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Climate change is a complex global issue that is driving countless shifts in the structure

and function of marine ecosystems. To better understand these shifts, many processes

need to be considered, yet they are often approached from incompatible perspectives.

This article reviews one relatively simple, integrated perspective: the abundance-size

spectrum. We introduce the topic with a brief review of some of the ways climate change

is expected to impact the marine ecosystem according to complex numerical models

while acknowledging the limits to understanding posed by complex models. We then

review how the size spectrum offers a simple conceptual alternative, given its regular

power law size-frequency distribution when viewed on sufficiently broad scales. We

further explore how anticipated physical aspects of climate change might manifest them-

selves through changes in the elevation, slope and regularity of the size spectrum, expos-

ing mechanistic questions about integrated ecosystem structure, as well as how

organism physiology and ecological interactions respond to multiple climatic stressors.

Despite its application by ecosystem modellers and fisheries scientists, the size spectrum

perspective is not widely used as a tool for monitoring ecosystem adaptation to climate

change, providing a major opportunity for further research.

Given the millions of species living in the global ocean, their diverse life strategies and inter-
relationships, and the multiple dimensions of anthropogenic stressors, it can be extremely challenging
to grasp the overall impact of climate change on marine ecosystems [1]. In spite of this great complex-
ity, observations have shown that ecosystem size structures tend to be highly regular, with many small
and few large individuals, decreasing in abundance with size according to a simple power law distribu-
tion. This simple power law relationship is known as the abundance-size spectrum. The size spectrum
encompasses all species and has long been known to be among the most robust large-scale regularities
in aquatic ecology [2]. As such, it provides a unique lens through which to integrate biotic changes
from multiple aspects of climatic change.
Below, we review the physical, biogeochemical and ecological impacts projected by complex numer-

ical models for the remainder of this century, as an illustration of current expectations. We then turn
to the size spectrum as a more intuitive, readily grasped framework that provides a bird’s eye view of
the ecosystem and helps to simplify the expectations, as well as revealing shortfalls in mechanistic
understanding.

Numerical model predictions of impacts on the marine

system
Global climate models are increasingly applied as a basis for projecting the impacts of climate change
[3–5]. Climate models are computationally intensive, three-dimensional representations of the atmos-
phere and ocean within which physical equations are solved numerically. These models are used to
project climate evolution in response to greenhouse gas emission scenarios. As an example using the
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Institut Pierre Simon Laplace (IPSL) climate model [4,6], Figure 1A shows the projected change in sea surface
temperature over the 21st century under strong emissions (RCP8.5). The model predicts that sea surface tem-
perature will increase virtually everywhere in the ocean as a direct consequence of atmospheric warming, with
the strongest warming where shifting ocean currents increase the relative proportion of warmer waters and the
least warming at high latitudes where exchange with cold deep waters and/or persistent sea ice keeps the water
close to freezing [4].
The IPSL model also includes simple representations of photosynthetic and heterotrophic plankton, which

simulate the biogeochemical response to the projected physical climate changes. Figure 1B shows the corre-
sponding response of net primary production (NPP) to the RCP8.5 scenario, showing a mosaic of local
increases and decreases of up to 75%, adding up to a global decline of 5%. Climate-biogeochemical models are
also used to project other ecosystem stressors, including deoxygenation and acidification of ocean waters [4,7].
Recently, dynamic numerical models of marine animals have been developed that can operate within the

same spatial and temporal framework as the climate-biogeochemical models. Figure 1C shows the average
change in total consumer biomass of four models from the Fisheries and Marine Ecosystem Model
Intercomparison Project (FishMIP) [8,9] when subjected to the same physical and biogeochemical forcings
shown in Figure 1A,B. Under this scenario, total consumer biomass is projected to change locally by up to 75%
with a spatial pattern determined by the pattern of NPP changes [10], adding up to a global decrease of 20%.
These biogeochemical and animal models provide a current best-guess of the macro-ecological effects of

climate change. Yet, they remain relatively rudimentary, in that they typically use a small set of equations to
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Figure 1. Simulated changes to global marine ecosystems.

