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Climate change impact on flood 
and extreme precipitation 
increases with water availability
Hossein Tabari

The hydrological cycle is expected to intensify with global warming, which likely increases the 
intensity of extreme precipitation events and the risk of flooding. The changes, however, often differ 
from the theorized expectation of increases in water‐holding capacity of the atmosphere in the 
warmer conditions, especially when water availability is limited. Here, the relationships of changes 
in extreme precipitation and flood intensities for the end of the twenty-first century with spatial and 
seasonal water availability are quantified. Results show an intensification of extreme precipitation and 
flood events over all climate regions which increases as water availability increases from dry to wet 
regions. Similarly, there is an increase in the intensification of extreme precipitation and flood with the 
seasonal cycle of water availability. The connection between extreme precipitation and flood intensity 
changes and spatial and seasonal water availability becomes stronger as events become less extreme.

Extreme precipitation is expected to intensify with global warming over large parts of the globe as the concen-
tration of atmospheric water vapour which supplies the water for precipitation increases in proportion to the 
saturation concentrations at a rate of about 6–7% per degree rise in temperature according to the thermodynamic 
Clausius–Clapeyron  relationship1–3. However, changes in atmospheric dynamics such as poleward expansion 
of tropical Hadley circulation can  weaken4–6 or  reinforce7 the thermodynamic e�ect regionally and modify 
the extreme precipitation ampli�cation. Water availability also plays a large role in the moisture–temperature 
 relationship8.

Due to di�erent interacting drivers of extreme precipitation changes, the changes are not uniform in space 
and vary by  region9. �e scaling rate of extreme precipitation with land surface temperature is not accordingly 
constant. Even a negative scaling at higher temperatures has been observed in some  places10, which has been 
suggested to be a result of limited moisture  availability11 or arid surface  conditions12. Whereas in wet regions 
ampli�ed atmospheric moisture convergence can intensify the e�ects of extreme precipitation, in dry environ-
ments precipitation increases may be counteracted by  evaporation13. Recent studies have examined daily extreme 
precipitation changes in relation to water availability and found that 30-year averaged annual precipitation 
maxima aggregated over the dry and wet regions of the world is likely to  increase14,15. As rarer precipitation 
events are expected to be more in�uenced by climate  change7,16,17 and scale with vertical moisture transport 
rather than horizontal moisture  advection6, it remains unresolved whether the relationships between extreme 
precipitation changes and water availability can also be detectable for rare �ood-producing precipitation events.

Using gridded observations in Europe, a positive scaling rate of extreme precipitation with temperature in 
winter and a negative one in summer has been  reported18. �is raises the question of whether extreme precipita-
tion changes have any relation with the seasonal cycle of water availability in a similar fashion as regional water 
availability. Understanding of the relationships between the climate change impact on extreme events and water 
availability is essential in the future-proofed planning for global change in di�erent climate regimes to ensure a 
sustainable socioeconomic development at the regional scales.

Extreme precipitation ampli�cation may increase the intensity and frequency of �ooding, imposing heavy 
costs to aquatic and terrestrial ecosystems, human societies and the economy. Changes in �ood characteristics 
not only depend on the spatial distribution, time evolution and rarity of  precipitation19, but on antecedent soil 
moisture conditions and in snow-dominated regions on snowmelt  timing20 and snowpack  magnitude21. Global-
scale �ood assessments have reported both decreases and increases in future �oods under global  warming22–25, 
albeit by using varying hydrological and climate models, scenarios, bias-correction methods and �ood indicators 
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which hinders drawing a common perspective of future �ood  changes26. Changes in soil moisture and runo� 
have been shown to correlate well with changes in climatic moisture at the regional  scale27,28. More signi�cant 
changes have also been found in observed annual maximum �ows in wet regions than in dry  regions29. �is is 
because in the former a higher fraction of precipitation changes leads to runo� changes, while in the latter a large 
bu�er is available to dampen precipitation changes causing smaller runo�  changes30–32. Owing to the complex 
mechanisms of �ood changes, it is not known whether relationships between extreme precipitation changes and 
water availability can be generalized for �ood changes.

