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Abstract. This paper presents a first attempt to estimate fu-

ture groundwater levels by applying extreme value statis-

tics on predictions from a hydrological model. Climate sce-

narios for the future period, 2081–2100, are represented by

projections from nine combinations of three global climate

models and six regional climate models, and downscaled

(including bias correction) with two different methods. An

integrated surface water/groundwater model is forced with

precipitation, temperature, and potential evapotranspiration

from the 18 models and downscaling combinations. Extreme

value analyses are performed on the hydraulic head changes

from a control period (1991–2010) to the future period for

the 18 combinations. Hydraulic heads for return periods of

21, 50 and 100 yr (T21−100) are estimated. Three uncertainty

sources are evaluated: climate models, downscaling and ex-

treme value statistics. Of these sources, extreme value statis-

tics dominates for return periods higher than 50 yr, whereas

uncertainty from climate models and extreme value statistics

are similar for lower return periods. Uncertainty from down-

scaling only contributes to around 10 % of the uncertainty

from the three sources.

1 Introduction

Climate change adaptation is an increasingly recognized

component in planning of infrastructure development. Infras-

tructures, such as roads, are designed to be able to withstand

extreme hydrological events. Opposite to water resources as-

sessment, analyses of groundwater head extremes are highly

relevant for roads in contact or close to groundwater tables

since groundwater flooding and drainage issues can compro-

mise the use of the road. Hydrological extreme events have

commonly been estimated from historical data, but the evi-

dence of a changing climate implies that estimates of future

climatic conditions should be used instead. Estimates of fu-

ture temperature and precipitation can be generated by global

climate models (GCMs) with grid resolutions of typically

200 km. This resolution is too coarse for further application

in hydrological models (Fowler et al., 2007), thus downscal-

ing to a more local scale is necessary either by dynamical

downscaling to regional climate models (RCMs) or by sta-

tistical downscaling. The inherent uncertainty in the climate

models (CMs) should carefully be considered because this

is possibly the largest source of uncertainty in hydrologi-

cal climate change studies (Allen et al., 2010). Hawkins and

Sutton (2011) analysed the uncertainty cascade for projec-

tions of precipitation from a GCM ensemble. For precipita-

tion, they concluded that relative to emission scenario uncer-

tainty, natural climate variability and climate model uncer-

tainty dominated, even at the end of the 21st century. For hy-

drological models, precipitation and temperature are driving

parameters and therefore the response of the uncertainty for

these parameters should be shown in the hydrological model

predictions. One way to do this is via a probabilistic mod-

elling approach with multiple climate models (e.g. Tebaldi et

al., 2005; Smith et al., 2009; Deque and Somot, 2010; Sun-

yer et al., 2011). The impact of climate change related to

subsurface water has been considered in about 200 studies

according to a recent review by Green et al. (2011). Only a

few of these simulate groundwater conditions with a physi-

cally based groundwater flow model (e.g. Yosoff et al., 2002;

Scibek and Allen, 2006; van Roosmalen et al., 2007; Candela

et al., 2009; Toews and Allen, 2009). The general interest
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Fig. 1. Location of Silkeborg in Denmark (right) and the new motorway (left). (a) The motorway stretch where construction will be below

present ground level with a road surface around 6 m below surface. Zones are used for groundwater head analyses (Motorway stations). The

grey shaded polygons indicate paved ares. A geological cross section along the motorway from “a–a′” is shown in Fig. 2. (b) Denmark, and

location of Silkeborg and the Gudenå River. “a” indicated focus area shown to the left.

of these studies is water resources, where quantifications of

groundwater recharge and responding groundwater levels at

seasonal timescales are adequate. To the knowledge of the

authors, no reported studies have focused on extreme values

of groundwater heads under future climatic conditions. The

estimates of future groundwater head extremes would inherit

the key sources of uncertainty from the climate model pro-

jections, which are (i) climate models and (ii) downscaling

methods.

The use and concept of extreme value analysis (EVA) is

well known within the hydrological sciences. The design

of urban drainage systems are often planned to withstand

or handle an extreme rain event, which means that the ca-

pacity for routing drainage water is sufficient for a given

rain event, e.g. a 5 or 10 yr event. For example, at an urban

runoff system in Toronto, Canada, Guo and Adams (1998a)

compared volumes of runoff return periods for an analyt-

ical expression, based on exponential probability density

functions of rainfall event characteristics, with return peri-

ods from the Storm Water Management Model (SWMM).

In Guo and Adams (1998b), return periods for peak dis-

charge rates from the analytical model and SWMM were

compared. Bordi et al. (2007) used the generalised Pareto

distribution to analyse return periods of extreme values for

wet and dry periods in Sicily, Italy, using precipitation ob-

servations and a standardized precipitation index for wet-

ness and dryness. A peak over-threshold methodology was

used and spatial contour maps for return periods for the wet

and dry thresholds produced, based on data from 36 rain

gauges. Palynchuk and Guo (2008) used EVA statistics to de-

velop design storms, standardized distribution of rainfall in-

tensity with time, which conventionally are developed from

depth duration frequencies of rainfall, or storm event analy-

sis, where actual rainstorms are fitted to appropriate proba-

bility density functions. EVA has also been used in climate

change impact studies. Burke et al. (2010) applied EVA to

calculate drought indices for the UK, based on projections of

future precipitation and an observed baseline period. Return

periods for different drought indices were estimated with an

above-threshold concept using a generalised Pareto distribu-

tion. Sunyer et al. (2011) compared the distribution of ex-

treme precipitation events (> 25 mm day−1) from four pro-

jections of future climate at a location just north of Copen-

hagen, Denmark, with distributions derived from observed

precipitation, 1979–2007.

The lack of EVA for climate change studies of groundwa-

ter systems is concordant with the relatively few groundwa-

ter studies describing unusually high or groundwater flood-

ing events. The area of groundwater flooding received in-

creasing attention after flooding events in the winter–spring

2000–2001 from chalk aquifers in the UK and northern Eu-

rope (e.g. Tinch et al., 2004; Pinault et al., 2005; Morris et

al., 2007; Jackson et al., 2011; Upton and Jackson, 2011;

Hughes, 2011) but very few studies have dealt with ground-

water flooding in a frequency analysis context. One study

(Najib et al., 2008) developed a groundwater flood frequency

analysis method to estimate T-year hydraulic heads for a

given return period (T ). The tool was developed for a build-

ing construction project over a karstic aquifer in Southern

France where heavy rainfall induced a groundwater table rise

and thereby flooding. EVA is not only relevant when consid-

ering high groundwater levels causing flooding, but is very

relevant to estimate drought conditions in terms of return

periods for low groundwater conditions.

The objectives of this study are to: (1) investigate the im-

pacts of climate change on extreme groundwater levels in
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relation to infrastructure design; and (2) assess the uncer-

tainty of extreme groundwater level estimates considering

the key sources of uncertainties on the future climate.

