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Abstract Agriculture is the human enterprise that is most vulnerable to climate change.

Tropical agriculture, particularly subsistence agriculture is particularly vulnerable, as

smallholder farmers do not have adequate resources to adapt to climate change. While

agroforestry may play a significant role in mitigating the atmospheric accumulation of

greenhouse gases (GHG), it also has a role to play in helping smallholder farmers adapt to

climate change. In this paper, we examine data on the mitigation potential of agroforestry

in the humid and sub-humid tropics. We then present the scientific evidence that leads to

the expectation that agroforestry also has an important role in climate change adaptation,

particularly for small holder farmers. We conclude with priority research questions that

need to be answered concerning the role of agroforestry in both mitigation and adaptation

to climate change.
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1 Introduction

Developing countries are going to bear the brunt of climate change and suffer most from its

negative impacts. Global conventions are not sufficiently effective to halt the increase of

atmospheric greenhouse gases (GHG) concentrations, and we now accept that the primary

drivers of climate change are not going to stop. Mitigation efforts will therefore only

provide a partial softening of the effects of climate change. Local climates and terrestrial

ecosystems will change, threatening biota and human livelihoods. Yet, even as climate

changes, food and fiber production, environmental services and rural livelihoods must

improve, and not just be maintained. The status quo in the developing world is not

acceptable. Developing countries are faced with urgent needs for development, to improve

food security, reduce poverty and provide an adequate standard of living for growing

populations.

Large percentages of the populations of developing countries depend upon agriculture

for their livelihoods. Climate change is already affecting agriculture in these countries

negatively and this situation is likely to worsen. Much effort will be needed to integrate

what is known about likely climate change into national development planning (Abey-

gunawardena et al. 2003). Mitigation measures in the agriculture and forestry sectors are

generating much interest as a potential source for additional income to otherwise weak

rural areas and as a means of fueling adaptation to climate change. Within the United

Nations Framework Convention on Climate Change (UN FCCC) negotiation process, the

development of mitigation and adaptation activities has been dealt with as separate matters,

and adaptation was largely ignored in favor of mitigation. It is only recently that adaptation

measures were given more importance in the UNFCCC negotiations (see UNFCCC COP8

and the Delhi Declaration).

The discussion of the potential synergies between adaptation and mitigation measures is

only just starting and the debate is all too often reduced to a discussion of the costs of

global adaptation versus global mitigation. Recent debates within the UNFCCC process on

the relation between global adaptation and mitigation measures lack substance due to lack

of pertinent experience on the ground. Discussions are often treated in a very generalized

manner and are not specifically related to distinct sectors such as agriculture or forestry. A

practical understanding of the link between adaptation and mitigation measures does not

yet exist. However, for some decades now agricultural research has been focusing on the

questions of increasing the resilience (against drought, erosion, fertility loss, etc.) and

productivity of agricultural systems. Increasing system resilience is directly related to

increasing the adaptive capacity of farmers.

Agroforestry provides a particular example of a set of innovative practices that are

designed to enhance productivity in a way that often contributes to climate change mitigation

through enhanced carbon sequestration, and that can also strengthen the system’s ability to

cope with adverse impacts of changing climate conditions. This paper looks into the adap-

tation and mitigation functions of agroforestry systems, reexamines the concept of sustain-

ability and explores how agroforestry systems (and other innovations for that matter) might

enhance resilience and thereby reduce vulnerability of smallholder farmers in the tropics.

2 The expected impacts of climate change on agricultural production

While there have been gains in recent years, more than 800 million people in the world are

still chronically malnourished, and 1,100 million live in absolute poverty (FAO 1999).
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Large percentages of the populations in developing countries derive their livelihoods from

agriculture and are therefore particularly vulnerable to climate change. Populations of

developing countries, particularly in South Asia and sub-Saharan Africa continue to grow

at high rates, while the extent of harvested areas has stagnated or is decreasing in many

grain producing areas of the world (Mann 1997). To feed everyone adequately, world food

production will have to double within the next 30 years (Cleaver and Schreiber 1994). But,

the shortfall in domestic cereals production in the developing world is expected to widen

from around than 100 million tons in 1997 to around 190 million tons in the year 2020

(Rosegrant et al. 2001). In many regions of the world, there will be a limited ability for new

varieties and increased fertilizer use to further increase yields (Huang et al. 2002). On top

of this, degradation of soil and water resources has reached alarming proportions (Vasil

1998; Smaling et al. 1997) and will undermine future efforts to boost agricultural pro-

ductivity.

Climate change will add additional stress to an already overtaxed system. The risk of

losing the gains of the Green Revolution, which has largely eliminated the famines of the

1950s and 1960s is real. For example, projections suggest that the South Asia summer

monsoon will be delayed and become less certain, and that temperature increases will be

most intense during the winter season (Lal et al. 2001). Several modeling studies that

combine spatial analysis with an analysis of the physiological effects of changes in CO2,

rainfall and temperature have been done in South Asia to assess the impact of climate

change on crop production (Aggarwal and Sinha 1993; Rao and Sinha 1994; Kropff et al.