Model projections of changes in sea surface temperature, production and biomass from 2000 to 2100 under strong emissions

(RCP8.5). Grey bars show the frequency distribution of values over the entire ocean. (A) The Institut Pierre Simon Laplace

(IPSL) climate model projection of sea surface temperature changes. (B) The climate model (from A) is coupled with a

biogeochemical model to project the percentage change in net primary production (NPP). (C) Model output from A and B are

used as inputs for consumer size-spectrum models to project the percentage change in total consumer biomass.
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describe physiological rates and trophic relationships across the entire community, neglecting important pro-
cesses and variation. Increasing model complexity may allow simulation of more aspects of the marine ecosys-
tem but will also make their predictions more difficult to interpret [11,12]. Even a few modelled processes
quickly multiply into a large number of parameters, assumptions and interactions, the effect of which is chal-
lenging to understand. The tension between additional biological realism and better understanding of the
underlying mechanisms requires a hierarchy of perspectives, from complex models to simple representations of
ecosystem structure [12,13]. One such simple representation, which can be used to explore the effects of
climate change on the structure of the entire marine ecosystem, is the size spectrum.

The size spectrum
For almost 100 years, the body size of individuals has been recognized as a ‘master’ trait, given its strong link
to physiological characteristics across species, and to the role of individuals within ecosystems [14–16]. In
marine systems, the vast majority of primary production is carried out by microscopic unicellular phytoplank-
ton, so that the generation of new organic matter from solar energy is undertaken by the smallest individuals.
This photosynthetically-derived chemical energy is propagated to animals by predation, which is largely
dependent on size relationships, due to gape size limitations and other constraints on the size of prey that a
predator can efficiently consume [17,18]. In general, the transfer of energy by predation flows from small to
large organisms so that in most aquatic systems, size is a good proxy for trophic level (an organism’s position
in the food chain). In addition to feeding relations, a great number of individual-level processes have been
empirically related to body size through simple scaling relations, from rates of respiration, metabolism, growth,
reproduction, and mortality [19,20] to swimming speed, vision and encounter rates [21–23]. The generality of
these size-based traits often means that marine organisms at a given developmental stage have much more in
common with individuals of the same size regardless of their species than with conspecifics at a different
developmental stage [18]. Thus, one can know a lot about a marine organism from its size.
The size spectrum describes the size-frequency distribution of organisms in an ecosystem. It is constructed

by taking the sum of all individuals (regardless of species identity) within logarithmically spaced bins (e.g. total
count from 0.1–1 g, from 1–10 g, from 10–100 g, etc.) [2,24,25]. This typically yields a histogram that is
strongly right-skewed: very many small individuals, and a few very large individuals (Figure 2B, top). On log–
log axes, the relation reveals a straight line extending over many orders of magnitude, called a power law. The
size spectrum can thus typically be described by a function of body size m, f(m) ∝ ma, where the exponent a is
the slope of the spectrum. As illustrated schematically in Figure 2A, the size spectrum implicitly reflects the
outcome of all ecological processes including predation, the growth of individuals through different size classes,
and the repopulation of smaller size classes through reproduction [2,24,25]. The size spectrum has many alter-
native representations, the most common of which is given by multiplying the abundance or frequency of a
size class N by the mean of the size class m to obtain the total biomass B in each log bin (B =Nm; Figure 2B,
bottom).
Remarkably, plotting size spectra as logarithmically spaced biomass bins has often revealed an even distribu-

tion across portions of the marine ecosystem that is hypothesized to hold from bacteria to whales [26]. This
distribution, first suggested by Sheldon and coauthors [26] based on plankton measurements in the open
ocean, implies that the numerical abundance of organisms decreases inversely with body size with a slope of
−1 when plotted on logarithmic axes (Figure 2A), where the number of individuals in a size class m is
described with the function f(m) ∝ m−1. Since the publication of this hypothesis almost 50 years ago, a large
body of empirical work in different ecosystems and for different assemblages of species has largely corroborated
the roughly inverse relation between abundance and body size [2]. However, it remains unknown how closely
the −1 slope is adhered to across the entire span of marine organisms, or how the distributions may differ in
varied coastal ecosystems. Basic theory and a growing family of models have been developed to elucidate the
mechanisms underpinning the marine size spectrum [2,24,25,27], and how human impacts such as fishing and
climate change may affect its structure [28–34]. Despite these significant advances, we still do not fully under-
stand what basic generative processes are responsible for the regularity of the size spectrum. Intriguingly, a
great number of phenomena exhibit power law size-frequency (or rank-frequency) distributions with similar
slopes, including large cities, individual wealth, and word use [35].
The size spectrum can be used to represent any portion of the marine ecosystem, including both the coastal

and open ocean [28,29,36,37]. Because marine organisms are patchily distributed in space and time, the
spectrum will generally show greater regularity (and therefore be more useful) on larger spatial scales, longer
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timescales and over a larger range of body sizes. On these scales, changes in its shape — namely its slope,
elevation and regularity — present a powerful means by which to explore the impacts of climate change on the
whole-ecosystem structure.