Here, the relationships of future changes in extreme precipitation and �ood intensities with water availability 
are analyzed. Extreme precipitation changes per K global warming in 2070–2099 under the RCP8.5 scenario 
compared with 1971–2000 are computed using simulations of 24 global climate models (GCMs) from the Cou-
pled Model Intercomparison Project Phase 5  (CMIP533) and �ood changes using simulations from multi-model 
ensemble of �ve global impact models (IMs) and four CMIP5 GCMs (20 IM-GCM combinations) from the 
Inter-Sectoral Impact Model Intercomparison Project  (ISIMIP34). �e climatological water availability is deter-
mined based on the aridity index (AI), as the ratio between potential evapotranspiration (water demand) and 
precipitation (water supply), for historical and future simulations of individual CMIP5 models (see “Methods” 
for details). It ensures that the expected changes in the geographical location of the climatic regions with global 
warming and the discrepancy among models are taken into account.

Results and discussion
Relationships of flood and extreme precipitation changes with spatial water availabil-
ity. Based on the ensemble median of the CMIP5 GCMs, water-limited regions are mainly located in North 
Africa & the Middle East (MENA) and Australia, while water-abundant regions are located in the mid-latitudes 
and the tropics (Fig. 1a). About 72% of the global land is likely to undergo aridi�cation in the future, with sub-
stantial aridi�cation (aridity increase of > 30%) in MENA, south Europe, south Africa and Australia (Fig. S3), 
leading to a shi� in climate regimes (Fig.  1b). Globally, arid and semi-arid regions would expand by 10.3% 
and 9.9%, respectively, while humid and semi-humid regions would decrease by 2.3% and 4.9%, respectively 
(Fig. 1c). It makes the area coverage of humid, semi-humid, semi-arid and arid climates at the end of the twenty-
�rst century equal to 55%, 20%, 11% and 14% of the total terrestrial land area, respectively (Fig. 1d).

Figure 1.  Aridity index and its expected future changes. (a,b) Spatial distribution of ensemble median aridity 
index and �ve climate regimes based on the aridity index of the (a) historical (1971–2000) and (b) future 
(2070–2099) climates. (c) Projected change in area coverage of each climate regime for the period 2070–2099 
with respect to the reference 1971–2000 (salmon dots, individual models); ensemble median is shown by black 
cross and number at the top. (d) Ensemble median projected area coverage of each of the �ve climate regimes 
in percent of total terrestrial land area for 2070–2099. �e maps were generated using the MATLAB mapping 
 toolbox65 (URL https ://www.mathw orks.com/produ cts/mappi ng.html).

https://www.mathworks.com/products/mapping.html
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�ere is a consistency between most CMIP5 GCMs on the geographical distribution of climate regimes 
(Figs. S4 and S5). IPSL models are the ones with the largest di�erence from the other models, which simulate 
much larger water-limited regions. Because of this discrepancy among GCMs on the location of di�erent cli-
mate regimes as well as the expected shi� in the regimes in the future, the relationships of extreme precipitation 
and �ood changes with water availability are investigated based on model-speci�c masks of dynamic (future) 
climate regimes.

�e spatial distribution of changes in 1-in-30-year extreme precipitation intensity shows that extreme pre-
cipitation increases uniformly across all the climate regimes (Fig. 2), in agreement with previous �ndings for rare 
extreme  events35,36. Precisely, 99.9%, 99.8%, 99.3% and 98.7% of land area respectively in humid, semi-humid, 
semi-arid and arid regions show an increase in extreme precipitation intensity (Fig. 2). �ere is, nevertheless, 
a substantial uncertainty in the multi-model median changes in Latin America, Africa, the Middle East and 
Australia (Figs. S5 and S7a). �is is in line with the uncertainty hotspots of less extreme precipitation identi�ed 
in earlier  studies9. A large uncertainty in the uncertainty hotspots has been attributed to the convective nature 
of rainstorms which cannot be adequately represented and resolved by coarse-scale GCMs, and to a sparse 
observational network which hinders the tuning and improvement of GCMs over these  regions9.