2 Study area

The study area is located at the city of Silkeborg in the cen-

tral part of Jutland, Denmark (Fig. 1). The area is domi-

nated by deeply incised valleys formed during melt off from

the glacial retreat of the North-east and the Baltic ice sheets

16 000–18 000 yr ago. The subsequent Gudenå River system

flows through the city with a topography ranging from 20 to

95 m a.m.s.l. (meters above mean sea level). The area in fo-

cus is just north of the Gudenå River, in a part of Silkeborg,

where a new motorway is planned.

Toward the north-west, north and east, smaller Gudenå

River tributaries form natural hydrogeological boundaries.

Toward the west the land surface topography forms a ground-

water divide for the upper hydrogeological units and toward

the south the Gudenå River valley delineates the hydrologi-

cal model referred to as the Silkeborg model. The motorway

crosses the river valley at the location of the city, and there-

fore the road level is constructed 6 m below the land surface

topography, with a concrete bottom and vertical sheet piling

walls. The groundwater level of the shallow terrace aquifer

in the river valley is critically near to the road surface of the

motorway.

2.1 Hydrogeology

The near surface geology at Silkeborg is dominated by

glacial clayey tills in the upland areas. Thicknesses of these

are up to 35 m and mostly formed as lodgement tills below

Weichselian glaciers, when the main advance was located

west of Silkeborg before 18 000 yr ago. Below this, coarser

glacial sediments of sand and gravel form an upper uncon-

fined aquifer with thicknesses up to 50 m. This sand unit was

deposited during the retreat of former ice sheets, although

it is perturbed by clayey sediment, mostly in the lower part,

evidencing a more complex depositional history. The glacial

till and sand are not observed in the Gudenå River valley at

Silkeborg. In the valley, at least 3 erosional levels and fluvi-

atile sandy sediments are observed (terrace sediments). The

terrace sand was deposited when the glacial front had with-

drawn to east of Silkeborg and the Gudenå River system was

used as drainage for the melting ice to the Limfjord and later

on to Kattegat with connection to the North Atlantic (Fig. 1).

A geological cross section is shown in Fig. 2.

Below the Quaternary sediments, Oligocene and Miocene

mica clay, mica sand and quartz sand are found. These sedi-

ments are observed down to 80–100 m below mean sea level

where Eocene marls are found. In the eastern part of the

modelled area, buried valleys are included in the geologi-

cal model. The buried valleys are 6–8 km long, up to 1 km

 

a’) Fig. 2. Geological cross section along the planned motorway. Cross

section is along projected motorway (a-a′) shown in Fig. 1. Up-

per and lower mica sand are termed Mica sand 1 and Mica sand

2, respectively (individual parameters are found for these two units

during model calibration, described later).

wide, and eroded about 75 m into pre-Quaternary sediments

(Jørgensen and Sandersen, 2009). The valleys are possibly

backfilled with re-deposited Miocene sediments.

2.2 Hydrology

The humid climate in Denmark is dominated by the weather

systems of the North Atlantic and the European continent.

At the Jutland Peninsula, precipitation varies from coastal

zones to inland areas with around 200 mm yr−1. The highest

precipitation is found at the north–south trending topograph-

ical ridge just west of Silkeborg. The average precipitation at

Silkeborg during the period of 1961–1990 was 903 mm yr−1

with max. monthly values in November of 101 mm month−1

and min. amount in April of 50 mm month−1 (Scharling,

2000, with correction factors from B type shelter from

Allerup et al. (1998)). Average potential evapotranspiration

for the same period was 546 mm yr−1, with max. and min. in

July and December of 100 and 4 mm month−1, respectively

(Scharling, 2000). Average monthly temperature peaked in

July and August with 15.2 ◦C and had a low in January

and February of −0.3 ◦C (Scharling, 2000). These condi-

tions result in recharge of the groundwater aquifer during late

autumn, winter and early spring.

3 Methodology

The study applies EVA on model predictions of future

groundwater levels representing the period of 2081 to 2100.

The levels are extracted at a groundwater-sensitive part of the

planned motorway from an integrated groundwater–surface

water model. Results representing a historic baseline period

(1991–2010) and the future period (2081–2100) are com-

pared. Estimates of groundwater levels are produced with a

nested modelling approach, where a large regional model is

used to calculate boundary conditions (BC) for a local model
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Fig. 3. Set-up of nested model approach with the regional DK-

model Area 5.

at Silkeborg. Although this approach doubles the number of

model runs and data processing, it supplies the primary local

model with more realistic BCs for the simulations represent-

ing the future (Toews and Allan, 2009). In recent studies the

MIKE SHE code (Abbott et al., 1986; Refsgaard and Storm,

1995) has been used to evaluate the effect on surface and

sub-surface hydrology by climate change (van Roosmalen et

al., 2007, 2009; Stoll et al., 2011). The Danish National Wa-

ter Resources Model, also called the DK-model (Henriksen

et al., 2003) was used to produce daily updated BCs for the

local Silkeborg model.

3.1 Hydrological models

3.1.1 Regional model

The DK-model consists of 7 subareas with Area 5 covering

the middle part of Jutland. Figure 3 shows the DK-model

Area 5, further referred to as the DK-model. The model cov-

ers 12 501 km2 with a 500 m × 500 m numerical grid discreti-

sation. The model is set up with the MIKE SHE code coupled

with the MIKE11 code and describes overland flow, evap-

otranspiration, flow in the unsaturated zone, the saturated

zone with drainage routing, and river flow. Numerical lay-

ering follows a geological model with 11 layers. Geology

was initially interpreted in a voxel (volume pixel) framework

with cell size of 1000 m × 1000 m × 10 m (xyz). During the

latest model update (2005–2009), the voxel model was su-

perimposed by local geological models based on the hydro-

stratigraphic model (Højberg et al., 2010, 2013).

The model is bounded by the North Sea and Kattegat to-

wards west and east, respectively. Toward the north and south

the model is bounded by topographical catchment bound-

aries. The model was calibrated in non-steady state toward

data for the period 2000–2003 with 2592 groundwater head

(h) observations and 66 time series of river discharge (Q)

with the automated parameter optimiser PEST ver. 11.8 (Do-

herty, 2010). Besides these observations, observations of

mean h, 1990–1999 were also used to design an objective

function with 8 weighted criteria representing, water balance,

transient error on h and Q, and mean error on h and Q. Fur-

ther detail on the DK-model and the calibration of the lat-

Fig. 4. Local model set-up. Model boundary (section A–G), MIKE

11 river network, discharge stations (Q), and topography. Model

area is 103 km2.

est release version can be found in Henriksen et al. (2003),

Højberg et al. (2010), and Stisen et al. (2012).

