ricinus show clinal
variation in the response of questing to temperature, suggesting
that physiological thresholds are not fixed in this species (Gilbert
et al., 2014).

In the United Kingdom, the onset of larval activity coincides
with a threshold of 10 �C (Randolph et al., 2002), whereas the
threshold temperature for activity by questing nymphs and adults
of I. ricinus has been estimated as a weekly mean daily maximum
temperature of approximately 7 �C (Randolph, 2009; and

Fig. 4. Shanghai, China: the largest city proper by population in the world. China is the world's largest carbon emitter; it accounted for 29% of global total emissions in 2012 (Olivier

et al., 2013).
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references cited therein). Interestingly, questing nymphs and adults
of I. ricinus may be found during winter in southern Italy, the
southernmost part of its distribution range, often in sympatry with
the winter tick Haemaphysalis inermis (Fig. 5). Both species can be
collected with mean daily temperature below 5 �C in southern Italy
(Dantas-Torres and Otranto, 2013a,b).

The limiting temperature for winter survival depends on a
range of factors, including tick species, developmental stage,
number of days of tick exposure to a given temperature, and snow
cover. For instance, I. ricinus can survive 24-h exposure to tem-
peratures ranging from �14.4 �C to �18.9 �C, but exposure for 30
days to only �10 �C can be lethal for a high proportion of unfed
nymphs and diapausing engorged larvae and nymphs (Knülle and
Dautel, 1997). Northern temperate tick species (e.g., I. ricinus and
ornate cow tick Dermacentor reticulatus) are well adapted to sur-
vive in sub-zero temperatures (Medlock et al., 2013), but the ca-
pacity to supercool to temperatures of � �17 �C appears to be an
inherent ability of many tick species, regardless geographic origin
(Dautel and Knülle, 1996). Paradoxically, enhanced snow cover
may promote overwintering tick survival by preventing repeated
freezeethaw cycles, which may be more detrimental (Medlock
et al., 2013). On the Antarctic Peninsula, the seabird tick Ixodes

uriae is exposed to extreme environmental conditions during the
off-host phase of its life cycle (Benoit et al., 2007). An interesting
study has demonstrated that winter temperature affects the
prevalence of I. uriae in the Brünnich's guillemot Uria lomvia; an
increase of 1 �C in the average winter temperature at the nesting
colony site was associated with a 5% increase in the number of
infested birds in the subsequent breeding season (Descamps,
2013).

Climate change will likely increase the climatic niche of I. ricinus
in Europe, including in northern Eurasian regions (e.g., Sweden and
Russia) that were previously unsuitable for this species (Porretta
et al., 2013). However, the response of ticks to climate change
will vary widely from region to region and according to tick species.
A recent ecological niche model for I. ricinus in Europe under a
changing climate scenario predicted a potential habitat expansion
of 3.8% in all of Europe. Interestingly, this model indicated habitat
expansion in some areas (e.g., Scandinavia, the Baltics, and Belarus)
and habitat contraction in others (e.g., Alps, Pyrenees, interior Italy,
and north-western Poland) (Boeckmann and Joyner, 2014). Pro-
jected temperature changes also increased the basic reproductive
number (R0) of the blacklegged tick Ixodes scapularis in Canada and

in the United States (Ogden et al., 2014). Levi et al. (2015) recently
reported that projected warming by the 2050s is expected to
advance the timing of average nymph and larva activity by 8e11
and 10e14 days, respectively.

The effect of climate change (particularly of increased temper-
atures) in tropical zones may be deleterious to some species,
adversely affecting habitat suitability and forcing certain tick spe-
cies to colonize new areas. In South Africa, for example, it has been
predicted that increasing the temperature by 2 �C will decrease
habitat suitability for four tick species (i.e., the African blue tick
Rhipicephalus decoloratus, the South African bont tick Amblyomma