As the particular focus of this study is to investigate extreme precipitation and �ood changes with water 
availability, changes are analyzed with respect to global climate regimes. Extreme precipitation in humid regions 
increases with global warming (6.31%/K) at the Clausius–Clapeyron rate (Fig. 2e). �e extreme precipitation 
increase in humid regions is signi�cant at the 5% level and robust where the increasing signal is projected by 92% 

Figure 2.  Changes (%) in 1-in-30-year extreme precipitation intensity per K global warming in 2070–2099 
under RCP8.5, compared with 1971–2000. (a–d) Spatial distribution of ensemble median changes in (a) humid, 
(b) semi-humid, (c) semi-arid and (d) arid regions. (e) Changes per climate regime based on individual models 
(salmon dots). For each violin, ensemble median is shown by black cross. �e numbers on top of the violins (top 
row) indicate ensemble median and those in bold face and italic denote signi�cant changes at the 95% and 90% 
con�dence levels, respectively. �e numbers in brackets indicate the percentage of experiments that agree on 
the sign of change (robustness). �e maps were generated using the MATLAB mapping  toolbox65 (URL https ://
www.mathw orks.com/produ cts/mappi ng.html).

https://www.mathworks.com/products/mapping.html
https://www.mathworks.com/products/mapping.html
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of the GCMs. For semi-humid regions, the increase is smaller at the rate of 5.89%/K which is signi�cant at the 
5% level and robust (88% of the GCMs). Moving towards more water-limited regions, the extreme precipitation-
temperature scaling rate further decreases; 5.62 and 5.45%/K for semi-arid and arid regions, respectively. �e 
extreme precipitation increase is signi�cant and robust for both semi-arid and arid regions, although with a 
lower level of robustness and signi�cance. In the mid-to-high latitudes which occupy a large portion of global 
humid and semi-humid regions, extreme precipitation changes are mainly controlled by the thermodynamic 
 e�ect4–6. In low latitudes where most arid regions are located, the intensifying tendency of extreme precipitation 
originating from thermodynamics is o�set by the dynamic  e�ect4–6.

�e total uncertainty in extreme precipitation changes indeed depends on climatic regime and increases with 
decreasing water availability (Fig. S8a,c). Earlier studies have also found a larger spread of extreme precipitation 
changes in dry regions compared wet  regions14,37. �e increasing total uncertainty with decreasing water avail-
ability is attributed to the increasing trend of both its components (GCM and hazard quanti�cation method); 
however, the GCM uncertainty has a much larger contribution in all regions.

Flood intensity is projected to increase over most areas of the globe (Fig. 3), with a large uncertainty in some 
places (Figs. S7b and S10). 75.9% of land area in humid regions shows an increase in �ood intensity, while semi-
humid and semi-arid regions show a lower percentage of land area with increasing �ood intensity, accounting 
for 68.7% and 63.4%, respectively (Fig. 3). Flood changes follow the extreme precipitation change direction 
over regions where precipitation plays the dominant role in �ood occurrence; however, inconsistent changes are 
found where there are other �ood generating factors in play (Fig. S10). Decrease in �ood intensity is observed 
in snow dominated regions (e.g., North and Central Europe) where spring snowmelt is decreasing under global 
 warming38 or in regions (e.g., Mediterranean) where annual precipitation is projected to  decrease39,40 and where 
antecedence soil moisture plays a signi�cant role in �ood  generations19,41.

Aggregated over di�erent climate regimes, broadly similar pattern to extreme precipitation changes is 
obtained for �ood changes where �ood intensity increases in all climate regimes with the magnitude increasing 
with water availability (Fig. 3d). As most of arid regions are masked out for the �ood analysis, the relationship of 
�ood changes with water availability is examined by comparing the results among humid, semi-humid and semi-
arid climate regimes. Flood intensity increases at the rates of 5.07, 3.63 and 3.12%/K for humid, semi-humid and 
semi-arid climate regions, respectively. �e increase for all regions is signi�cant and robust with an agreement 
among > 75% of the experiments. �e uncertainty in projected �ood intensity changes increases as the climate 
gets drier (Fig. S8b,d). It highlights the necessity of using large multi-model ensembles including multiple impact 
models forced by several climate models for hydrological climate change analyses in drier regions. For all climate 
regimes, GCMs are the main contributor to the �ood change uncertainty, while hazard quanti�cation methods 
have the lowest contribution. IM uncertainty in humid regions is larger than global average IM uncertainty. �e 

