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Abstract

Purpose: Climate change threatens progress achieved in global reductions of infectious disease 

rates over recent decades. This review summarizes literature on potential impacts of climate 

change on waterborne diseases, organized around a framework of questions that can be addressed 

depending on available data.

Recent findings: A growing body of evidence suggests that climate change may alter the 

incidence of waterborne diseases, and diarrheal diseases in particular. Much of the existing work 

examines historical relationships between weather and diarrhea incidence, with a limited number 

of studies projecting future disease rates. Some studies take social and ecological factors into 

account in considerations of historical relationships, but few have done so in projecting future 

conditions.

Summary: The field is at a point of transition, toward incorporating social and ecological factors 

into understanding the relationships between climatic factors and diarrheal diseases and using this 

information for future projections. The integration of these components helps identify vulnerable 

populations and prioritize adaptation strategies.
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Introduction

Climate change is increasingly understood not just as an environmental issue but as a 

fundamental threat to human health and well-being. The health effects of climate change 

“threaten to undermine the gains made in public health and development during the past 

half-century” [e.g., 1].

Anthropogenic climate change has caused increases in the number of warm days and nights, 

and the frequency and intensity of both droughts and heavy rainfall events [2]. This has 

implications for waterborne diseases, as high temperatures can alter pathogen survival, 

replication and virulence, heavy rainfall events can mobilize pathogens and compromise 

water and sanitation infrastructure, and drought can concentrate pathogens in limited water 

supplies [3••]. The Intergovernmental Panel on Climate Change (IPCC) states that there is 

“very high confidence” that increased risks of food- and water-borne diseases can be 

expected “if climate change continues as projected across the representative concentration 

pathway (RCP) scenarios until mid-century” [4].

Waterborne diseases include many different types of infections that are transmitted via 

water, and include pathogens across a range of taxa (viruses, bacteria, protozoa, and 

helminths). These pathogens can cause an array of symptoms, including diarrhea, fever and 

other flu-like symptoms, neurological disorders, liver damage, and others. Here we focus on 

diarrheal diseases, which are commonly transmitted via waterborne pathways and comprise 

a substantial proportion of the global burden of diseases. [5, 6] Moreover, as diarrheal 

disease transmission is facilitated by insufficient or unsafe water, climate change has the 

potential to alter their distribution and incidence.

Due to the large burden of diarrheal diseases, even small changes in diarrheal disease risk 

due to climate change can have profound impacts on population health. Diarrheal diseases 

are the second leading cause of death in children under five worldwide, and the second 

greatest source of death and disability in low and middle income countries [7, 8, 5]. These 

health impacts are concentrated in young children in low-income settings, where pediatric 

diarrhea can lead to impaired growth and cognitive development, and trigger a cascade of ill 

health that reinforces poverty [9–11]. Globally, diarrhea morbidity and mortality is declining 

[5], but climate change may slow this downward trajectory, undermining multinational 

investments to reduce diarrheal disease burden, with impacts concentrated in some of the 

world’s most vulnerable populations.

The potential for climate change to affect diarrheal diseases was recognized starting with 

early efforts to estimate the impacts of anthropogenic climate change on human health [12, 

13]. Diarrheal disease outbreaks have been associated with both heavy rainfall and dry 

periods [14–17], demonstrating that dry periods can concentrate enteric pathogens and 

precipitation can mobilize enteric pathogens, in both cases enabling contamination of 

drinking water sources and increasing chances of human-pathogen contact. Increases in 

hospital admissions in Lima, Peru during an El Niño warming event in the 1990s provided 

early epidemiological evidence of the potential for temperature anomalies to alter diarrheal 

disease incidence [18]. In the United States and Canada, waterborne disease outbreaks were 
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found to often be preceded by extreme rainfall events [14, 17]. However, efforts to quantify 

the potential impacts of climate change on health have been hampered by, in the words of 

one research team, “the sparsity of empirical climate-health data” leading to uncertainties in 

the empirical relationships between climate and diarrheal diseases far greater than 

uncertainties in the projection of future climate [19].