3.1.2 Local model

The geology illustrated in Fig. 2 was used for the local

groundwater and surface water model at Silkeborg. As with

the regional model, the model was developed with the cou-

pled MIKE SHE–MIKE11 framework. The model was set up

with a 100 m × 100 m numerical grid with 3 vertical layers

and a model domain of 103 km2, Figs. 3 and 4. The topmost

layer, layer 1, follows the terrace sand in the river valleys

and glacial clay in the higher elevated areas. This is possible

because the MIKE SHE code allows for separate geologi-

cal and numerical models, with the parameterization follow-

ing the geological model. Layer 2, follows the glacial sand

and layer 3 the pre-Quaternary sediments. Boundary condi-

tions for the three numerical layers are different. The south-

ern boundary at layer 1 is a lake, Silkeborg Langsø (A–B,

Fig. 4) and was simulated as a time-variant specified head

with daily time steps. In order to estimate lake water stage (h)

beyond periods with observations (1990–1995) a Q/h rela-

tion was established. Lake stage observations were received

from the Silkeborg municipality and flow (Q) from the river

discharge station 21.109 (Resenbro, Danish monitoring pro-

gramme, location A, Fig. 4) just downstream of the lake.

Hydrol. Earth Syst. Sci., 17, 1619–1634, 2013 www.hydrol-earth-syst-sci.net/17/1619/2013/
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Table 1. Definition of groups in the objective function.

Group Definition Time Initial weight, wi-s No. Obs.

HTS ME Mean error of time series of hydraulic head (h) (daily data) 2010–2012* 1000 35

Hobs mean Error of average h for the period 1990–2010 1990–2011 100 97

HTS ErrAmpl Error of maximum annual amplitude of h (daily data) 2010–2012 500 30

Qbal Winter Mean seasonal error of discharge (Dec. Jan. Feb.) 2010–2012** 50 4

Qbal Spring Mean seasonal error of discharge (Mar. Apr. May) 2010–2012** 20 4

Qbal Summer Mean seasonal error of discharge (Jun. Jul. Aug.) 2010–2012** 5 4

Qbal Autumn Mean seasonal error of discharge (Sep. Oct. Nov.) 2010–2012** 20 4

* 35 filters with time series of 12 300 single observations. **With observations from the first 6 months of 2012.

Besides section C–D (Fig. 4), boundaries for layer 1 are

smaller streams toward the west and north (B–C, D–G) and at

the Gudenå River toward the east (G–A). The specified head

elevations used to simulate these boundaries are adopted

from a detailed digital elevation model. Section C–D fol-

lows a topographical low with small ponds but without any

connecting stream. The section probably drains toward the

southern or northern stream sections and is therefore simu-

lated as a no-flow BC. The glacial sand in layer 2 terminates

toward the river valleys surrounding the model (e.g. at the

valley slope illustrated in Fig. 2) and therefore a no-flow BC

is used for this layer. The pre-Quaternary sediments defining

layer 3 crosses the model boundary and interact with regional

groundwater systems in areas with coarse sediments, mica

and quartz sand. At the southern and eastern model bound-

aries, only the fine-grained pre-Quaternary sediments are ob-

served and section F–B is therefore defined as a no-flow BC.

The remaining boundary for layer 3 (B–F) is open for ex-

change via a transient specified head BC. Daily head levels

are simulated by the regional model for which one of the lay-

ers is vertically aligned with layer 3 in the local model. The

different horizontal cell discretisations between the models,

500 and 100 m, causes that several boundary cells in the lo-

cal model receive head levels from the same 500 m cell in the

regional model.

The area in focus is located in the city of Silkeborg and

therefore a paved area coefficient is used to describe direct

runoff in urbanized areas to streams. Paved areas are illus-

trated in Fig. 1. The chosen coefficient of 0.33 for the town

area is derived from an estimate that one third of the town

area is covered by pavement or buildings whereas the rest is

covered by recreational areas (grass/forest). In the model the

paved area coefficient implies that one third of the precipita-

tion for each time step is routed directly to the closest stream,

whereas the rest will be available for infiltration.

3.1.3 Silkeborg model calibration

Calibration of the model focused on the critical zone for

the motorway regarding groundwater flooding (Fig. 2). Opti-

mization of model parameters was done inversely with PEST

(Parameter Estimation) ver. 11.8 (Doherty, 2010). PEST op-

timization is not available within the MIKE SHE graphical

user interface; therefore, the setup of PEST and optimization

were performed outside of this interface. The model was run

for the period 1990–2012 with 1990–2009 as the warm up

and 2010–2012 as the calibration period. The warm up pe-

riod is relatively long because of large groundwater extrac-

tions in the early 1990s in the terrace aquifer and because the

initial conditions affect model predictions for several years.

Groundwater extraction in the terrace aquifer has been steady

the last 15 yr. Observation data consist of a number of mea-

surements from three categories: (i) historical head measure-

ments from the Danish national borehole archive (Jupiter),

often with a single or a few measurements dating from 1990–

2011. (ii) Time series of daily head measurements for the pe-

riod 2010–2012. (iii) Stream discharge observations from 4

stations (Fig. 4) during 2011 and 2012. The objective func-

tion (Eq. 1) was defined with 7 weighted groups (Table 1).

Hobs mean is the error on average h from group (i) for the

period 1990–2011 compared with average h for the cali-

bration period. HTS ME describe mean error for daily hy-

draulic head measurements from group (ii). HTS ErrAmpl is

the maximum annual amplitude (fluctuation) error of h from

group (ii). The last four terms in the objective function are

the winter, spring, summer and autumn water balance errors

of stream discharge from group (iii).

Obj =
∑

i
(wi × HTS ME)2+ (1)

∑

j
(wj × Hobs mean)2 +

∑

k
(wk × HTS ErrAmpl)2+

∑

l
(wl × Qbal Winter)2 +

∑

m
(wm × Qbal Spring)2+

∑

n
(wn × Qbal Summer)2 +

∑

s
(ws × Qbal Autumn)2

The weights are uniform within observation groups in the ob-

jective function, but the weighing is initially adjusted in such

way that the starting footprint (sum of weight times obser-

vation error) of different h groups in the objective function

reflected the modelling focus on predicting hydraulic heads

along the highway transect in the terrace aquifer. Thus, ob-

servations in the HTS ME and HTS ErrAmpl groups receive

the highest weights. The Qbal groups were given a lower

weight than the h groups. The Qbal groups are weighted

according to discharge volumes, highest during winter, less

www.hydrol-earth-syst-sci.net/17/1619/2013/ Hydrol. Earth Syst. Sci., 17, 1619–1634, 2013
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Table 2. Climate model ensemble, combinations of GCMs and RCMs.