Figure 3.  Changes (%) in 1-in-30-year �ood intensity per K global warming in 2070–2099 under RCP8.5, 
compared with 1971–2000. (a–c) Spatial distribution of ensemble median changes in (a) humid, (b) semi-humid 
and (c) semi-arid regions. (d) Changes per climate regime based on individual experiments (salmon dots). For 
each violin, ensemble median is shown by black cross. �e numbers on top of the violins (top row) indicate 
ensemble median and those in bold face and italic denote signi�cant changes at the 95% and 90% con�dence 
levels, respectively. �e numbers in brackets indicate the percentage of experiments that agree on the sign of 
change (robustness). Grid cells with annual maxima close to 0  m3 s−1 of the historical model period are screened 
out. �e maps were generated using the MATLAB mapping  toolbox65 (URL https ://www.mathw orks.com/produ 
cts/mappi ng.html).

https://www.mathworks.com/products/mapping.html
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dominance of the GCM uncertainty corroborates the �ndings of Hagemann et al.42 and Giuntoli et al.43 who 
showed a larger contribution of climate model uncertainty compared to global hydrological models.

�e results also show that using the median ensemble mask of climate regimes instead of model-speci�c 
masks and assuming static climate regimes instead of dynamic ones would lead to bias in extreme precipitation 
and �ood intensity changes for di�erent climate regions (see Texts S3 and S4 and Figs. S11 and S12 for more 
details). �e bias increases towards drier climates and is larger in the case of using the median ensemble mask 
of climate regimes compared to static climate regimes.

Relationships of flood and extreme precipitation changes with the seasonal cycle of water 
availability. It is also of interest to understand how extreme precipitation and �ood changes would vary with 
the seasonal variation of water availability. Because there is little land in the Southern Hemisphere mid-latitudes, 
the seasonal analysis is limited to the Northern Hemisphere mid-latitudes with a strong seasonal cycle of water 
availability. Similar to the relationships with the spatially-varying water availability over the globe, extreme pre-
cipitation changes have a clear connection with seasonal water availability (Fig. 4a). During the wet season when 
there is a moisture surplus, extreme precipitation increases get close to or exceeds the Clausius–Clapeyron rate, 
while the increase is smaller during the dry season. �e extreme precipitation signi�cantly and robustly increases 
in DJF (December–January–February), SON (September–October–November), MAM (March–April–May) and 
JJA (June–July–August) at the rates of 7.26, 6.70, 5.98 and 4.95%/K, respectively. A similar seasonal water avail-
ability dependence of changes is obtained for �ood intensity (Fig. 4b). While small and insigni�cant �ood inten-
sity increases of 0.89 and 1.16%/K respectively are seen for JJA and MAM, the increase gets as large as 5.90 and 
9.53%/K in SON and DJF, respectively.

Response of precipitation and flood extremity to water availability. In order to explore the 
response of precipitation and �ood extremity to the spatial and seasonal variations of water availability, all the 
analyses are repeated for less extreme precipitation and �ood events with return periods ranging from 2 to 
29 years. �e less the extreme precipitation, the stronger the relationship of the changes with water availability 
(Fig. S13). �e slope of changes with spatial water availability (from humid to arid regions) decays faster with 
precipitation extremity than that with seasonal water availability (from DJF to JJA). Similar to extreme precipita-
tion, a weaker change relationship with spatial water availability is found for rarer �ood events. �e relationship 
of �ood changes with seasonal water availability is, however, independent of �ood extremity.