Since these early efforts, a growing body of evidence suggests that climate change—

particularly increases in high temperatures, heavy rainfall, flooding and drought—have the 

potential to alter the distribution of diarrheal diseases. We and others have found evidence of 

significant, positive associations between temperature and bacterial diarrhea, but not viral 

diarrhea [20••, 21•]; as well as evidence for increases in diarrhea following heavy rainfall 

events and flooding.

As the work describing associations between climate and diarrheal diseases grows, it is 

increasingly clear that the impacts of climate change on diarrheal diseases depend not 

simply on meteorological conditions, but on the underlying social and ecological contexts – 

from water and sanitation infrastructure to local pathogen distribution to social capital – that 

influence a population’s exposure, sensitivity and adaptive capacity. The complex interplay 

of climate, social vulnerability, ecology and health has been recognized and successfully 

incorporated into other areas of climate-health research. For example the vector-borne 

disease field showed early on the potential impact of climate change on future disease risk 

(e.g. [22–32]) and emphasized the importance of social (e.g. [33–41]) and environmental 

(e.g [37, 41–44]) dynamics in disease modeling to better reflect the epidemiological triad 

and to understand not only the effects on future disease rates but also to develop adaptation 

strategies under global change (e.g. [34, 45, 46]). Similarly, heat-related morbidity and 

mortality have been shown to vary by demographic characteristics (e.g. age, pre-existing 

conditions) as well as neighborhood infrastructure (e.g. access to air conditioning), leading 

to efforts to map high-risk populations and define effective adaptation strategies [47–49]. 

This has important implications for public health planning, as some populations may be 

particularly vulnerable to climate change than others. Incorporation of such underlying 

vulnerability will enable prioritization of interventions to reduce future disease risks in the 

most vulnerable populations.

In this review, we summarize the evidence describing the potential impacts of climate 

change on waterborne diseases, focusing primarily on diarrheal diseases due to their high 

burden of disease and the growing body of evidence demonstrating the potential impacts of 

climate change on diarrhea [e.g., [3••, 20••, 21•, 50, 51••, 52]]. We provide an organizing 

framework of types of questions that can be addressed depending on the types of data 

available, and summarize the literature addressing each of these questions, concluding with a 

discussion of what we view to be the most urgent research priorities while also highlighting 

current and future adaptation strategies.

It is time to shift the research questions

Our understanding of climate-disease relationships will depend on the types of data 

incorporated into analyses. Table 1 provides an overview of the types of questions that we 
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can answer based on the data included in quantitative models, and illustrates what we view 

to be an important transition in the field, from studies of basic associations to more complex 

approaches that can inform our understanding of causal processes and future vulnerability, 

and, ultimately, our ability to intervene to reduce vulnerability. Much of the existing work in 

this field examines historical relationships between observed weather and disease incidence 

(Question I), with a more limited number of studies projecting future disease rates (Question 

II). Some studies take mediating social and/or ecological factors into account in 

considerations of historical relationships (Question III), but very few have done so while 

also exploring social/ecological mediating factors or consequences of future conditions 

(Question IV). Below we review the literature organized by these four questions and argue 

that, given the state of the science and our need to identify effective interventions to reduce 

diarrheal disease burden in a changing climate, it is time to shift the research from studies of 

climate-disease associations historically (Question I) and in the future (Question II) towards 

studies that evaluate the social and environmental contexts that make a population 

vulnerable to climate change (Question III) and studies that evaluate the effectiveness of 

interventions to reduce vulnerability to waterborne disease transmission in a changing 

climate (Question IV)

Question I. What is the relationship between observed weather and 

waterborne disease incidence?

Most of the research in this field to date has been analyses of the historical relationships 

between observed weather conditions and waterborne disease incidence or prevalence. These 

are generally time series and/or spatial epidemiology studies [51••]. Extensive work has also 

been carried out on climate impacts on pathogen fate and transport in the environment [52].

