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Abstract

Rapid emergence of most vector-borne diseases (VBDs) may be associated with range

expansion of vector populations. Culex quinquefasciatus Say 1823 is a potential vector of

West Nile virus, Saint Louis encephalitis virus, and lymphatic filariasis. We estimated the

potential distribution of Cx. quinquefasciatus under both current and future climate condi-

tions. The present potential distribution of Cx. quinquefasciatus showed high suitability

across low-latitude parts of the world, reflecting the current distribution of the species. Suit-

able conditions were identified also in narrow zones of North Africa and Western Europe.

Model transfers to future conditions showed a potential distribution similar to that under

present-day conditions, although with higher suitability in southern Australia. Highest stabil-

ity with changing climate was between 30˚S and 30˚N. The areas present high agreement

among diverse climate models as regards distributional potential in the future, but differed

in anticipating potential for distribution in North and Central Africa, southern Asia, central

USA, and southeastern Europe. Highest disparity in model predictions across representa-

tive concentration pathways (RCPs) was in Saudi Arabia and Europe. The model predic-

tions allow anticipation of changing distributional potential of the species in coming

decades.

Introduction

Mosquitoes are well known as vectors of many human and animal pathogens worldwide. The

world has seen recent outbreaks and emergences of several tropical diseases caused by arbovi-

ruses and transmitted by mosquitoes. Species of the Culex pipiens complex transmit major etio-

logical agents of human and animal diseases:West Nile virus (WNV), Saint Louis encephalitis
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virus (SLEV), Sindbis virus, Rift Valley fever virus (RVFV) and lymphatic filariasis (LF) [1, 2].

Cx. pipiens is the most widely distributedmosquito worldwide. It comprises a complex of sub-

species or forms, including Cx. pipiens Linnaeus 1758, Cx. quinquefasciatus Say 1823, Cx.

pipiens pallens Coquillett 1898, and Cx. australicus Dobrotworsky & Drummond 1953. These

mosquitoes are closely associated with human disease in many regions [3, 4]. The Cx. pipiens

complex is viewed as a questionable point in mosquito taxonomy, because species (or forms)

are indistinguishablemorphologically and can be separated only by molecular analysis [5, 6] or

details of behavioral and physiological characteristics [7].

In terms of geographic distribution,Cx. quinquefasciatus differs from Cx. pipiens in that the

former is most prevalent in tropical and sub-tropical areas [8, 9]. In the southern United States,

Cx. quinquefasciatus is the primary vector of Saint Louis encephalitis virus andWest Nile virus

[10–12]. Culex quinquefasciatus is identified as the major vector of the filarial nematode,

Wuchereria bancrofti (Cobbold, 1877) in Brazil [13], tropical Africa, and Southeast Asia [12],

and RVFV in Africa [14, 15].

Recently, Ayres [16] raised the possibility of Cx. quinquefasciatus may be involved in Zika

virus (ZIKV) urban transmission in Brazil, where its abundance is approximately 20-fold

higher than the known ZIKV vector, Aedes aegypti. ZIKV infection has been associated with

neurological complications, such as Guillain-Barré syndrome and also with a severe malforma-

tion, fetal microcephaly [17, 18]. Currently, ZIKV is spreading globally, and ZIKV outbreaks

have been reported in 65 countries [19]. Experimental studies of vector competence have con-

firmed that C. quinquefasciatus can disseminate and transmit ZIKV [20]. Ongoing projects are

attempting to detect ZIKV in natural Culex populations in areas where epidemics are occur-

ring, to provide the final piece of evidence for this hypothesis.

Vector-borne diseases are vulnerable to climate changes and may emerge in response to

global warming [21], such that patterns of transmission of WNV and other diseases are likely

to change in coming decades [22]. This effectmay result from expansions of vector ranges,

which place non-endemic areas at risk if sources of infections are available [23]. Studies of field

populations of Culexmosquitoes in general have revealed that increases in temperature are

likely to accelerate mosquito development [24], increase vector abundance, and lead to emer-

gence of diseases [22]. For example, in WNV epidemiology [25] rising temperature and

changes in rainfall allowed circulation of WNV in different areas in southern USA, Europe,

western Asia, and the easternMediterranean [26]. In addition, transmission of WNV can be

accelerated with increasing temperatures, as demonstrated by Kilpatrick et al. (2008) [27] for

West Nile Virus in Culex pipiens.