Extreme precipitation and �ood changes in di�erent climate regions converge for more extreme events, due 
to a faster increment of the increases with event extremity in drier climates (Fig. 5). �e thermodynamic factors 
play the main role for more extreme precipitation  changes44, while for less extreme events dynamic factors are 
also responsible for regional precipitation changes which may weaken the thermodynamic  e�ect4–6. In a similar 

Figure 4.  Changes in 1-in-30-year (a) extreme precipitation and (b) �ood intensity per season (salmon dots, 
individual models) in the Northern Hemisphere mid-latitudes. For each violin, ensemble median is shown by 
black cross. �e numbers on top of the violins (top row) indicate ensemble median and those in bold face and 
italic denote signi�cant changes at the 95% and 90% con�dence levels, respectively. �e numbers in brackets 
indicate the percentage of experiments that agree on the sign of change (robustness).
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manner, extreme precipitation changes in di�erent seasons converge for more extreme events, because of a faster 
increment of the increases with event extremity in drier seasons (Fig. 5).

In terms of the area coverage of increasing signals, while the percentage of wet land areas (humid and semi-
humid regions) with an increasing intensity signal of extreme precipitation remain almost constant when events 
become more extreme, the percentage area noticeably increases with event extremity in drier regions (e.g., from 
51.9% for 1-in-2-year events to 98.7% for 1-in-30-year events in arid regions) (Fig. S14). Likewise, the percent-
age area of drier regions with an increasing �ood intensity signal rises larger with event extremity: 20% area 
increase from 1-in-2-year events to 1-in-30-year events in semi-arid regions versus 11% and 5% area increases in 
semi-humid and humid regions, respectively (Fig. S14). A similar pattern is found in the seasonal analysis where 
a larger increment of the land area of increasing signals with event extremity is seen in dry season compared 
to wet season: from 83% (71%) for 1-in-2-year extreme precipitation to 96% (77%) for 1-in-30-year extreme 
precipitation (�ood) in DJF as opposed to from 73% (42%) for 1-in-2-year extreme precipitation to 95% (56%) 
for 1-in-30-year extreme precipitation (�ood) in JJA (Fig. S15). For more extreme events, the changes in �ood 
intensities better follow the pattern of the extreme precipitation changes. �is is because, for more extreme events, 
�ood timing is more likely to correspond to rainfall timing, while for less extreme events it is more in�uenced 
by soil moisture  timing45.

Conclusions
�e results of this study suggest that changes in �ood and extreme precipitation intensities in response to global 
warming are signi�cant and robust when aggregated over di�erent climate regions. Regionalization of the changes 
decreases the large noise of extreme events at local scale, leading to more robust results. �e increase in extreme 
precipitation and the expected decrease in total precipitation in dry  regions46,47 supports “it never rains, but it 
pours”  pattern48 in these regions. �e results show a clear connection of the �ood and extreme precipitation 
changes with spatial and seasonal water availability, pointing to a larger increase for the regions and seasons with 
higher water (moisture) availability. Limited climatological water availability in dry environments may o�set 
extreme precipitation increases, while in water-abundance conditions ampli�ed atmospheric moisture conver-
gence can intensify the e�ects of extreme  precipitation13. �is suggests that attention should be paid not only on 
how much water the atmosphere can hold, but on how much water is available in the �rst place.

�e �ood changes in this paper are computed using two hazard quanti�cation methods based a multi-model 
ensemble of 20 members including four GCMs and �ve IMs. Although it covers some important sources of 
uncertainty especially possible underestimation of �ood changes from a single hydrologic  model23, there exist 
other uncertainty sources related to the choice of hydrological model parameters, bias-correction approaches 
and downscaling methods which may further expand the uncertainty range. Moreover, the subset of four GCMs 

Figure 5.  Intensity changes in (a,c) extreme precipitation and (b,d) �ood events with return periods ranging 
between 2 and 30 years per (a,b) climate regime and (c,d) season based on multi-model ensemble median. �e 
changes per seasons are computed for the Northern Hemisphere mid-latitudes.
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used as the climate forcing in the ISIMIP IMs may underestimate the full uncertainty in extreme precipitation 
projections from the CMIP5 ensemble (Fig. S16). �e uncertainty associated with the hazard quanti�cation meth-
odology, less quanti�ed in previous studies, is particularly important in arid regions and needs to be included 
in future climate change assessments on extreme events.