1996; Berge et al. 1997; Saseendran et al. 2000; Aggarwal and Mall 2002). These studies

have shown a decrease in the growing season and yield of most crops as temperature

increases. Such reductions were only partially offset by a positive response to increased

CO2 concentrations.

Farmers in the developing world already have a number of sustainability challenges,

and climate change will affect a number of these (Table 1). For example, climate change

will affect pest and disease incidence and virulence in ways that are poorly understood at

present. Diseases and insect populations are strongly dependent upon temperature and

humidity, and changes could alter their distributions and virulence. For example, at 168C
the length of the latent period for yellow rust is small, but increases as temperature exceeds

Table 1 Examples of stress
factors affecting smallholder
farmers in the tropics with
indications of the impact of
climate change on the stress
factors

Stress factor Climate
signal

Land access No

Markets (inputs, outputs; access, prices) Yes

Knowledge (basic principles, innovative cap.) No

Technologies (strategic & tactical interventions) No

Water (drought, flooding, irrigation, drainage) Yes

Soil fertility Yes

Pest & disease Yes

On-farm labor (household size, off-farm activities,
illness)

No

Weeds Yes

Potential production of germplasm used Yes

Dissatisfied customers No
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188C (Nagarajan and Joshi 1978). The appearance of black rust in north India in the 1960s

and 1970s was related to the temperature dependent movement of spores from south to

north India (Nagarajan and Joshi 1978).

Climate change will have a direct effect not only on rainfed crops, but also on water

storage, putting increased stress on water availability for irrigation. Since availability of

water will be limited, agriculture will compete for other uses of water, further stressing

farming systems. There will also be impacts on soil resources. Changes in precipitation

patterns and amount, and changes in temperature will influence crop growth through

changes in soil water content, runoff and erosion, workability, nutrient cycles, salinization,

biodiversity, and soil organic matter. Sea level rise will be problematic for low lying areas

and may lead to salt-water ingression rendering large areas of land unsuitable for con-

ventional agriculture.

Climate change will also severely set back agricultural development in Africa. An

analysis of maize production in the tropics by Jones and Thornton (2003) suggests that

maize production in the tropics will decline by 10% on average, but this figures masks

large variations. There will be winners and losers as climates change. For example, the

Sahel and Southern Africa regions are likely to suffer disproportionately, while the East

Africa highlands are likely to enjoy increased productivity.

Climate induced changes must be considered in light of other stress factors in today’s

world including economic globalization, urbanization and its effect on rural labor and land

availability, population growth and its effect on water and other resource availability, crop

pests and diseases, land degradation and low soil fertility, poverty, diseases such as AIDS

and malaria, etc. In some instances, the impact of additional stresses to agriculture and

rural livelihoods from climate change may be small in comparison to these other stressors.

Additionally, the gains of adapting agriculture to climate change may not be realized if

they are negated by other factors. For example, liberalized trading policies under the

compulsion of international agreements may expose the newly adapted crops/agricultural

products to open competition with products from areas that are not suffering from climate

change stress. Examples of these types of problems are already available. For example,

gains facilitated by agricultural research and development and other support systems for

oilseed crops in dry areas and apple and flower crops in hill areas in India, were nullified

once government trade policies allowed liberal imports of these products under open

general license. The new adaptation options will have to be compatible with emerging

economic changes associated with globalization. This puts still greater pressure on agri-

cultural research and development efforts devoted to identify and evolve adaptation op-

tions against climate change. New developments will have to satisfy multiple goals.

The climate change issue has presented decision makers with a set of formidable

complications. There are a considerable number of uncertainties (which are inherent in the

complexity of problem), such as: the potential for irreversible damage to ecosystems, a

very long planning horizon, long time lags between GHG emissions and effects, wide

regional variation in causes and effects, the global scope of the problem and the need to

consider multiple GHG and aerosols. Yet, an ostrich strategy of waiting until all uncer-

tainties regarding climate change have been eliminated would be very short-sighted, given

the irreversibility of current change and the response time of the ocean-atmosphere system

in global change processes. The value of better information about climate change pro-

cesses, impacts, and the response to arrest these risks is likely to be great. By identifying

the resources on which adaptation can be based we may contribute to the maintenance and

strengthening of these resources, and recognize where vulnerability will be highest.
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3 Contribution of agriculture to climate change mitigation

A number of improved farming practices can increase the sustainability of farming systems

and contribute to reducing farmers’ vulnerability to climate variability while sequestering

carbon from the atmosphere (Table 2). Generally, we have a good idea how these practices

affect C stocks in the agroecosystem (IPCC 2001). We have a much poorer understanding

of the effects of these improved practices on non-carbon dioxide (CO2) GHG. Some gen-

eralizations can help us anticipate the effects of different practices. For example, improving

soil N nutrition through fertilization of crops and pastures increases N2O (nitrogen com-

pounds) emissions from soils and sometimes decreases the soil CH4 sink (Steudler et al.