What drives changes in size spectrum shape?
We can classify changes in climatic components according to the kinds of change they elicit in ecological struc-
ture (Figure 3). The abundance at the geometric midpoint of the size spectrum, which we refer to as the eleva-
tion, will vary with environmental changes that affect all individuals proportionally (e.g. a universal change in
mass-specific respiration rate). Changes in slope, on the other hand, are expected from environmental changes
that consistently affect the interactions across size classes, so that the effects are compounded with size (e.g. the
temperature response of growth or consumption efficiency between size classes; see arrows in Figure 2A) [38].
Finally, changes in regularity are expected from physical changes that differentially affect different taxonomic
or functional groups (e.g. different temperature sensitivities of ectotherms and endotherms), or act irregularly
in space (geographic distribution shifts) or time (altered phenology or frequency of extreme events). Biotic
impacts from climate change are likely to interact, confounding a clear delineation between these different
expectations. Nevertheless, the slope, intercept and regularity of the size spectrum provide a means to bridge
underlying mechanistic processes with macroecological outcomes. Using these three size spectrum properties,
we can use the size spectrum as a simple framework through which to explore the impacts of climate change
on the integrated marine ecosystem (Table 1).

Figure 2. Basic elements of size spectra.

(A) An idealized size spectrum is shown on log10 axes, extending from bacteria to whales. Logarithmically spaced size classes

are specified, within each of which the total number of all individuals is summed. The regular linear slope characterizes a power

law frequency distribution, shown here with the hypothetical ‘Sheldon’ exponent of −1, implying that abundance is inversely

related to body mass. (B) Two alternate representations of the same size spectrum. On top, the size spectrum is plotted on

linear, rather than logarithmic axes. This representation shows that bacteria are exceedingly abundant, while most size classes

include only large mammals, but otherwise, little information is conveyed. A more useful representation is the biomass

spectrum (bottom), which is the product of the X and Y axes in A, giving the total biomass in logarithmic size classes. An

abundance slope of −1 (in A) corresponds to a biomass slope of 0.
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Increasing water temperature
The elevation of the size spectrum would be expected to change (Figure 3A) if the rate at which energy is used
across the spectrum varied by a universal temperature-dependent response of metabolism [20,39,40]. Because
metabolic rates are generally faster at higher temperatures and marine organisms are predominantly ectother-
mic (i.e. they do not internally regulate their body temperature), warming would increase the rate of energy
consumption through respiration. Faster biomass-specific respiration would thereby decrease the amount of
biomass that can be supported for a given amount of energy [66]. Although the general increase in metabolic
rates with temperature is not debated, the mechanistic pathways by which temperature affects organism physi-
ology remain unclear, introducing some uncertainty into this prediction [67].
This temperature effect could be mitigated by a shift to organisms with lower inherent metabolic rates [68]

or less active lifestyles [69]. It may also be compensated or exacerbated by several other vital rates with similar
temperature sensitivity. With these further caveats in mind, we can estimate a drop of 8% in elevation for each
1°C increase in temperature, assuming a slope of −1 and a universal metabolic activation energy (Ea) of 0.6 eV
[66]. This should be seen as only one component of the impact of warming, although it is not inconsistent
with a recent estimate of a 7 ± 4% decline per 1°C based on a reanalysis of fisheries stock assessments for 235
species from 1930 to 2010 [70], and it does fall within the range projected by FishMIP models [9].
Trophic efficiency, equal to the production rate of a consumer relative to its prey, may change in response to

rising temperatures and has been shown experimentally [71,72]. A lower trophic efficiency would reduce the
abundance of macroscopic animals in relation to plankton and bacteria [73] since less energy is transferred to
larger organisms at each trophic step. The result is trophic amplification [72], which corresponds to a relative
decrease in larger organisms and a steeper size spectrum slope (Figure 3B).
Although the Sheldon hypothesis suggests that a relatively regular slope prevailed under pre-industrial condi-

tions, there is no guarantee that it should remain stable during major transitions such as those currently under-
way (Figure 3C). If a regular slope of the Sheldon spectrum is an optimized outcome to which an ecosystem
adapts, then an interval of rapid change could cause breaks in the distribution, as different species and assem-
blages are impacted in different ways. For instance, mammal endotherms are known to derive an advantage in
colder waters [74]. A warmer ocean could potentially diminish this advantage at higher latitudes, contributing
to declines in the mammal proportion of the spectrum.

Decreasing nutrient supply
Changes in NPP are expected to result from alterations of the upward transport of cold, nutrient-rich deep
water to large areas of the ocean surface (Figure 1B) [42–45]. Some observations suggest that an expansion of

Figure 3. Possible responses of the size spectrum under climate change.