Methods
Data overview. Daily precipitation simulations from 24 Coupled Model Intercomparison Project Phase 
5  (CMIP533) GCMs for the historical period 1971–2000 and the future period 2070–2099 forced by Repre-
sentative Concentration Pathway (RCP) RCP8.5 scenario are utilized: ACCESS1-0, ACCESS1-3, CanESM2, 
CMCC-CESM, CMCC-CM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, GFDL-ESM2G, 
GFDL-ESM2M, HadGEM2-AO, HadGEM2-CC, Had-GEM2-ES, INMCM4, IPSL-CM5A-LR, IPSL-CM5AMR, 
IPSL-CM5B-LR, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3. 
�e �rst initial condition run (r1) of each CMIP5 GCM is considered to ensure equal weighting of all models in 
a multi-model ensemble median. Monthly maximum, mean and minimum temperature data for the historical 
and RCP8.5 simulations from the same GCMs are also used for climate classi�cation and global warming esti-
mation. �e selection of the CMIP5 GCMs is made based on the availability of daily precipitation and monthly 
temperature data for historical and RCP8.5 simulations. �e simulations of the 24 CMIP5 GCMs used in this 
study are of varying spatial resolutions (0.75°–3.75°). �ey are therefore resampled to a common 0.5° × 0.5° grid 
to match the spatial resolution of the discharge data. In order to minimize errors in the calculation of extreme 
precipitation  changes49, the changes are �rst computed on native model grids and then are interpolated to the 
common grid using the bilinear interpolation method. It was shown that the resampling results are not sensitive 
to the choice of the interpolation method and of the common grid  size9. �e extreme precipitation analyses are 
restricted to all land grid cells where the impact of changes is predominantly felt.

In the Inter-Sectoral Impact Model Intercomparison Project  (ISIMIP34) framework, four of the CMIP5 
GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5) were downscaled by a trend-preserving 
 method50 and used as the climatic forcing to simulate daily discharge. Global daily discharge simulations from 
�ve impact models (IMs) including three global hydrological models  (H0851,  MATSIRO52 and  WaterGAP253), 
one global land surface model (CLM4.554) and one dynamic global vegetation model  (LPJmL55) with 0.5° spatial 
resolution for the historical period 1971–2000 and the future period 2070–2099 under RCP8.5 scenario are used. 
All IMs were setup using the same soil, land cover and morphologic data such that discrepancies among them 
is only due to their di�erent process representations. �e simulations with a varying land use and other human 
in�uences over the historical period (“histsoc” experiment) and then �xed at 2005 levels for the future period 
are used for all the IMs except CLM4.5 which uses �xed year-2005 socioeconomic conditions (“2005soc” experi-
ment) for both historical and future periods. �e preliminary analysis shows that the in�uence of socioeconomic 
scenarios on �ood intensity changes is minor (Fig. S1). Grid cells with annual maxima close to 0 m3 s−1 of the 
historical period are screened out for the further analysis, due to insu�cient data for distribution �tting and 
smaller importance for �ood analysis. �e high latitude area in the Southern Hemisphere (> 60°S) which it is 
almost uninhabited and not subject to �ooding is also excluded.

Quantification of climate change signals. A 30-year return level of precipitation and river �ow (aver-
age occurrence of once every 30 years) at each grid cell is used as the indicator of extreme precipitation and 
�ooding. To this end, annual maxima time series of extreme precipitation and �ow for each grid cell are derived 
for both historical and future periods. �e generalized extreme value distribution (GEV) is �tted to the annual 
maxima series on the native grids of each model. �e GEV distribution is characterized by three parameters 
including location (µ; describing the center of distribution), scale (σ; describing the deviation around the mean) 
and shape ( ξ ; describing the tail behavior of the distribution) of the distribution. According to the shape param-
eter, three extreme distributions are de�ned as Fréchet, Gumbel and Weilbull corresponding to ξ > 0, ξ = 0 and 
ξ  <  0, respectively. To quantify the uncertainty associated to the hazard quanti�cation method, the extreme 
precipitation and �ood hazards are also determined using the peak-over-threshold (POT) method with a Gen-
eralized Pareto Distribution (GPD). �e GPD distribution is also characterized by the location, scale and shape 
parameters and it leads to Pareto, Exponential and Beta distributions for ξ > 0, ξ = 0 and ξ < 0, respectively. �e 
GEV and GPD parameters are estimated using the maximum likelihood method.