Our research team recently published a systematic review and meta-analysis summarizing 

studies of the relationship between diarrheal diseases and four meteorological conditions 

that are expected to increase with climate change: ambient temperature, heavy rainfall, 

drought, and flooding [3••, 20••]. This review built upon and updated previously published 

reviews of: diarrhea – temperature relationships [12, 19]; extreme weather events and 

waterborne disease [50]; climatic influences on pathogens in the environment [52]; and 

specific diarrheal pathogens [53–58]. Key areas of agreement among the 141 articles that we 

reviewed were a positive association between ambient temperature and diarrheal diseases, 

with the exception of viral diarrhea, and an increase in diarrheal disease following heavy 

rainfall and flooding events. Insufficient evidence was available to evaluate the effects of 

drought on diarrhea [3••]. These associations were observed in low-, middle- and high-

income countries. We found considerable evidence to support the biological plausibility of 

climate-diarrhea associations described above [3••] and other reviews further support these 

findings [50–52, 59]. Additional research published after our review provides further 

evidence to support the associations between diarrhea diseases and climate change: ambient 

temperature [60–64], heavy rainfall [22, 60–63, 65–69], drought [70], and flooding [71, 72].

From the systematic review, a subset of 26 articles provided quantitative estimates of the 

association of temperature and diarrhea that we were able to synthesize into a separate meta-
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analysis. This analysis indicated the relationship between temperature and diarrhea varies by 

pathogen taxa [20••]. We found a positive association between ambient temperature and all-

cause diarrhea (incidence rate ratio (IRR) 1.07; 95% confidence interval (CI) 1.03, 1.10) and 

bacterial diarrhea (IRR 1.07; 95% CI 1.04, 1.10), but not viral diarrhea (IRR 0.96; 95% CI 

0.82, 1.11). Only one study of protozoan diarrhea was identified. However, two independent 

reviews suggest a positive association between temperature and two major protozoan 

pathogens: cryptosporidium and giardia [53, 55].

There are several notable limitations in the above literature. Because most studies are 

secondary data analyses, publication bias is a concern [3••, 20••]. Sparsity of health data [59] 

and uncertainty in reporting [51••] are potential sources of error and may explain the uneven 

geographical distribution of studies [3••]. Guzman et al. (2015) [59] highlight issues related 

to sparse data and optimal choice of time lag. Moreover, Sterk et al. (2013) [52] point out 

that not all processes and pathogens are evenly covered by the literature. However, a 

prevailing theme is the need to adopt approaches that allow us to capture the complex causal 

pathways underlying the relationships between meteorological conditions and diarrheal 

diseases [3••, 51••, 73]. In addition, there is a need to evaluate the concurrent impacts of 

multiple meteorological exposures, such as the combined effects or interactions between 

temperature and rainfall.

Question II. How are waterborne disease rates expected to change under 

future climate scenarios?

For over a decade, scientists and policy makers have been interested in estimating the health 

impacts of climate change by projecting disease burden under future climate scenarios [1, 

12]. Robust projections would enable estimates of deaths and disability averted through 

policies to reduce emissions; as well as identification of particularly vulnerable regions and 

prioritization of adaptation strategies for high-impact climate-sensitive diseases. One 

approach to this is the use of a comparative risk assessment framework, a method that has 

been widely used to estimate the global health impacts of an array of risk factors (from 

cigarette smoking to unsafe water and sanitation) [74–76]. The method is appealing in the 

context of climate health estimates, as it has the potential to provide quantitative estimates of 

disease burden under an array of future climate projections. The method requires estimates 

of disease burden, population exposure (in the case of climate change, this is defined as a 

given meteorological exposure under a future climate scenario), as well as estimated 

relationships between the exposure and outcome of interest. However, this last component 

has proven most challenging.