Model name Global Climate Model (GCM)

Model name – institution

Regional Climate Model (RCM)

Model name – institution

ARPEGE-CNRM ARPEGE – Centre National de

Recherche Météorologiques, France

RM5.1 - Centre National de

Recherche Météorologiques, France

ARPEGE-DMI ARPEGE – Centre National de

Recherche Météorologiques, France

HIRHAM5 – Danish Meteorological

Institute

BCM-DMI BCM – Bjerknes Centre for Climate

Research and Nansen Center, Norway

HIRHAM5 – Danish Meteorological

Institute

BCM-SMHI BCM – Bjerknes Centre for Climate

Research and Nansen Center, Norway

RCA3 – Swedish Meteorological and

Hydrological Institute, Sweden

ECHAM-DMI ECHAM – Max Planck Institut for

Meteorology, Germany

HIRHAM5 – Danish Meteorological

Institute

ECHAM-ICTP ECHAM – Max Planck Institut for

Meteorology, Germany

REGCM3 - International Centre for

Theoretical Physics, Italy

ECHAM-KNMI ECHAM – Max Planck Institut for

Meteorology, Germany

RACHMO2 - Royal Netherlands Me-

teorological Institute, The Netherlands

ECHAM-MPI ECHAM – Max Planck Institut for

Meteorology, Germany

REMO – Max Planck Institute for

Meteorology, Germany

ECHAM-SMHI ECHAM – Max Planck Institut for

Meteorology, Germany

RCA3 – Swedish Meteorological and

Hydrological Institute, Sweden

during spring and autumn, and lowest during summer. Initial

weights (group footprints) are shown in Table 1.

The selection of calibration parameters was based on a

sensitivity analysis on parameters for geological units (hor-

izontal and vertical hydraulic conductivity, specific storage

and specific yield). Furthermore, sensitivity of drain con-

stant, detention storage, Manning number (overland flow)

and conductance for general head boundaries were tested.

Parameters included in the inverse calibration were horizon-

tal hydraulic conductivity (fixed Kh : Kv ratio of 1 : 10) of 5

geological units, horizontal and vertical hydraulic conductiv-

ity and specific yield of the upper aquifer (terrace sand with

most h observations), one specific storage parameter for clay

units and one specific storage parameter for sand units, Man-

ning number for overland flow, detention storage, and con-

ductance for the lake general head boundary condition.

3.2 Climatic baseline data

Daily climatic data for the hydrological models, i.e. precipi-

tation (P ), temperature (T ), and reference evapotranspiration

(Er), were obtained for the period 1991–2010 (baseline pe-

riod) in a grid format from the Danish Meteorological Insti-

tute. Calculation of areal grid-values, 20 km × 20 km size for

T and Er, and 10 km × 10 km size for P , relies on a nation-

wide network of climate stations. The methodology used for

making the grid interpolations can be found in Scharling et

al. (2000). Grid values of P were catch corrected with a dy-

namic correction model originally developed by Allerup et

al. (1998) but applied on grid values by Stisen et al. (2012).

The catch-correction model is a spatially distributed model

which mainly uses wind speed to bias-correct measured daily

rainfall.

3.3 Climate change projections

3.3.1 Ensemble of climate models representing future

weather

In the ENSEMBLES project (Christensen et al., 2009), future

climate projections have been made for Europe with many

combinations of GCMs and RCMs for the A1B emission

scenario. In the present study we have used data from nine

of these GCM–RCM combinations (Table 2) for the period

1991–2010 (control period) and 2081–2100. Output from the

RCMs have been transferred to a 10 km × 10 km grid dis-

cretisation for precipitation, temperature and reference evap-

oration and two different methods for bias correction have

been applied:

– Delta Change (DC). DC is the simplest and the most

common downscaling method. The key principle is that

the future climate is described by the historical climate

data corrected by monthly change factors derived from

the climate model projections, e.g. daily precipitation

values for January 2081 consist of observed precipita-

tion for January 1991 multiplied by the ratio between

Hydrol. Earth Syst. Sci., 17, 1619–1634, 2013 www.hydrol-earth-syst-sci.net/17/1619/2013/
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Fig. 5. Model error of hydraulic head (Hobs mean).

average January precipitation projected for the future

period 2081–2100 and average January values projected

for the control period 1991–2010. This implies that re-

sults from the climate models are not used directly, only

the change in projected average monthly precipitation

is used. DC is well proven and well suited for studies

focussing on effects of average climate factors such as

groundwater recharge and average groundwater heads

(van Roosmalen et al. 2007, 2011).

– Distribution Based Scaling (DBS). DBS is a so-called

direct method that corrects the outputs from the climate

model and only uses observed data to estimate correc-

tion parameters (Piani et al., 2010). In the DBS method

the climate model data and the observed data in the

control period are fitted to two different double gamma

distributions. The difference between these two gamma

distributions represents the correction made by the DBS

and the climate model simulations for the future period

are then corrected by using this correction. While the

DC method can preserve the projected changes in mean

values, the DBS method can also preserve the projected

changes in other statistical properties and is therefore

theoretically better suited for extreme values.

Both methods include downscaling as well as bias correc-

tion. In this paper we refer to both processes with the single

term downscaling.

More information on the DC and DBS methodologies and

their implementation is provided by Seaby et al. (2013), who

documented that the DBS is able to correct direct data from

all RCMs so that they reproduce extreme precipitation in the

control period. For the present study we have extracted cli-

mate model results from the 10 km grid covering the local

model area in Silkeborg.

3.3.2 Climate change simulation with groundwater

models

Applying a hydrological model, developed for present con-

ditions, to simulate future conditions involves a number of

assumptions. Calibration parameters and model structure are

assumed constant throughout the 21st century. Land use and

agricultural practice will most likely change but how and to

which degree is uncertain. Future groundwater extraction is

assumed to be the same as the average for the period 2003–

2010. The baseline model run, applying climatic observa-

tions from 1991–2010, is also run with the constant pumping

value from 2003–2010.

3.4 Extreme value analysis

Extreme value analysis (EVA) was applied to projections of

future extreme high groundwater levels from the hydrologi-

cal model. EVA focuses on the tail of the distribution, e.g. the

lowest or highest percentile of values in a dataset. A suitable

probability distribution is fitted to the selected extreme val-

ues and from this distribution, hydraulic heads correspond-

ing to given return periods can be estimated. Within hydrol-

ogy the double exponential, or Gumbel distribution, often ap-

proximates events (x) in the upper tail of distribution (Eq. 2,

Gumbel, 1958).

FX (x) = e−e−α(x−β)

,−∞ < x < ∞ (2)

Parameters α and β are found by a maximum likelihood

method and the standard error of the estimate of the extreme

value with a T-year return interval is calculated with 95 %

confidence limit as:

sT =
sx√
n

∗
[

1 + 1.14 ∗ KT + 1.1 ∗ K2
T

]1/2
. (3)

Where n is the number of annual maximum values (n = 20),

sx the standard deviation of the 20 annual maximum values,

and KT is the frequency factor only dependent on the re-

turn period. The calculated 95 % confidence limits will be

referred to as the error bound for the Gumbel distribution.