Important knowledge gaps remain regarding effects of climate and climate change on emer-

gence of several vector-borne diseases in the world. Here, we provide detailed global maps of

current potential distributions of Cx. quinquefasciatus, the potential vector for WNV, SLEV,

and LF, and examine possible changes in the potential distribution of the species under future

climatic conditions, based on outputs of 11 general circulationmodels (GCMs) and 4 represen-

tative concentration pathways (RCPs).

Materials and Methods

Occurrence data

Occurrence records for Culex quinquefasciatus were obtained from VectorMap (www.

vectormap.org), the Global Biodiversity Information Facility (GBIF;www.gbif.org), and the

PubMed database using the search term “Culex quinquefasciatus”. We included all records

with geographic coordinates, and filtered data to eliminate duplicate records in the final data
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set. The final records of Cx. quinquefasciatus were divided into two halves: 50% for calibrating

ecological niche models for the species, and 50% for evaluating predictions of those models.

Climatic data

Data fromWorldClim (www.worldclim.org) were used to characterize current global climates,

including 19 bioclimatic variables originally derived frommonthly temperature and rainfall

values collected from weather stations in 1950–2000 [28]. The data are available at three spatial

resolutions; we selected the coarsest (10’), in light of the global extent of our model calibration

area. To characterize influences of climate change on the distribution of Cx. quinquefasciatus,

we selected parallel data sets for four representative concentration pathways (RCPs; RCP 2.6,

RCP 4.5, RCP 6.0, and RCP 8.5) accounting for different future emission scenarios from the

CoupledModel Intercomparison Project Phase 5 (CMIP5) available inWorldClim archive.

For each RCP, we included 11 GCMs for which data for all RCPs were available, for a total of

44 combinations (S1 File). Bioclimatic variables 8–9 and 18–19 were omitted from analysis, in

light of known spatial artifacts in those variables. The remaining of 15 variables were submitted

to a principle components analysis (PCA) to reduce the dimensionality and avoid multicolli-

nearity between variables [29]. The component loadings in the present-day data were used to

transform future-climate data using the PCAProjection function in ENMGadgets [30] in R

software version 3.2.0 [31].

Ecological niche modeling

The Grinnellian ecological niche of Cx. quinquefasciatus was estimated using the maximum

entropy algorithm implemented in Maxent v3.3.3e [32]. The Grinnellian niche is characterized

as the set of environmental conditions needed by the species to maintain populations without

immigrational subsidy [29]. The models were calibrated based on the first six principal compo-

nents from the PCA analysis described above, and then transferred to our 44 views of potential

future conditions. We ran 100 bootstrap replicates in Maxent, and the median output was used

in analyses. The median of medians across all GCMs for each RCP was as a best guess of condi-

tions under that RCP, and final models were thresholded based on a maximum allowable omis-

sion error rate of 5% (E = 5%; [33]), assuming that up to 5% of occurrence data may include

errors that misrepresented environmental values. Uncertainty associated with the models was

estimated as the range (maximum–minimum) of suitability across models for each RCP [34].

The model performance was evaluated using partial receiver operating characteristic (ROC)

statistics applied to the 50% subset of occurrences left out before model calibration for testing.

This approach avoids possible errors raised with traditional ROC provided in Maxent outputs

[35]. Partial ROC statistics was calculated using the PartialROC function available in

ENMGadgets package.

Results

We assembled 1402 occurrence records for Cx. quinquefasciatus. The full data set is available at

https://dx.doi.org/10.6084/m9.figshare.3487046. Overall, the distribution was concentrated on

southern continents, although the species was well represented in North America and southern

Asia (Fig 1).