Early efforts to project disease burden under future climate scenarios used estimates of the 

relationship between climate and diarrheal diseases from studies designed to address 

Question I [12, 19, 76]. These estimates often depended upon single global parameters that 

assumed linear exposure-disease relationships and homogeneity across diarrheal pathogens 

and geographic regions. These projections were also limited by the sparse empirical climate-

health data available, leading to “large uncertainties associated with future projections of 

diarrhea and climate change” [19]. As several of the original authors acknowledged and the 
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more recent literature supports, the relationships between climate and enteric pathogens are 

complex and often non-linear, making future predictions a challenge. For diarrheal diseases, 

the direction of temperature-disease relationships varies by causative agent, with bacterial, 

protozoan, and viral diarrhea pathogens sometimes showing opposite patterns. For rainfall 

the effects are also often non-linear [3••]. A common theme that emerged from our 

systematic review is that the effects of heavy rainfall on diarrhea are magnified after dry 

periods, suggesting that models should incorporate antecedent conditions [3••].

Nonetheless, more recent work demonstrates possible approaches to projecting diarrheal 

disease burden under future climate scenarios. In Philipsborn et al. (2016) [21•] we projected 

almost 800,000 additional cases of enterotoxigenic E. coli-associated diarrhea in the near 

term, and 2.2 million additional cases by the end of the century under future climate 

scenarios in Bangladesh, using a comparative risk assessment approach [21•]. In this 

example we traded off a global scale-project for one that is specific to a region and 

pathogen. While these estimates depend on various assumptions and persistence of current 

water, sanitation and hygiene (WASH) and other conditions, and therefore have a high 

degree of uncertainty, they still illustrate the scale of potential public health impact that new 

climate scenarios could have on diarrheal disease incidence for one particular pathogen in 

one country. Adopting parameter estimates appropriate for defined subgroups may lead to 

more robust (albeit computationally intensive or regionally focused) projections.

Question III. How do social & environmental factors modify the association 

between weather and waterborne disease incidence?

A community’s vulnerability to climate change is determined not only by exposure to 

changing weather patterns, but also is a function of the community’s sensitivity and adaptive 

capacity (Figure 1), i.e., the social and environmental conditions that affect pathogen 

exposure, host susceptibility, and a community’s ability to respond to stress. Mellor et al. 

(2016) [73] point out that there is a poor mechanistic understanding of the underlying 

disease transmission processes and substantial uncertainty surrounding current estimates, 

and argue that systems-based mechanistic approaches incorporating human, engineered and 

environmental components are needed.

Social factors related to sensitivity, such as water and sanitation infrastructure and healthcare 

access, and adaptive capacity, including available resources with which to intervene to 

prevent increased disease burden, are critical in determining the extent to which a population 

will experience the health impacts from changing climatic conditions, and how severe of an 

environmental exposure will cause a health effect. Low-income countries, with minimal 

water and sanitation infrastructure and poorly developed health systems, may experience 

health effects from even small changes in temperature or rainfall. Areas with minimal water 

and wastewater treatment are more vulnerable to the direct effects of these exposures, 

especially because baseline rates of disease are often high in these settings. High-income 

countries may still experience health impacts from changing meteorological conditions (e.g., 

[68•, 69]), but they are buffered by water and sanitation infrastructure that prevents 
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transmission of waterborne diseases, leading to a higher threshold of exposure for impacts to 

be felt.

In terms of water service treatment and distribution, concerns for climate change focus on 

surface water sources (impairment and supply issues), as well as impacts on surface water 

treatment, groundwater sources, and water supply infrastructure. For sanitation services, 

climate change is expected to have “a mix of positive and negative” effects. The impacts will 

depend on the nature of changes that are likely to occur, and the type of technology in use, in 

a particular region. For example, for communities that rely on onsite sanitation systems 

regions with drying trends may experience reductions in groundwater contamination 

whereas regions annual rainfall increases or increased high intensity rainfall may be 

vulnerable to increased contamination. However, the literature on climate impacts on 

sanitation is vastly understudied [77••].

The IPCC recognizes the importance of broader factors in determining the health impacts of 

climate change, stating that “vulnerability encompasses a variety of concepts and elements 

including sensitivity or susceptibility to harm and lack of capacity to cope and adapt” [78]. 