hebraeum, the brown ear tick Rhipicephalus appendiculatus and the
small smooth bont-legged tick Hyalomma truncatum) (Estrada-
Pe~na, 2003). Another study suggested that the progressive in-
crease in temperatures seems to be forcing the dispersion of
tropical bont tick Amblyomma variegatum towards areas outside of
zones that have a prolonged dry period in Zimbabwe (Estrada-Pe~na
et al., 2008). Indeed, high temperatures adversely affect tick
questing activity, especially at dry conditions (Randolph, 2009). In
southern Italy, we observed a decline in the questing activity by
nymphs and adults of I. ricinus during summer (Dantas-Torres and
Otranto, 2013a). Interestingly enough, questing activity by larvae
was apparently not affected in the same area. We have also
observed a seasonal variation in the effect of climate on the biology
of brown dog tick (Rhipicephalus sanguineus sensu lato) in southern
Italy (Dantas-Torres et al., 2011). Indeed, high temperatures may be
deleterious under low humidity conditions, even for ticks that are
physiologically adapted to drier environments, such as the brown
dog tick (Yoder et al., 2006).

5. Climate change, biodiversity and tick-borne diseases

The issues of global changes, climate change and tick-borne
diseases are becoming the order of the day (LoGiudice et al.,
2008; Gray et al., 2009; Keesing et al., 2010; Estrada-Pe~na et al.,
2012, 2014b; Ogden et al., 2013; Estrada-Pe~na and de la Fuente,
2014; Granter et al., 2014; Parham et al., 2015; Medlock and
Leach, 2015). There is convincing evidence indicating the direct or
indirect effects of global changes on tick-borne diseases. Impor-
tantly, it is impossible to disconnect the mutual influences of global
changes such as deforestation, land use change, and climate change
on tick-borne pathogen transmission systems, as several of these
factors may act synergistically on hosts, vectors, pathogens and
humans themselves.

Many recent studies have investigated the influence of climate
change on tick-borne disease upturn in different parts of the
world. For instance, Parola et al. (2008) correlated a cluster of
Mediterranean spotted fever cases to a warming-mediated in-
crease in the aggressiveness of brown dog ticks. Climate change
has been implicated as an important driving force for the
expansion of the taiga tick Ixodes persulcatus habitat and the
incidence of tick-borne encephalitis in the north of European
Russia (Tokarevich et al., 2011). It is also recognized that I. ricinus
and Borrelia burgdorferi sensu lato are spreading to northern lat-
itudes and to higher altitudes as a result of the effects of climate
change on host populations and on tick development, survival and
seasonal activity (Mannelli et al., 2012; L�eger et al., 2013; Medlock
et al., 2013). Nonetheless, the relationship between climate
change and tick-borne diseases is not uniform across all regions
and tick species. For instance, Feria-Arroyo et al. (2014) used a
maximum entropy approach to forecast the present and future
distribution of B. burgdorferi-infected I. scapularis in the Tex-
aseMexico transboundary region by correlating geographic data
with climatic variables. According to this modelling approach,
habitat suitable for the distribution of I. scapularis in the

Fig. 5. Amale of the winter tick Haemaphysalis inermis collected in a cold winter day in

January 2010 in Basilicata, southern Italy.
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TexaseMexico transboundary region will remain relatively stable
until 2050. In the same way, the increased incidence of tick-borne
encephalitis in Sweden during 2011e2012 is apparently more
correlated to host population dynamics than to climate factors
(Palo, 2014).

The impact of climate change on tick-borne diseases has long
been a subject of debate (Gilbert, 2010; Randolph, 2010) and is still
a controversial issue. While some models suggest dramatic range
expansions of Ixodes ticks and tick-borne diseases as a result of
climate warming, predicted distributions may also vary widely
with the models’ assumptions (Ostfeld and Brunner, 2015). It has
been stated that the impact of global warming on tick-borne dis-
eases will be more evident at the geographical limits of current
distributions, where suboptimal temperatures are currently
limiting the spread of infected vectors (Randolph, 2013). Ostfeld
and Brunner (2015) argued that more data on key tick-
demographic and climatic processes, as well as the incorporation
of non-climatic processes are required to develop better models.