The dashed line in each figure is a hypothetical pre-industrial spectrum denoting approximately ‘natural’ conditions. These

changes are idealized, to highlight schematic changes to the size spectrum. (A) Changes in elevation result from changes that

affect all individuals equally (e.g. lower net primary production at the base of food-chain, or uniform temperature-induced

metabolism increases across all sizes). (B) Changes in slope result from compounding changes that affect coupling across size

classes (e.g. a decrease in trophic transfer efficiency would cause larger organisms to decrease more than smaller organisms).

(C) Changes in regularity result from heterogenous responses to change among different components of the community, or

uneven spatial or temporal drivers.
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the most nutrient-depleted regions [46,47] and a long-term decline in NPP in the world’s oceans [48] have
already occurred. Any change of NPP will change the total amount of chemical energy available to support the
energetic needs of all organisms within the ecosystem [42]. Since total NPP is roughly proportional to total
metabolism (only a very small fraction of NPP escapes respiration to be buried in sediments [75]), this would
necessarily affect the total biomass of the entire ecosystem. Thus, all else being equal, the elevation of the size
spectrum would fall with a decrease in NPP and vice versa (Figure 3B).
Nutrient-limited conditions also favour smaller phytoplankton [49,50] because they can uptake nutrients

faster at low concentrations due to a greater surface area to volume ratio [51]. This could feasibly drive a
change in the slope and elevation of the producer spectrum that is decoupled from the response of the con-
sumer spectrum, thus affecting the regularity of the integrated size spectrum (Figure 3C).

Novel ecosystems
As their current locations become unsuitable, species can maintain their thermal state by migrating to new
environments [41], as widely observed [52,53]. However, species move and adapt at different rates [54], altering
assemblages and disrupting feeding patterns as preferred prey are no longer available [55]. If such disruption
propagates across multiple trophic levels, it could lower trophic efficiency, which would lead to a steeper size
spectrum slope and possibly decrease its regularity (Figure 3B,C). For example, forage fish gut content analysis
during an exceptional event in the North Pacific (known as the ‘Blob’) showed a switch in zooplankton commu-
nity composition from lipid-rich taxa to less nutritious, gelatinous zooplankton [56], and a decrease in mean
planktivorous fish size and condition, suggestive of decreased trophic efficiency. It has also been argued that
climate change drives a change in the timing of the spring bloom relative to egg hatching, resulting in larvae
appearing before food is available and impeding the transfer of energy from producers to consumers [76,77].

Increasing extreme events
Climate change has increased the frequency and intensity of extreme weather events such as heatwaves [57,58].
These events can cause long-term damage, especially to sessile taxa such as coral and kelp, which often have
less thermal tolerance than more mobile taxa [78]. Damage to primary producers may lower NPP, lowering the
elevation (Figure 3A), while abrupt changes in community composition as a result of heatwaves [59,60], could
also increase irregularity in the size spectra (Figure 3C).

Deoxygenation
Climate change is decreasing the oxygen content of the ocean through the temperature-driven decrease in
oxygen solubility, as well as a slowdown of transport from the surface to the deep ocean [61]. There has been
relatively little work explicitly linking the impact of deoxygenation on whole-ecosystems, and most studies have
looked at individual-level responses. It has been argued that the decline of oxygen together with warming will
limit the metabolic scope of animals, by raising metabolic demands at the same time as the oxygen available to
support metabolism declines, which may force communities to shift toward organisms with lower metabolic
rates [62]. A transition to lower metabolic rates could increase the overall abundance of fish and other ectother-
mic animals that are able to tolerate the low O2. Following similar logic as given above for temperature, this
would raise the elevation for this portion of the spectrum. On the other hand, it may also decrease the effi-
ciency of trophic transfer, by limiting motility and feeding, which would steepen the slope (Figure 3B) [79].
Under extreme climate change, large expansions of anoxic waters — in which water-breathing animals cannot
survive [63] — would be expected to cause a steeper slope at the upper end of the size spectrum, potentially
increasing the irregularity of the ecosystem size spectrum (Figure 3C).