Yet surprisingly few studies in this field included socio-economic indicators (e.g., access to 

water, index of poverty, age, education, human mobility) in their analysis, as documented by 

Lo Iacono et al. [51••] less than 10% of studies in their review included a variable related to 

index of deprivation/poverty, access to water/type of source water, land use, population 

density, education, or human mobility.

There are notable examples of where variables related to social vulnerability have been 

successfully included in analysis of climate-diarrhea relationships. Examples include 

considerations of variability in the relationship between meteorological conditions and 

diarrheal diseases by levels of household water treatment [79], population density [80•], 

increased vulnerability of subgroups [81, 82], and combined sewer overflows [68•, 69]. In 

low-income settings, studies have also examined factors such as water fetching distance 

[83], which could be exacerbated by drought, the impact of rainfall on fecal contamination 

of household wells [84], and water source switching from wells to source water during dry 

periods [85]. These studies go beyond establishing weather-disease associations to identify 

critical population vulnerabilities and incorporate them into analysis.

With respect to incorporation of variables related to environmental conditions, a handful of 

recent reviews and primary papers have an explicit focus on biological mechanisms and 

transmission processes underlying epidemiological associations between climatic factors 

and diarrhea. Most reviews in this area have been limited in geographical scope or focus on 

a particular transmission mode. Sterk et al. (2013) [52] carried out a systematic review of 

climate variables affecting pathogen input and behavior in aquatic environments, with a 

primary emphasis on The Netherlands. This review combines water-borne disease outbreak 

epidemiology with known pathogen behaviors illustrated in a conceptual model and 

highlights the need for quantitative modeling approaches to measure the sometimes 

counteracting effect of climate change on infection risks [52]. For example, summer 

droughts could concentrate pathogens due to lower river discharges, leading to increased 

infection risks, but could also increase inactivation of pathogens via increased temperatures 
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and residence times, leading to decreased infection risks. Several other reviews have focused 

on risks to food safety as it relates to climate, which has been shown to influence 

environmental dispersal and persistence of foodborne pathogens [86–89]. In our systematic 

review, we developed a conceptual diagram illustrating potential causal pathways between 

meteorological conditions and diarrheal disease outcomes, based on literature supporting 

these biophysical and behavioral explanatory mechanisms [3••]. For example, heavy rainfall 

events may saturate subsurface soils, leading to mobilization of pathogens and increasing 

human contact with pathogens in low-income settings with minimal water treatment 

infrastructure. In settings with water treatment infrastructure, heavy rainfall events may 

increase turbidity of source water, overwhelming water treatment facilities.

Question IV. What interventions should be prioritized to reduce 

vulnerability to increased waterborne disease rates under future climatic 

conditions?

Early efforts to project disease burden under future climate scenarios (Question II) used 

parameter estimates from studies designed to address Question I. However, it is increasingly 

clear that the impact of climate on diarrheal diseases depends on social and environmental 

conditions that affect pathogen exposure, host susceptibility, and a community’s ability to 

respond to stress (Question III). This justifies a more nuanced framing of the research 

questions to understand these modifying factors (Question IV). While this adds analytical 

complexity, social and environmental factors that are shown to modify relationships are the 

levers upon which we can act to ameliorate future negative impacts as well as variables we 

can use to define vulnerable populations. Lo Iacono et al. [51••] review some of the model 

structures available to address both environmental and social complexities, and we highlight 

a few recent papers that employ methods to incorporate social and environmental nuances 

into future projections.

Work by Hodges et al. (2014) demonstrates the potential of this approach [90•]. Based on 

evidence that the impact of temperature on waterborne-disease may be lower in populations 

with greater access to safe water and sanitation infrastructure, the authors projected 

waterborne disease burden across China under future emissions scenarios using three 

different data-driven water and sanitation infrastructure investment scenarios (maintenance, 

linear growth and exponential growth). For each future emissions scenario, waterborne 

disease burden was lowest under the most aggressive water and sanitation investment 

scenario, demonstrating the potential of water and sanitation interventions to reduce the risks 

posed by climate change. The approach provides a framework for understanding the 

potential of an adaptation strategy such as water and sanitation infrastructure investment to 

reduce climate vulnerability. Improved estimates of the role of water and sanitation, as well 

as other social and environmental variables, in modifying climate-disease relationships, will 

improve such projections and ultimately provide quantitative estimates of policy impacts, 

allowing evaluation of both emission reduction and adaptation strategies.