Changes in extreme precipitation and �ood intensities are de�ned as the ratio between the intensities of the 
end twenty-�rst century (2070–2099) and the end twenty century (1971–2000). To accounts for the e�ect of 
di�erent climate sensitivities of the CMIP5 GCMs, extreme precipitation and �ood changes of individual GCMs 
are scaled by their changes in global average surface air temperature (Fig. S2) to derive units of %/K. Change in 
global average surface air temperature is calculated by comparing the 30-year global average annual temperature 
between the historical period 1971–2000 and the future period 2070–2099 under RCP8.5 scenario.

Association of changes with water availability. To investigate the relationships of the changes in 
extreme precipitation and �ood intensities with climatological water availability, the climatological water avail-
ability of each grid of the CMIP5 models for historical (1971–2000) and future (2070–2099) periods is deter-
mined based on the aridity index (AI). AI is calculated as the ratio between potential evapotranspiration (PET; 
water demand) and precipitation (P; water supply): AI = PET/P. �e grids with AI < 1 are classi�ed as humid, 
1 ≤ AI < 2 as semi-humid, 2 ≤ AI < 5 as semi-arid and AI ≥ 5 as  arid56,57. PET is computed by the Hargreaves–
Samani  method58 which e�ectively incorporates solar radiation by its indirect estimation from minimum and 
maximum temperatures. �e use of both minimum and maximum temperature avoids the PET overestimation 
in dry and hot climates by methods based on only mean temperature such as the �ornthwaite  method28,59,60. To 
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investigate the possible impact of climate change on climate regimes (aridity classi�cations), the change in the 
area of each class (% of total terrestrial land area) is calculated. Once the spatial distribution of the global climate 
regimes is acquired, the median change of extreme precipitation and �ood intensity for each climate regime is 
determined.

�e signi�cance of the changes is assessed per climate regime using the signal-to-noise (S2N) ratio. In this 
way, the large internal variability of extremes at local  scale61,62 can be decreased, leading to more robust regional 
 results63. For extreme precipitation intensity, S2N is computed by dividing the ensemble median of changes across 
the 24 GCMs by the standard deviation of the multi-model changes. For �ood intensity, S2N is calculated �rst 
across all GCMs for each individual IM per climate regime and then the median across all IMs is considered as 
S2N per climate regime. A signal is signi�cant at 90% and 95% con�dence levels when S2N is larger 1.64 and 
1.96, respectively. A similar procedure is applied for the robustness of the changes in extreme precipitation and 
�ood intensity where change for each climate regime is considered robust when at least 75% of experiments 
agree on the sign of the change.

Assessment of uncertainty sources. �e uncertainty in the projected changes in the intensity of extreme 
precipitation and �ood events is also quanti�ed for each model grid. �e extreme precipitation and �ood ensem-
bles include 48 (2 methods × 24 GCMs) and 40 (2 methods × 4 GCMs × 5 IMs) experiments, respectively. �e 
total uncertainty of �ood changes expressed as the coe�cient of variation (CV) of the changes across the full 
ensemble is decomposed into hazard quanti�cation method, GCM and IM uncertainties, while that of extreme 
precipitation changes is split into hazard quanti�cation method and GCM uncertainties. �e uncertainty for the 
components with a larger sample size tends to be larger than those with a smaller sample  size64. To limit this bias, 
the variance decomposition-same sample size (VD-SSS9) method is employed for the uncertainty quanti�cation 
of the GCM and IM components with larger sizes, while the conventional variance decomposition (VD) method 
is applied for the hazard quanti�cation method uncertainty. �e VD-SSS method uses an iterative sampling-
theory based bootstrapping procedure where a sample of size n (equal to the smallest sample size among the 
uncertainty components) is �rst drawn randomly from the full population of size N (e.g., 24 for GCMs). �e 
CV across the bootstrap samples is then estimated. �is procedure is repeated a large number of times (1,000 
iterations in this study) and the median of the empirical bootstrap distribution of sample CV denotes the uncer-
tainty. To understand how uncertainty di�ers between climate regions, both total and fractional uncertainties 
are computed per climate regime.
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