The potential distribution of Cx. quinquefasciatus under present-day conditions showed

high suitability across southern North America, much of South America, sub-Saharan Africa,

south Asia, and most of Australia and New Zealand (Fig 2). Parts of West Africa,Western

Europe, and East Asia were modeled as suitable environmentally, although few occurrence
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points came from these areas. Model predictions performed better than random expectations,

based on the partial ROC test (P< 0.001).

Transferring the Cx. quinquefasciatus model to future conditions showed an overall distri-

butional pattern similar to that under present-day conditions; however, the species showed

higher suitability in southern Australia under future conditions (Fig 3). The future potential

distribution was thus estimated as including the southern United States, Central and South

America, central and southern Africa, South Asia, and Australia.

Fig 1. Summary of 701Culex quinquefasciatus occurrences available for model calibration.

doi:10.1371/journal.pone.0163863.g001

Fig 2. Current potential distribution ofCulex quinquefasciatus based on present-day climatic conditions. Blue shaded areas were modeled as
suitable; white areas were modeled as unsuitable.

doi:10.1371/journal.pone.0163863.g002
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The potential distributional area of Cx. quinquefasciatus increased from present-day condi-

tions to RCP 6.0, and then decreased in RCP 8.5. Area increased by 4.9% from present-day

conditions to RCP 6.0 then decreased by 1.3% from RCP 6.0 to RCP 8.5 (details for each GCM

are presented in supporting information 2). Detailedmaps of Cx. quinquefasciatus model sta-

bility in coming decades (Fig 4) illustrate differences among RCPs. Highest stability of the

models among present-day and future conditions appeared in the belt between 30°S and 30°N,

which includes much of South America, central and southern Africa, South and East Asia, Aus-

tralia, and New Zealand. The same pattern of suitability was also observed in a narrow zone in

Western Europe and the southern United States. Areas presenting full agreement among all

future climate models in anticipating distributional potential in the future include only Kanga-

roo Island (Australia), Somalia, and Colombia. Areas showing low agreement (= high uncer-

tainty) among climate models as regards distributional potential in the future included North

and Central Africa, Afghanistan, Pakistan, the central United States, and southeastern Europe.

Interactive maps for present-day and future distribution of Cx. quinquefasciatus are presented

in the supplementary materials (S3–S7 Files).

The study provided uncertainty estimates associated with different circulationmodels in

each RCP (Fig 5). Highest variation in model predictions across all RCPs was observed in East

Asia, the Arabian Peninsula, central North America, western South America, and Europe.

Discussion

This study assembled a global data set summarizing occurrences of Cx. quinquefasciatus, and

provided detailedmaps of its potential geographic distribution under current and future cli-

matic conditions. The latter objective is important to anticipating any possible future distribu-

tional changes of Cx. quinquefasciatus. These maps (1) give a detailed picture of the current

distribution of Cx. quinquefasciatus, which is a potential vector for several arboviruses and

lymphatic filariasis; (2) anticipate possible changes in the range of the species under future con-

ditions; (3) identify areas of risk where diseases transmitted by this vector can be established

with availability of infection sources through human dynamics; and (4) identify countries with

priorities for Cx. quinquefasciatus surveillanceprograms where data are unavailable (e.g.,

Western Europe). The predicted distribution of the species was focused in southern regions of

the world, both under present-day and future conditions.

However, closely related species of Culexmosquitoes are distributed differently [36], and

hybrid zones of Cx. pipiens and Cx. quinquefasciatus have been reported to occur in Madagas-

car, North America, and Argentina [5, 37, 38]. Hybrid zone areas in the eastern United States

[39] were identified as showing high suitability for occurrence of Cx. quinquefasciatus in our

study.

No previous reports have placed the species in Europe or North Africa; the closest area

where the species occurredwas in Turkey [40]. Our models revealed environmental suitability

for the species’ occurrence in parts of Europe and North Africa. Hence, either the species is

present there but not documented owing to difficulties in morphological identification of the

members of species complex (i.e. the species in the complex are nearly morphologically identi-

cal; [5]), or it is absent but vulnerable to possible introduction from Turkey or elsewhere. The

behavior and physiology of Cx. pipiens complex in Europe and USA are different [41], and

gene flow between species in the complex has been reported [41].