Model projections of (5 day-average) hydraulic head in the

upper aquifer from 20 zones along the motorway were ex-

tracted from the baseline and ensemble runs. Annual max-

ima for the 20 yr were then found and sorted according to

value. Two approaches were used to analyse climate change

impacts on simulated hydraulic heads at each zone. (i) The
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Fig. 6. Optimized, initial and calculated 95 % confidence limits of parameter values by PEST optimisation.

DC dataset are 9 series of 20 annual maxima-future simu-

lated hydraulic heads (at each of the 20 zones). The 20 yr

average for the baseline simulation was subsequently sub-

tracted from each of the DC members, e.g. relative climate

change impact to average conditions of the baseline simula-

tion. From these mean values and values of the upper 95 %,

confidence limits of the dataset were calculated. Gumbel dis-

tributions were then fitted to both the mean dataset and the

upper 95 % dataset. (ii) The procedure for the DBS and DC

methods were the same with the following exception: instead

of subtracting the 20 yr average from one baseline model us-

ing the observed climate data, the average was subtracted

from each of the 9 DBS baseline models, e.g. the 20 yr aver-

age for one DBS simulation of the baseline period was sub-

tracted from the equivalent annual maxima DBS simulation

of the future period.

4 Results

4.1 Model calibration

The calibrated model shows a distribution of mean error with

best fit in the terrace sand (Fig. 5). This is not surprising be-

cause a majority of observations are located in this part of

the model, and HTS ME with all its observations in the ter-

race sand has more than half of the total initial weight in the

objective function (Table 1). Areas of the model with high

topographical gradients (e.g. where the motorway leaves the

river valley toward the north-west and south-east) produce

high mean errors on head. Besides the obvious difficulties

with having a high topography gradient and uniform model

discretisation, a likely reason for the head error is the model

simplification of the heterogeneous geology in the transition

between the river valley deposits and the upland glacial sand

and clay.

The model produces small errors of less than 0.1 m, on

average, on the h-amplitude (HTS ErrAmpl). Optimized hy-

draulic conductivities for the glacial units (terrace sand,

glacial sand, glacial clay) are within expected values and the

95 % confidence limits are relatively narrow except for the

glacial clay, Fig. 6. This is likely because of a small number

of observations in this clay unit and the Kh is in the upper

end of the expected range.

The difference between Kh for the mica sand and clay

appears to be a bit narrow. Boreholes penetrating the pre-

Quaternary deposits seem to suggest that only a small litho-

logical difference is present between the two units, e.g. sand

layers dominated by fine sand, and clay layers by silt.

This is exemplified by Kh for the lowest of the two pre-

Quaternary sand units, which is close to the value of the

pre-Quaternary clay.

4.2 Climate change parameters

Results from the DC and DBS climate ensembles are com-

pared with observations from the baseline period (1991–

2010) for precipitation, temperature, and reference evapo-

transpiration (Fig. 7). The DC method (ensemble average)

projects future precipitation similar to baseline observations

in February, April and May, a decrease from June to October,

and an increase in November, December, January and March.

The DBS method (ensemble average) projects a decrease in
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Fig. 7. Monthly average for precipitation, reference evapotranspiration (Er), and temperature from the climate models for the period 2081–

2100 and observed for 1991–2010. Average ensemble values are calculated from the 9 ensemble members for the DC and DBS ensembles,

respectively. Background bars illustrate months where the ensemble average show higher (red), reduced (blue) or unchanged (grey) values

of precipitation, Er or temperature compared to the baseline period (1991–2010).

precipitation in June and from August to October, and an in-

crease in January, April, May, November and December. The

climate models disagree by up to 2 mm day−1 of precipita-

tion during summer and in September. Except for January,

June and November, ranges of projections in the DBS en-

semble are wider than in the DC ensemble. Temperatures are

projected to increase throughout the year with the highest rel-

ative increase during winter. The ensemble representing the

future seems well separated from the baseline period, indi-

cating a clear, positive trend in temperature changes. Pro-

jected future-reference evapotranspiration shows the same

trend as temperature, which is not surprising because of its

direct correlation.

4.3 Analysis of extreme groundwater levels

EVA was performed for the 20 zones at the motorway with

estimation of Gumbel parameters for each zone. Figure 8

shows Gumbel distributions for the future period at zones

34 and 50 relative to the average groundwater head for the

baseline period at each zone. Zone 34 represents some of the

higher T-year estimates and zone 50 some of the lower T-year
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Fig. 8. Gumbel distributions for zone 34 and 50 at the motorway calculated from mean of ensembles. Distributions and associated error

bounds marked with blue are based on delta change (DC) data. In the same way results using the distribution based scaling (DBS) are

marked with red. Values used to parameterize the Gumbel distribution, annual maximum series of hydraulic head, are shown as red and blue

dots.

 

Fig. 9. Gumbel distributions for zone 34 and 50 based on observations for the baseline period (1991–2010) and upper and lower error bounds

(black line and dashed black lines). Red and blue lines are the same as in Fig. 8 for the two zones.

estimates. Furthermore, zone 34 shows consistently higher

T-year estimates with the DBS climate compared to the DC

climate, whereas zone 50 shows higher T-year estimates us-

ing the DC climate. At zone 34, the 100 yr event (T100) is

1.34 and 1.47 m for the DC and DBS estimates, respectively.

At zone 50, T100 (DC) is 1.11 m and T100 (DBS) 0.97 m. The

difference of T100 between DC and DBS estimates is 10 %

at zone 34 and 14 % at zone 50. The calculated error bound

for the Gumbel distributions is similar for both downscal-

ing methods at zone 34 (Table 3, mean ensemble, T100±)

with a small difference of 2 % between 0.43 m (DC) and

0.44 m (DBS). At zone 50, these numbers are 0.30 m (DC)

and 0.23 m (DBS) and the difference is 30 % between Gum-

bel error bounds. The differences in Gumbel error bounds

south of zone 42–43 between DBS and DC T-year estimates

are larger than north of this area. Table 3 also shows results

for the EVA of the upper 95 % confidence limit of the climate

model ensemble for the DC and DBS downscaling methods.

Figure 9 shows the Gumbel distribution for the modelled hy-

draulic heads based on the observed period 1991–2010 with

associated error bounds together with the 2081–2100 DBS

and DC distributions (depicted with the same red and blue

lines as in Fig. 8). At zone 34, the upper error bound for

the Gumbel distribution (1991–2010) exceeds the mean fu-

ture ensemble estimate for return periods longer than 10 and

30 yr, DC and DBS, respectively.

4.4 Uncertainties of future extreme groundwater levels

Several sources of uncertainty affect the estimation of future

extreme groundwater levels. Firstly, the estimation of the fu-

ture climate is challenging. In this study it is handled by ap-

plying an ensemble of climate projections from 9 combina-

tions of global and regional climate models. Secondly, cli-

mate model results are downscaled using two different meth-

ods. The two methods provide alternative results illustrating

the uncertainty in choice of downscaling. Thirdly, estima-

tion of extreme values from the simulated groundwater levels
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Table 3. Estimated future (2081–2100) extreme groundwater levels and associated Gumbel (EVA) error bounds (±) in m for return periods

of 21 (T21), 50 (T50) and 100 (T100) years for zones 30–50 along the motorway. Values are relative to present mean groundwater level at

each zone.