Acidification
As the ocean absorbs CO2 from the atmosphere, it reacts with seawater to form carbonic acid, lowering
pH [64]. Ocean acidification is expected to be most severe for calcifying species, which includes important
phytoplankton species (e.g. coccolithophores), crustaceans and corals [80]. Studies have also suggested
interaction with deoxygenation and temperature, reducing aerobic capacity and reproductive success [65] which
could steepen the spectrum slope and/or decrease spectrum regularity (Figure 3B,C). Like deoxygenation,
acidification studies have focused mostly on individual, rather than community responses [81], which means
there is still a great deal of uncertainty as to how the whole ecosystem will respond to acidification, and how it
may change the shape of the size spectrum.
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Non-climate stressors
In addition to climate change, other direct anthropogenic changes will impact marine ecosystem structure. For
instance, industrial fishing has caused a tremendous decrease in the abundance of large marine organisms, in
some places by more than two orders of magnitude [82,83], truncating the large end of the spectrum. In fact,
for many marine ecosystems, fishing pressure is the largest driver of ecosystem structure [84]. Such changes
undoubtedly add to, and interact with, impacts from climate change [30,85].

Concluding remarks and future directions
The size spectrum provides an integrated perspective that could help to better understand how climate change
affects the entire marine ecosystem. Due to its simplicity, the size spectrum can complement more complex
predictive models by prioritizing processes that dominate ecosystem structure and function and helping to sim-
plify and parameterize these models to accommodate more biological realism. Since abundances vary over
small spatial scales and fluctuate on short timescales, the size spectrum is most useful as an integrated measure
on large scales, such as for whole ecosystems over many years.
The value of the size spectrum framework for observing changes in ecosystem structure calls for a more sys-

tematic collection of abundance-size data across the entire marine ecosystem, from bacteria to whales. This idea
is not new; as part of a holistic, ecosystem-level approach to management, fisheries scientists already use size-
based indicators such as the spectrum slope as metrics to assess the impact of fishing on ecosystem health
[29,36,86,87]. There is already a vast amount of relevant data available, such as >20 years of phytoplankton size
spectra collected on the Atlantic Meridional Transect [88]. The continued effort toward systematically unifying
existing observations of the marine size spectrum across different scales and taxa could provide a baseline to
assess future impacts of climate change and other large-scale human activities on the entire marine ecosystem.
At the same time, the possible geometric changes discussed above highlight the need for better quantification

of the underlying mechanisms for how organisms across taxa and size respond to changes in their environment
[62,66,89], in order to better tie changes in spectrum shape to changes in climate (Table 1). Even for something
as fundamental as temperature, there is not currently a strong fundamental understanding of the most import-
ant thermal response mechanisms [67], leaving a large uncertainty in the expected magnitude of change for
given warming.
There remain many fundamental questions as to how climate change will affect the marine ecosystem, and a

range of perspectives are required to address them. The size spectrum is one available framework that overlooks
many details such as changes in species identity and biodiversity, to provide a whole-ecosystem picture. It is
our hope that, by illustrating how the complex effects of climate change could be mediated through changes in

Table 1 Possible effects of climate change on the size spectrum

Physical change Biological effect Size spectrum prediction

Increasing ambient water

temperature [4]

Increased metabolic rates [20,39,40] Decreased elevation steeper slope,

decreased regularity

Species distribution shifts [41] Steeper slope, decreased regularity

Decreasing nutrient supply

[42–48]

Decreased primary production and smaller

median producer size [49–51]

Decreased elevation, decreased

regularity (?)

Novel ecosystems [41,52–55] Lower trophic efficiency [56] Steeper slope, decreased regularity

(?)

Increasing extreme events

[57,58]

Decreased primary production [59] (?) Decreased elevation

Decreased trophic efficiency [60] (?) Steeper slope (?), decreased

regularity (?)

Deoxygenation [61] Decreased metabolic rates [62] (?) Steeper slope (?)

Increased anoxia [63] (?) Decreased regularity (?)

Acidification [64] Decreased aerobic capacity [65] (?) Steeper slope (?), decreased

regularity (?)

A (?) indicates where there is no apparent consensus in the literature regarding the indicated biological effect, or potential impact on the size spectrum.
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the slope and elevation of the size spectrum, this review will stimulate wider consideration of the size spectrum
framework in ecological climate change research.

Summary
• The size spectrum provides a valuable perspective on climate change that integrates the

large-scale outcome of all interacting mechanisms, providing a contextual backdrop against

which to better understand the responses of individual species and changes in biodiversity.

• Changes in the elevation, slope and regularity of the size spectrum provide mechanistic lin-

kages from expected physical changes to macroecological outcomes.

• The value of the size spectrum framework calls for a more systematic collection of

abundance-size data across the entire marine ecosystem.

• Developing a better understanding of how the size spectrum will respond to changes in

climate requires better quantification of underlying individual physiological responses to mul-

tiple stressors, as well as the net results on predation and reproduction.
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