Habitat disturbances may alter terrestrial mammal commu-
nities and tick-borne pathogen transmission systems. For instance,
Lou et al. (2014) developed a model to investigate the joint effects
of seasonal temperature variation and host community composi-
tion on B. burgdorferi transmission by I. scapularis. They proposed a
stage-structured periodic model by integrating seasonal tick
development and activity, multiple host species and complex
pathogen transmission routes between ticks and reservoirs. In such
model, climate warming can amplify and slightly change the sea-
sonality of disease risk. Both the dilution and amplification effects
could be detected by feeding themodel with different animal hosts.

Although there has been considerable debate on the
biodiversity-buffers-disease paradigm (Randolph and Dobson,
2012, 2013; Ostfeld, 2013; Salkeld et al., 2013; Wood et al., 2014),
recent studies assessing the effects of host diversity on Lyme dis-
ease risk or incidence at both small and large scales have found very
strong support for dilution effect (Turney et al., 2014; Werden et al.,
2014). Indeed, a new meta-analysis of 202 effect sizes on 61 para-
site species provided widespread support for dilution effects across
different ecological contexts, indication that biodiversity declines
could increase human and wildlife diseases and decrease crop and
forest production (Civitello et al., 2015).

6. The butterfly effect: the importance of trophic cascades

In common sense, chaos denotes extreme confusion, disorder, a
state in which behaviour and events are not controlled by any-
thing, in sum, a pandemonium. For instance, I say very often these
days to my wife: “The car traffic in Recife is becoming chaotic”. In
Greek mythology, chaos (Greek cάο2, khaos) is the most ancient of
gods, formless or void state preceding the creation of the universe.
But only recently, I also came to understanding that, in mathe-
matics, chaos theory is a field that studies the behaviour of
dynamical systems (Rickles et al., 2007). The principle is that
small changes in the initial conditions will result in different
outcomes for such dynamical systems; this sensitive dependence
on initial conditions is the so-called “butterfly effect”. The chaos
theory has many potential applications, including in medicine
(Philippe, 1993), ecology (Hastings et al., 1993) and evolution
(Ferri�ere and Fox, 1995).

The response of ticks to changes in climate and in densities of
their hosts can be variable. For instance, manipulations of models
(even deterministic ones) can produce different outcomes,
including tick populations that either rise or fall under increasing
host densities, depending on initial conditions (Dobson, 2014a).
Tick-borne pathogen transmission systems are also difficult to
predict (perhaps, unpredictable) in the long term, because of the

possibility of chaotic behaviour (sensitive dependence on initial
conditions). The existence of complex ecological processes (e.g.,
trophic cascades) and their possible influences on the tick-host-
pathogen triad increase the complexity of models of multi-host
transmission systems. For instance, a trophic cascade is ecological
process that starts at the top of the food chain and fall down to the
bottom (Paine, 1980). Food-webs may be influenced by top-down
effects from carnivores to plants and by bottom-up effects that
link plants to herbivores and higher trophic levels, and the
importance of each in a given ecosystem is a subject of debate
(Muhly et al., 2013). A classical example of a trophic cascade is what
happened in the Yellowstone National Park in the United States,
when grey wolves (Canis lupus) were reintroduced in 1995 (Beyer
et al., 2007; Kauffman et al., 2010; Ripple and Beschta, 2012;
Dobson, 2014b; Ripple et al., 2014). In his talk “For more wonder,
rewild the world” filmed July 2013 at TEDGlobal 2013, George
Monbiot presented a very exciting description of what happened in
this park, explaining how wolves transformed not just the local
ecosystem, but also its physical geography (see video at: http://
www.ted.com/talks/george_monbiot_for_more_wonder_rewild_
the_world).

Even if the relationship between grey wolf reintroduction and
increased fruit availability and consumption by grizzly bears (Ursus
arctos) in the Yellowstone National Park is an on-going debate
(Barber-Meyer, 2015; Ripple et al., 2015), the occurrence of a wolf-
inducted trophic cascade in this area is evident. The reintroduction
of wolves triggered important changes in the local ecosystem,
when they started preying on ungulates, particularly elk (Cervus
elaphus) (Metz et al., 2012). The interactions between wolves, un-
gulates, coyotes (Canis latrans), red foxes (Vulpes vulpes), and so on,
resulted in important changes in terrestrial mammal and bird
communities in the Yellowstone National Park.