Mean ensemble Upper 95 % ensemble Mean ensemble

DC DBS DC DBS DC DBS

Zone T21 ± T21 ± T21 ± T21 ± T50 ± T50 ±

30 0.94 0.29 1.10 0.29 1.21 0.31 1.40 0.29 1.14 0.37 1.31 0.37

31 1.03 0.32 1.17 0.32 1.28 0.33 1.49 0.32 1.25 0.40 1.40 0.40

32 1.04 0.32 1.18 0.32 1.29 0.33 1.49 0.32 1.26 0.40 1.40 0.40

33 1.00 0.31 1.13 0.31 1.24 0.31 1.44 0.31 1.22 0.39 1.35 0.39

34 0.97 0.30 1.10 0.30 1.21 0.31 1.40 0.30 1.18 0.37 1.31 0.38

35 0.99 0.30 1.11 0.30 1.22 0.31 1.41 0.30 1.20 0.38 1.32 0.38

36 0.97 0.29 1.09 0.29 1.20 0.30 1.38 0.29 1.18 0.37 1.29 0.37

37 0.99 0.30 1.11 0.30 1.22 0.31 1.41 0.30 1.20 0.38 1.31 0.37

38 0.96 0.29 1.07 0.28 1.18 0.30 1.35 0.28 1.16 0.36 1.26 0.36

39 0.98 0.29 1.08 0.29 1.20 0.30 1.37 0.29 1.18 0.37 1.28 0.36

40 0.97 0.29 1.07 0.28 1.19 0.30 1.34 0.28 1.17 0.37 1.26 0.35

41 0.97 0.29 1.05 0.27 1.18 0.30 1.32 0.27 1.17 0.36 1.24 0.34

42 0.99 0.30 1.07 0.28 1.21 0.31 1.34 0.28 1.20 0.37 1.26 0.35

43 1.00 0.30 1.06 0.27 1.20 0.31 1.31 0.27 1.20 0.38 1.24 0.34

44 0.96 0.29 1.01 0.26 1.15 0.29 1.25 0.26 1.16 0.36 1.19 0.32

45 0.99 0.29 1.00 0.25 1.16 0.29 1.22 0.25 1.19 0.36 1.17 0.31

46 1.04 0.30 1.04 0.25 1.20 0.30 1.26 0.25 1.24 0.38 1.21 0.32

47 1.12 0.32 1.12 0.27 1.29 0.32 1.33 0.26 1.35 0.40 1.30 0.33

48 1.07 0.30 1.03 0.24 1.21 0.30 1.23 0.24 1.28 0.38 1.20 0.31

49 1.00 0.27 0.93 0.21 1.10 0.26 1.07 0.20 1.19 0.34 1.08 0.26

50 0.85 0.21 0.77 0.16 0.91 0.20 0.85 0.15 1.00 0.26 0.88 0.20

Table 3. Continued

Upper 95 % ensemble Mean ensemble Upper 95 % ensemble

DC DBS DC DBS DC DBS

Zone T50 ± T50 ± T100 ± T100 ± T100 ± T100 ±

30 1.42 0.39 1.61 0.37 1.30 0.43 1.47 0.43 1.59 0.45 1.77 0.43

31 1.51 0.41 1.71 0.40 1.42 0.46 1.57 0.47 1.69 0.48 1.88 0.47

32 1.51 0.41 1.71 0.40 1.43 0.46 1.57 0.47 1.69 0.48 1.89 0.46

33 1.46 0.40 1.65 0.39 1.38 0.45 1.52 0.45 1.63 0.46 1.82 0.45

34 1.42 0.38 1.60 0.37 1.34 0.43 1.47 0.44 1.59 0.45 1.77 0.44

35 1.44 0.39 1.62 0.38 1.36 0.44 1.49 0.44 1.61 0.45 1.79 0.44

36 1.41 0.38 1.58 0.37 1.34 0.43 1.45 0.43 1.58 0.44 1.74 0.43

37 1.44 0.39 1.61 0.37 1.36 0.44 1.48 0.43 1.61 0.45 1.77 0.43

38 1.39 0.37 1.55 0.36 1.32 0.42 1.42 0.42 1.55 0.44 1.70 0.42

39 1.41 0.38 1.57 0.36 1.34 0.43 1.44 0.42 1.58 0.44 1.73 0.42

40 1.40 0.38 1.54 0.35 1.33 0.43 1.41 0.41 1.56 0.44 1.69 0.41

41 1.39 0.37 1.51 0.34 1.33 0.42 1.39 0.40 1.55 0.44 1.66 0.40

42 1.42 0.39 1.53 0.35 1.36 0.44 1.41 0.41 1.59 0.45 1.68 0.41

43 1.42 0.39 1.50 0.34 1.37 0.44 1.39 0.40 1.59 0.45 1.65 0.40

44 1.36 0.37 1.43 0.32 1.32 0.42 1.33 0.38 1.52 0.43 1.57 0.38

45 1.36 0.37 1.39 0.31 1.35 0.42 1.31 0.36 1.52 0.43 1.53 0.36

46 1.41 0.38 1.43 0.31 1.41 0.44 1.35 0.37 1.58 0.44 1.57 0.37

47 1.51 0.40 1.51 0.32 1.52 0.47 1.44 0.39 1.69 0.47 1.65 0.38

48 1.42 0.38 1.39 0.30 1.44 0.44 1.33 0.36 1.58 0.44 1.52 0.35

49 1.28 0.33 1.21 0.25 1.33 0.39 1.19 0.31 1.42 0.38 1.32 0.29

50 1.04 0.25 0.95 0.19 1.11 0.30 0.97 0.23 1.15 0.29 1.04 0.23
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Table 4. Uncertainty estimates from downscaling, climate models and extreme value analysis at zones 30–50 for all return periods as four

standard deviations of hydraulic head in m.