Fig 3. Predicted future potential distribution ofCulex quinquefasciatus under four future
representative concentration pathways of climate conditions. Red areas are modeled suitable
conditions; white areas are unsuitable conditions.

doi:10.1371/journal.pone.0163863.g003
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The global distribution of Cx. quinquefasciatus presents a risk for introduction and trans-

mission of WNV in novel areas [41], such as Brazil, Peru, Australia, and New Zealand. Possible

expansion of the range of Cx. quinquefasciatus may place still more countries at risk of expo-

sure: for example, higher summer temperatures have been identified as a key factor associated

withWNV expansion in British Columbia in Canada [42]. WNV outbreaks in Europe have

been nonrecurring and localized; however, they have been enzootic and widespread in USA

[41]. This pattern of disease spread may be a reflection to the distributional pattern of key vec-

tor populations or may reflect the recency of its establishment in North America.

Early studies suggested that warmer conditions are drivers of mosquito abundance [43–45];

however, other studies suggested a delay in the start of the breeding season of Cx. quinquefas-

ciatus in sites presenting a dry and hot spring and summer, but extensions in the season with

fall rains and higher temperatures [46]. Our prediction suggested suitability of occurrence of

Cx. quinquefasciatus in regions with lower temperatures than in tropical and subtropical

regions. Generally, Cx. quinquefasciatus is likely to experience decreased survival as a result of

elevated temperatures [47]. A previous study showed a tripling in rates of development, fecun-

dity, and feeding with higher temperature [47]. Although climate change likely will affect the

biology of Cx. quinquefasciatus directly, distributional changes in response to elevated temper-

atures will likely be manifested. Climate change can thus trigger changes in the distributional

patterns of Cx. quinquefasciatus, but these changes will be strongly dependent on the location

and timing of climate changes [46]. Other environmental effects are on survival, reproductive

rate, and vectorial capacity to transmit pathogens; for example, higher temperatures increase

pathogen proliferation, and therefore vector competence [27, 48, 49].

Understanding vector distributions is important to understanding dynamics of pathogen

transmission. In our analyses, suitable areas were identified for Cx. quinquefasciatus in central

and southern Africa,Madagascar, and North Africa (i.e., northern Egypt, Libya, Tunisia, and

Morocco). North African countries should be considered as priority in surveillanceof this spe-

cies. Establishment of integrated surveillanceprograms to improve mosquito data was one of

the objectives for the MediLabSecureproject launched for the Balkan region [50].

Conclusions

The integrated maps of current and future distributions of Cx. quinquefasciatus can guide bet-

ter applications of vector surveillance and disease control programs across the world. The

distributionalmaps of Cx. quinquefasciatus can be also useful to the Global Lymphatic Filaria-

sis Elimination Programme (GLFEP), which considers control of Cx. quinquefasciatus as an

important element in control efforts in most endemic countries [51]. These maps are also key

elements in recent events in which arboviruses have emerged worldwide. This study can guide

control programs and surveillancepriorities, which are primarily dependent on identification

of suitable areas where the vector occurs or may occur. Finally, it is important to highlight that

if Cx. quinquefasciatus is proven to be functioning as a ZIKV vector, the disease control strate-

gies will change dramatically, since most affected countries have no control program targeting

this species. In this case, these maps will form a baseline by which to anticipate areas at ZIKV

risk and will help in response to the disease outbreak.

Fig 4. Summary of the modeled global distribution ofCulex quinquefasciatus under both current and
future climatic conditions to show the stability of predictions at present and into the future, and to
illustrate differences among representative concentration pathways (RCPs).Dark blue represents model
stability under both current and future conditions, dark red represents agreement among all climate models in
anticipating potential distributional areas in the future, and light red indicates low agreement between diverse
climate models as regards distributional potential in the future.

doi:10.1371/journal.pone.0163863.g004
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Fig 5. Uncertainty estimates associated with Culex quinquefasciatus nichesmodels under future
conditions represented by four representative concentration pathways.

doi:10.1371/journal.pone.0163863.g005
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