Trophic cascades may potentially affect the transmission dy-
namics of pathogens such as B. burgdorferi, through dilution and/
or amplification effects. For example, Levi et al. (2012) elaborated
a theoretical model suggesting that changes in predator com-
munities may have cascading impacts that facilitate the emer-
gence of Lyme disease. They showed that increases in Lyme
disease in the north-eastern and mid-western United States over
the past three decades coincide with a range-wide decline of a key
small-mammal predator, the red fox, likely due to expansion of
coyote populations, being uncorrelated with deer abundance as
usually thought.

7. Final thoughts and perspectives

Life is an unpredictable, but finite process. Our dead-end
journey on this planet begins from the moment we are born. In
the famous 1955 play Auto da Compadecida, by the late Ariano
Suassuna, the character Chic�o says about his friend's death:
“Cumpriu sua sentença e encontrou-se com o único mal irre-
medi�avel, aquilo que �e a marca de nosso estranho destino sobre a
terra, aquele fato sem explicaç~ao que iguala tudo o que �e vivo num
s�o rebanho de condenados, porque tudo o que �e vivo morre”;
translated from the Portuguese this means: “He fulfilled his sen-
tence and met with the only irredeemable evil, which is the mark
of our strange destiny on Earth, that unexplainable fact that
equates all living beings into a flock of convicts, because all that is
alive dies”. When Chic�o (the most cowardly of men and an insa-
tiable liar) said “all that is alive dies” he was fatally telling the
truth. Although we may be living shorter lifespans than we could
(Werfel et al., 2015), nobody lives forever. But even if life is finite,
our existence is still an intriguing, unpredictable process. Indeed,
improvements in healthcare practices, nutrition, housing, sani-
tation, working conditions, and efforts towards a more universal
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access to healthcare have greatly increased our lifespan in the past
centuries, even in developing countries (Atun et al., 2015). We are
living more, but we want to live better.

The life of any living creature on Earth is influenced by the
climate. Plants, terrestrial mammals, birds, reptiles, fishes, insects
and other invertebrates are all influenced and, to some extent,
dependent on climate. Earth's climate used to be cooler than today.
Since the end of the last ice age (10,000 years ago), we have lived in
a relatively warm period with stable carbon dioxide concentration.
Over the last 200 years, the rate of carbon dioxide accumulation
due to our emissions has increased to unprecedented levels (http://
www.theccc.org.uk/). This is amplifying the natural greenhouse
effect and contributing to changes in the Earth's climate, including
atmospheric and oceanic warming (Shevenell et al., 2011).

The future of the Earth's climate is uncertain in the long term.
Hence, the impact of climate change on biodiversity and on tick-

borne diseases at local to global scales is unpredictable. Some
causes and consequences of climate may vary in space and time,
sometimes being reversible. Can we slow down our unsustainable
population growth through family planning? Can we reduce our
greenhouse gas emissions by exploring alternative, renewable en-
ergy sources? Can we reforest and re-wild the world? Will this
positively influence our existence on this planet?

The relationship between tick development rates and tem-
perature is nonlinear, as the relationship between entomological
measures of infection and human risk of vector-borne diseases
(Hollingsworth et al., 2015). Moreover, there are also several
methodological caveats (e.g., use of inadequate environmental
variables, differences between real and visible tick populations)
that should be taken into account while developing models to
investigate tick responses to changes in climate and host densities
(Dobson, 2014a; Estrada-Pe~na et al., 2014a, 2015). Further studies
are needed to investigate the complex relationships between
landscape, climate, host communities (biodiversity), tick demog-
raphy (see Balashov, 2012), pathogen diversity, human demog-
raphy, human behaviour, economics, politics, and human
exposure to pathogens, also considering all ecological processes
(e.g., trophic cascades) and other possible interactions (mutual
effects of increased greenhouse gas emissions and increased
deforestation rates). The elevated number of variables and of
interacting factors involved and their complexity make tick-borne
pathogen transmission systems beyond (current) human
comprehension (Box 1).