Zone
Downscaling Climate models EVA

T10 T21 T50 T100 T10 T21 T50 T100 T10 T21 T50 T100

30 0.34 0.34 0.33 0.33 0.56 0.57 0.58 0.59 0.47 0.59 0.75 0.86

31 0.28 0.29 0.29 0.30 0.56 0.57 0.57 0.58 0.51 0.64 0.81 0.92

32 0.28 0.28 0.29 0.29 0.56 0.57 0.57 0.57 0.51 0.64 0.80 0.91

33 0.25 0.26 0.26 0.27 0.54 0.54 0.54 0.55 0.55 0.62 0.78 0.88

34 0.25 0.25 0.26 0.26 0.53 0.53 0.54 0.54 0.48 0.60 0.75 0.86

35 0.25 0.25 0.25 0.25 0.53 0.54 0.54 0.55 0.48 0.60 0.76 0.86

36 0.24 0.24 0.24 0.24 0.52 0.52 0.53 0.53 0.47 0.59 0.74 0.84

37 0.24 0.24 0.23 0.23 0.53 0.53 0.54 0.54 0.48 0.60 0.75 0.84

38 0.22 0.22 0.21 0.21 0.50 0.51 0.51 0.52 0.46 0.58 0.73 0.82

39 0.22 0.22 0.21 0.20 0.51 0.52 0.52 0.53 0.47 0.59 0.74 0.84

40 0.20 0.19 0.17 0.16 0.49 0.50 0.50 0.51 0.46 0.58 0.72 0.81

41 0.18 0.16 0.14 0.12 0.47 0.48 0.48 0.49 0.45 0.57 0.71 0.78

42 0.18 0.16 0.13 0.11 0.48 0.49 0.49 0.50 0.46 0.58 0.73 0.76

43 0.15 0.12 0.08 0.05 0.46 0.46 0.47 0.47 0.46 0.57 0.72 0.84

44 0.13 0.09 0.05 0.02 0.43 0.43 0.44 0.44 0.43 0.55 0.69 0.82

45 0.06 0.02 0.03 0.08 0.39 0.39 0.39 0.39 0.43 0.54 0.67 0.81

46 0.06 0.00 0.06 0.11 0.39 0.39 0.39 0.39 0.44 0.55 0.70 0.84

47 0.05 0.02 0.09 0.15 0.39 0.38 0.38 0.37 0.46 0.58 0.73 0.89

48 0.01 0.08 0.15 0.22 0.34 0.34 0.33 0.33 0.43 0.54 0.68 0.83

49 0.07 0.14 0.21 0.28 0.24 0.24 0.22 0.22 0.37 0.47 0.59 0.72

50 0.12 0.17 0.23 0.29 0.13 0.13 0.12 0.11 0.29 0.36 0.45 0.55

involves uncertainty related to fitting the Gumbel distribu-

tion, and this uncertainty is described by error bounds on the

estimated extreme values.

We will characterise the uncertainty from these three

sources as the interval between the upper and lower 95 %

confidence values, equivalent to four times the standard de-

viation of an estimated value. Based on the results shown in

Table 3 we find:

– Extreme value analysis. The ± in Table 3 represents

half of the 95 % confidence interval. Hence, the un-

certainty related to the Gumbel distribution is quanti-

fied as the average of the error from each of the two

downscaling methods and the two climate values (mean

and upper 95 % ensemble) multiplied by 2. For in-

stance, at zone 30 the EVA uncertainty for T21 would be

((0.29 + 0.29 + 0.31 + 0.29)/4)*2 = 0.59 m (Table 4).

– Climate models. The difference between mean ensem-

ble and upper 95 % ensemble represents half of the

95 % confidence interval. Hence the climate model un-

certainty is estimated as this difference multiplied by 2,

averaged over the two downscaling methods. For exam-

ple, at zone 30 the climate model uncertainty for T21

would be (((1.21–0.94) + (1.40–1.10))/2)*2 = 0.57 m

(Table 4).

– Downscaling. The two downscaling methods are as-

sumed equally likely and therefore the uncertainty

is considered as four standard deviations, where the

standard deviation is calculated from the two known

random variables (the DC and DBS estimate). For ex-

ample, at zone 30 the downscaling uncertainty for T21

would be 4*(standard deviation{0.94; 1.10}) = 0.34 m

(Table 4).

Assuming that the three sources of uncertainty are indepen-

dent the total uncertainty, σtotal, can be assessed by

σtotal =
√

σclimatemodel2 + σdownscaling2 + σEVA2 (4)

where σclimatemodel, σdownscaling and σEVA are the uncertain-

ties related to climate models, downscaling and extreme

value analysis. Figure 10 shows the three uncertainty com-

ponents. The results in the figure are calculated as the aver-

age of the three uncertainty components calculated for each

of the 20 zones (for each T event).

In Fig. 10 it is observed that the uncertainty from climate

models and the extreme value analysis are the two dominat-

ing sources of uncertainty. Climate model uncertainty is al-

most constant for different return periods, while EVA uncer-

tainty increases with higher return periods (also see Figs. 9,

10 and Table 4).
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Fig. 10. Propagation of uncertainty for estimation of future extreme

groundwater levels. Uncertainty from climate models, downscaling

and Gumbel distribution are shown with absolute values (left axis)

and percentage contribution (right axis) with background colouring.

5 Discussion

5.1 Climate change impacts on extreme groundwater

levels in relation to infrastructure design

The projected change of extreme groundwater levels between

today’s climate and future climate is modest. The extreme

value analysis shows changes of only tens of centimetres for

T100 events (zone 34 and 50, Fig. 9). The estimate based on

the upper 95 % confidence limit of the projection with the 9

climate models gives, naturally, higher values, Table 3.

The modest climate change impact at the investigated

aquifer is a result of site specific conditions. Two interacting

groundwater conditions, drainage, and the hydraulic conduc-

tivity of the aquifer affect extreme groundwater levels. The

high conductivity of the aquifer will remove groundwater to-

wards hydraulic boundaries as drains, streams, and lakes with

a relatively low response time, implying that higher ground-

water levels quickly will be reduced. With a good connectiv-

ity between the aquifer and the drainage system, the elevation

of the drains will confine groundwater levels. In contrast to

drainage of the aquifer, which reduces the extreme events,

increased recharge from connecting aquifers and the unsatu-

rated zone will tend to amplify extreme events. At the study

site in Silkeborg the potential rate of drainage seems high

compared to the potential rate of recharge. This relation be-

tween aquifer recharge/discharge is obviously very site spe-

cific, therefore, the potential impact of climate change for

extreme groundwater levels is also very site specific. One

aspect not considered in this study is anthropogenic influ-

ence on the hydrological system in the future. Changing land

use and development of the drainage system could affect

the aquifer recharge/discharge relation and thereby extreme

groundwater levels. Drainage systems and land use will be

part of future adaptation measures and include feedback to

the groundwater system (Holman et al., 2012). This is not

taken into account in the present study.

Extreme value analysis for groundwater systems in a fu-

ture climate has, to the knowledge of the authors, not been

presented in the literature before. As noticed, attempts have

been made to use an EVA methodology within the area of

groundwater flooding. The study by Najib et al. (2008) in-

troduced a methodology to perform flood frequency analysis

and estimate hydraulic heads for 100 yr events (T100). The

underlying objective, to implement flood hazard assessment

at a groundwater-dominated hydrological regime by estimat-

ing the 100 yr event at a given site, is the same as in the

present study. Three major differences between the studies

are observed. Firstly, Najib et al. (2008) investigated a dual

or triple porosity carbonate aquifer with hydraulic head vari-

ations of up to 90 m, whereas the terrace sand aquifer in

Silkeborg only had a tens of centimetres of observed vari-

ation and is relatively homogeneous compared to the aquifer

in Southern France. Secondly, Najib et al. (2008) recon-

structed hydraulic heads used for the EVA by a global reser-

voir model with a non-physically based parameterization.