Mellor et al. 2016 [91] developed a partially mechanistic, systems approach to estimate 

future diarrhea prevalence and design adaptation strategies in Hubli-Dharwad, India, a city 
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with an intermittent piped water supply exhibiting seasonal water quality variability 

vulnerable to climate change. They used an agent-based model [92], simulating the 

exposures and disease status of a set of individuals to estimate disease rates in a complex 

system, using downscaled global climate models, water quality data, quantitative microbial 

risk assessment, pathogen prevalence, precipitation data, and detailed information on 

diarrhea etiology. They estimated increases in diarrhea prevalence in the near and long term, 

and based on heterogeneities in response by pathogen, were able to suggest ceramic water 

filters over chlorination as the most effective climate adaptation strategy for water treatment 

in this setting. While computationally intensive, this approach allows the integration of 

diverse datastreams, from climate data to demographic data, and can account for complex, 

non-linear relations common in waterborne disease systems.

Another recent example comes from Stephen and Barnett [93] who used microsimulation 

models [94] to estimate the future health and economic costs of salmonellosis in Central 

Queensland from 2016 to 2036 under baseline and climate change scenarios. Similar to 

agent based models, these models simulate the exposures and disease status of individuals 

within a population and can account for changes in the size of the at-risk population due to 

transitions from one health state to another, as well as changes in higher- or lower-risk 

subpopulations due to demographic shifts, such as shifts in the underlying age structure of a 

population related to projected changes in birth and death rates. The models are based on 

increased foodborne transmission due to increased growth of Salmonella in food products, 

as well as increased waterborne transmission due to contamination of water sources as a 

function of altered rainfall. The authors estimate the years of quality life lost because of 

salmonellosis and its sequelae according to age, sex, and specific disease outcomes, after 

accounting for changes in incidence as a consequence of climate change, with the goal of 

informing strategies to reduce the incidence and costs of salmonellosis in the future. Results 

for salmonellosis through 2036 in Central Queensland suggest that health and economic 

costs are likely to be higher under the climate change scenario than under a scenario that 

assumes no changes in climate, and the findings help quantify the potential health and 

economic impacts of preventive measures such as food hygiene improvements.

Moving toward interventions

The social and environmental components of climate-disease relationships are particularly 

relevant because they drive disease dynamics (e.g., 80•), and they provide levers upon which 

we can act to ameliorate future negative impacts of climate change on disease risks. As our 

understanding of the relationship between climate change and waterborne diseases matures, 

we are increasingly able to evaluate the potential impacts of interventions to reduce disease 

risks from climate change. We argue that the most pressing research priorities in the field are 

to address the social and environmental components of climate-disease relationships 

(Question III) and project the impacts of interventions to reduce climate vulnerability 

(Question IV).

This requires focusing on causal pathways by which climate impacts pathogen exposure and 

disease outcomes, and employing systems-based approaches and process-based models that 

incorporate meteorological, health, demographic, engineering and environmental data [51••, 
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73]. Clarifying these pathways will allow for better design of intervention studies to reduce 

vulnerabilities in areas at risk of increased waterborne diseases as climate gradually changes, 

as well as in preparation for responding to meteorological extremes. Strategic research can 

help identify the areas most vulnerable to increases in disease risks and the interventions 

most likely to reduce vulnerability, making it possible to prioritize effective interventions in 

high risk communities, to build resilience to climate change.