Strong commitment of scientists and professionals from
different disciplines (e.g., medicine, veterinary, parasitology,
biology, ecology, epidemiology, statistics, geography, physics,
mathematics, and anthropology) will be needed to address tick-
borne diseases from a broad perspective. It may be anticipated
that warmer winters and extended autumn and spring seasons will
continue to drive the expansion of the distribution of some tick
species (e.g., I. ricinus) to northern latitudes and to higher altitudes.
Livestock movements will also play a role in the latitudinal
dispersion of ticks in some areas (Fig. 6). Nonetheless, it remains
unclear whether and to what extent climate change will influence
the upsurge of tick-borne diseases in new areas and/or their re-
emergence in core endemic areas. Certainly, other factors such as
urbanization, population growth, economic downturn, and political
crisis (Sumilo et al., 2008; Godfrey and Randolph, 2011) should also

Box 1

The big data of tick-borne diseases

The amount of knowledge of different aspects related to

pathogens, hosts and vectors accumulated over the half

past century is incalculable. Several molecular aspects

involved in the vector-pathogen-host triad have been deci-

phered. But the more we know, the more we need to know.

Let memake a point here. The relationship between climate

and vectors, such as ticks and mosquitoes is relatively well

known, right? The relationship between biodiversity loss

and increased transmission risk of several infectious dis-

eases is recognized, as well. However, all of this is just part

of a much bigger picture that involves complex micro and

macro-processes, starting from intimate interactions be-

tween pathogen, vectors and host molecules, and finishing

in the whole Earth ecosystem. Imagine a single Lyme dis-

ease spirochete Borrelia burgdorferi (with its genome,

transcriptome and proteome). Then, imagine a blacklegged

tick Ixodes scapularis (with its genome, transcriptome and

proteome) that is infected by millions of B. burgdorferi

spirochetes and other bacterial organisms. Now, consider a

population of blacklegged ticks (different developmental

stages, different feeding status, infection rates by different

pathogens) in a forested area and its host communities

(e.g., mice, birds, deer, foxes, wolves, lizards) with varying

susceptibility to B. burgdorferi. Imagine the whole forest

ecosystem and relevant ecological processes going on

(e.g., trophic cascades). Add human pressure (e.g., defor-

estation, fruit harvesting, hunting, road construction, land

use). Imagine that this forest belong to a municipality.

Consider the whole infrastructure (e.g., roads, cars, power

stations, transmission networks, houses, schools, hospi-

tals) and features of the human population (e.g., culture,

education, work activities, socioeconomic conditions, pub-

lic health policy). Considering all this together (and perhaps

other aspects that we may be less aware at present) and

their possible dynamical interactions, a complete under-

standing of all aspects involved in the transmission dy-

namics of tick-borne pathogens is possibly beyond current

human capabilities. Additional knowledge on ticks, ani-

mals, pathogens and their interactions with the whole

ecosystemwill be needed and, perhaps, new developments

in the field of bioinformatics to analyse simultaneously

such a big amount data in a comprehensive way.
Fig. 6. Podolica cattle in the Gallipoli Cognato Regional Park, Basilicata, southern Italy.

These cattle move freely within the park's territory, helping in disseminating Ixodes

ricinus to different altitudes (from 200 m to over 1000 m).
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be considered while assessing this multifaceted problem. Further-
more, it is now more evident than ever that biodiversity loss may
increase disease risk (see Civitello et al., 2015). Therefore, humans
have now another relevant reason for conserving wildlife.

Human development is transforming most of Earth's natural
systems, but the health impacts of ecosystem alteration are still
poorly understood (reviewed in Myers et al., 2013). Human
behaviour is also a strong determinant of environmental health,
animal health and human health. With regard to tick-borne dis-
eases, changes in human behaviour may result in diverging out-
comes in terms of transmission risk. Even if general conditions are
favourable to transmission in a given region, the avoidance of tick-
infested habitats by people could change the outcome of the
transmission risk model. Likewise, even if a person bitten by a tick,
the rapid removal of this tick may reduce the transmission risk to
near zero.
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