Calibration of parameters was done for individual sites with

observed hydraulic head and precipitation data. This is fun-

damentally different from the three dimensional, physically

based groundwater–surface water model used in the present

study. The non-physical description in Najib et al. (2008) fits

observed data very well because parameterization is done lo-

cally toward local observations, whereas calibration of a 3-D

groundwater model, through the objective function, attempts

to make the best overall parameterization toward widely dis-

tributed observations. The general discussion for and against

models as global reservoir models versus more physically

based models as MIKE SHE or MODFLOW models is be-

yond the scope of this paper. Nevertheless, in respect to sim-

ulation of future conditions one could argue that a physically

based parameterization is perhaps more robust for simula-

tions with changing climatic input because at least the phys-

ical system is described with some confidence. Thirdly, the

present study includes climate change impacts in the EVA

for hydraulic heads. This leads to an estimation of T-years

representing the last 20 yr of the 21st century and not a rep-

resentation of the next 100 yr with today’s climate as shown

by Najib et al. (2008).

5.2 Uncertainty of extreme groundwater level estimates

The largest uncertainty for the extreme groundwater levels

is the extreme value analysis. Results clearly show that es-

pecially at the upper return periods of the distribution for

groundwater head predictions, the extreme value analysis

dominates the uncertainty. Uncertainties for climate mod-

els are also substantial for the predictions and are in av-

erage 0.46 m for all T estimations (Fig. 10) but vary from

0.11 to 0.59 m between zones (Table 4). In other words, the
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uncertainty from climate models is the same for a T21 and a

T100 estimate of hydraulic head for a given zone. This could

be expected as the changes applied through the DC and DBS

methods are uniform throughout the simulated future period

of 2081–2100.

Uncertainty on the Gumbel prediction ranges between

0.29 and 0.92 m from T10 to T100 (Table 4). This uncertainty

is a result of uncertainty in the estimation of parameter val-

ues in the Gumbel distribution because of limited data, 20 yr,

and hence it could be reduced by selecting a longer period

than 20 yr. Another uncertainty related to extreme value anal-

ysis that we have not addressed in the present study is related

to parameter estimation methods, selection of extreme val-

ues, etc. Najib et al. (2008) compared six different T100 esti-

mates using an annual maximum series methodology, and a

peak over-threshold methodology, both with parameter esti-

mations using the method of moments, the maximum likeli-

hood method and the probability weighted moment method.

These six combinations of methods gave very similar T100 es-

timates and standard deviations for the estimate of hydraulic

head and thus justify the current use of only one method. In

climate change studies it is critical not to select periods that

are too long because the climate conditions do not honour

the stationarity condition, which is an underlying assump-

tion used in extreme value analysis. Our results suggest that

when choosing a 20 yr period the uncertainty due to the ex-

treme value analysis is significant compared to uncertainties

due to climate models and downscaling methods.

The lack of studies investigating extreme groundwater

conditions under future climate makes it difficult to compare

the relative size of uncertainty sources found in this study. A

general comparison can nevertheless be made to impact stud-

ies within other areas of hydrology. One study investigating

the uncertainty distribution was Graham et al. (2007), where

future river runoff is estimated with a combination of GCMs,

RCMs, and two downscaling methods equivalent to the DC

and DBS methods used here. Graham et al. (2007) concluded

that large uncertainty is associated with the choice of climate

model and, more important in relation to the present study,

the choice of downscaling method affects prediction of ex-

treme runoff events and seasonal dynamics, whereas the pre-

diction of runoff volumes is not sensitive to the downscaling

method. In this context, testing of different downscaling

methods is very relevant when dealing with extreme hydro-

logical events. A groundwater recharge study by Allen et

al. (2010) also concluded that downscaling can cause high

uncertainty of extreme values. The reason for the relatively

modest downscaling uncertainty in the presented study is the

local downscaling approach where bias correction of precip-

itation is done for the 10 km × 10 km grid values.

The findings from the Silkeborg case are, in principle, site-

specific. The estimated changes for future extreme ground-

water levels are a result of the hydrogeological set-up for

the aquifer at Silkeborg, the climatological changes projected

for this region, and the hydrological model’s ability to sim-

ulate the natural and highly urbanized area in a trustworthy

manner. Findings regarding the three analysed sources of un-

certainty are limited by not including all possible sources

of uncertainty, e.g. hydrological model structure uncertainty

and model parameter uncertainty. Concerning projections of

future climate, uncertainty from CO2 emissions are not in-

cluded in the study, which constitutes another limitation.

However, findings by Hawkins and Sutton (2011) show that

even at the end of the 21st century, climate variability and cli-

mate models constitute larger uncertainty sources than CO2

emission scenarios. Another limitation, and probably the

most critical, is the future change of land use, urbanization,

drainage system development, and other anthropogenically

introduced changes on the hydrological system.

6 Conclusions

Extreme groundwater levels found in this study in terms of

T21−100 events are modest. For a 100 yr event, groundwa-

ter levels are 0.97 to 1.57 m higher than today’s average

groundwater level (mean ensemble with distribution based

scaling as downscaling method and the same estimate with

the delta change method gives estimates of 1.11 to 1.52 m).

Groundwater levels for a 21 yr event are 0.77 to 1.18 m

higher than today’s average groundwater level (mean ensem-

ble, DBS, and 0.85 to 1.12 m, mean ensemble, DC). Results

show higher extreme groundwater levels with the distribu-

tion based scaling than with the delta change method. Fur-

thermore, groundwater levels for extreme events differ more

from zone to zone using the distribution based scaling.

Three sources of uncertainty were investigated in this

study: uncertainty due to climate models (an ensemble of

nine combinations of global and regional climate models

were used), uncertainty due to downscaling (two methods

were used), and uncertainty due to the applied extreme values

analysis. The uncertainty contribution from the three sources,

especially for the higher return periods, is dominated by the

extreme values analysis. While uncertainty from the choice

of downscaling and climate model is around 20 cm, and

46 cm, respectively, uncertainty from the extreme value anal-

ysis increases from 45 (T10) to about 82 cm (T100). The to-

tal uncertainty contribution from the three sources is around

67 cm for the estimation of a 10 yr event and around 96 cm

for a 100 yr event (with the definition of uncertainty as four

times the standard deviation). Compared to the estimates of

groundwater levels during a 100 yr event (0.23–1.22 m), the

uncertainties from the three sources are very high. If uncer-

tainty is considered in this simplistic way, downscaling ac-

counts for 4 % of uncertainty from the three sources, climate

models for 23 %, and extreme value statistics for 73 % (for

estimation of a 100 yr event).
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