Even in areas served by advanced sanitation and drinking water systems extreme 

precipitation events, flooding, and storm surges, which are increasing in frequency due to 

climate change, present an increased risk in infrastructure disruption, failure and/or 

exceedance of system capacity, [95–97]. Important early work by Curriero et al. (2001) [14] 

improved our understanding of the impacts of heavy rainfall on risk of waterborne disease 

outbreaks in the United States, and this now allows for adaptive management of water 

utilities. For example, in order to assess how future rainfall patterns might affect sewer 

capacity, Milwaukee was one of the first cities to integrate regional climate projections into 

its engineering models [98].

Conversely, public health programs focused on addressing social conditions should also 

consider how meteorological variables might affect the success of these programs. A recent 

analysis concluded that not including rainfall in estimates of the health impacts of WASH 

interventions can bias estimates of the intervention’s impact, suggesting that rainfall is an 

unappreciated confounder in child health intervention studies [99•].

Integrating knowledge of differing types of systems—biological, social, engineering—can 

improve our ability to estimate the health impacts of future climate conditions and extreme 

weather events and act to reduce vulnerability. This is a priority in both international and 

domestic contexts. Howard et al. (2016) [77••] review how water and sanitation services can 

be adapted or managed in the face of climate change. They highlight various mechanisms 

and planning processes to build climate resilience, including increased investment in water 

resources assessment and accounting; use of climate-resilient water safety plans as a risk 

management tool; a focus on utility management organization, with central support for 

decentralized management structures; and development of public-private partnerships to 

increase resilience of systems, including through investments in disaster risk reduction, 

delivery of services to the underserved, and use of microfinance and microinsurance 

mechanisms. The development of a water safety plan (WSP) outlined in the WHO Climate-

resilient water safety plans [100•] provides a systematic framework to manage climate 

change risks with an emphasis on identification of hazardous events and the development 

and implementation of control measures. There are now many examples of plans for climate 

resilience from water utilities in developed countries, particularly Western Australia and The 

Netherlands, which primarily focus on alternative source development to produce lower-risk 

source waters. However, similar plans for lower income countries are lacking [77••]. Howard 

and Bartram have contributed useful work for these settings on the resilience of water and 

sanitation technologies and management systems under a number of climate scenarios [101, 

102].
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In addition to policy mechanisms to increase resilience of systems, some examples of 

engineering approaches include source, treatment, distribution, and point-of-use control 

measures that may be implemented to manage microorganism proliferation in drinking 

water. Examples include (but are not limited to) abstraction of source water from cooler 

depths; introduce or increase secondary booster disinfection; design or modify system to 

reduce residence times within pipes, and/or coat exposed pipes and tank roofs with white 

paint to reduce heat absorption resulting in reduced internal temperature thus reduced 

bacterial growth [100•].

Conclusions

Sufficient evidence has accrued to suggest that climate, especially heavy rainfall and high 

temperatures, have the potential to increase the risk of diarrheal diseases, one of the largest 

components of waterborne disease burden. Based on the accumulated evidence to date, we 

argue that the field is at a point of transition, from studies establishing associations between 

climatic conditions and water-borne disease outcomes (Question I) and simply projecting 

forward those associations (Question II), to studies that incorporate social and environmental 

processes (Question III), and incorporate these factors into future projections and adaptation 

planning (Question IV). Research efforts can now turn to identifying how and where to 

intervene to reduce risk in the most vulnerable populations.
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Figure 1. 
Social vulnerability to climate change is a function not only of exposure to changing 

weather patterns, but also the community’s sensitivity and adaptive capacity.
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Table 1.

Research questions addressed by inclusion of data from different time points and inclusion of variables 

addressing different components of social and ecological vulnerability

Historic Conditions Future Conditions

Climatic Drivers I. What is the relationship between observed weather 
and waterborne disease incidence?

II. How are waterborne disease rates expected to 
change under future climate conditions?

Climatic Drivers + 
Social/Ecological 
Mediators

III. How do social and/or ecological factors modify the 
association between observed weather and waterborne 

disease incidence?

IV. What interventions should be prioritized to reduce 
vulnerability to increased waterborne disease rates 

under future climatic conditions?
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