1989; Keller et al. 1990; Hansen et al. 1993; Hutsch et al. 1993, 1994; Hutsch 1996; Mosier

and Delgado 1997). In fertilized systems, N2O losses are generally on the order of 0.2–2.5%

of the applied N (e.g., Crill et al. 2000; Weitz et al. 2001). High input of N and soil

compaction can result in the reduction of sink strength of soils for CH4 and even conversion

of soils from a sink for atmospheric CH4 (methane) into a source (Hansen et al. 1993;

Dunfield et al. 1995; Palm et al. 2002). In systems where legumes are managed to contribute

to N nutrition, there is little information on the amounts of N2O produced or the effect on

CH4 consumption. Improved organic matter and flooding management in irrigated rice can

decrease CH4 emission from paddies (Wassman et al. 2000; Jain et al. 2000).

Agroforestry has a particular role to play in mitigation of atmospheric accumulation of

GHGs (IPCC 2000). Of all the land uses analyzed in the Land-Use, Land-Use Change and

Forestry report of the IPCC, agroforestry offered the highest potential for carbon

sequestration in non-Annex I countries (Fig. 1). Agroforestry has such a high potential, not

because it is the land use practice with the highest carbon density, but because there is such

a large area that is susceptible for the land use change (630 · 106 ha). Improved agro-

forestry systems that reduce the vulnerability of small-scale farmers and that help them

Table 2 Examples of
promising improved
agricultural practices and
their impact on non-CO2

GHG emissions. All of these
options increase C stocks in
the agricultural landscape
(Adapted from IPCC 2000)

Action Non–CO2

GHG

Remove marginal land from production ?

Restore degraded land +N2O

Reduced tillage ?

Decrease biomass burning ±N2O

Introduce trees into agricultural landscapes ?

Better rice management (cultivars, water
management)

+N2O -CH4

Agroforestry (better management of trees on
croplands)

?

Elimination of bare fallow ±N2O

Irrigation water Management ±N2O

Introduce forages into rotations ?

Increased grassland productivity +N2O

Erosion control ?

Increase soil P and K ?

Decrease shifting cultivation +

Animal waste recycling ±N2O

Legumes instead of N fertilizer ?
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adapt to changing conditions often meet the conditions for an eligible afforestation/

reforestation (A/R) activity in the Clean Development Mechanism (CDM). These systems

can be promoted through CDM projects to create synergies between mitigation and

adaptation and to meet the requirements that CDM projects produce social as well as

environmental benefits.

Work through the Alternatives to Slash and Burn Program (ASB) has documented

(Palm et al. 2004) the carbon sequestration potential of agroforestry systems on the

margins of humid tropical forests (Fig. 2). The carbon sequestration values for these

agroforestry systems are reported as time-averaged carbon, reflecting the fact that they are

rotational systems with repeated harvest and regrowth. Agroforestry systems in these

agroecozones generally tend to be tree-based production systems such as the jungle rubber

system of Sumatra, mixed cocoa and fruit tree plantations of Cameroon, peach palm

systems of Peru, or the pine—banana—coffee system of eastern Java. The results of this

Potential C Sequestration by 2040 (Mt C y-1)
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Fig. 1 Carbon sequestration potential of different land use and management options (adapted from IPCC
2000)
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analysis showed that conversion of primary tropical forests to agriculture or grassland

results in the loss of about 370 Mg C ha-1. Managed or logged forests have about half the C

stocks of primary forests. Agroforestry systems contain 50–75 Mg C ha-1 compared to row

crops that contain <10 Mg C ha-1. Thus converting row crops or pastures to agroforestry

systems can greatly enhance the C stored in aboveground biomass.

Agroforestry also compares well with other land-uses with respect to other GHG. In

Sumatra, a jungle rubber system had lower N2O emissions than a primary forest, but also

lower CH4 uptake (Tsuruta et al. 2000). However, agroforestry systems that include

nitrogen-fixing species may not compare as well. For example, in Sumatra, multi-story

coffee with a leguminous tree shade canopy had N2O emissions five times higher than

open-grown coffee and about half the CH4 uptake (Fig. 3. Verchot et al. unpublished data).

In Peru, agroforestry systems (multistrata coffee and a peach palm plantation) wit legu-

minous cover crops had lower N2O emissions than both intensive and low-input agricul-

ture, and similar emissions to a nearby secondary forest (Palm et al. 2002). Soil uptake of

CH4 was similar to other land-use systems, with the exception of the intensive agriculture

site, which became a net source to the atmosphere.

Also under the ASB program, Gockowski et al. (2001) conducted a tradeoff analysis

between carbon storage and profitability of different forestry and agroforestry systems in

Cameroon and concluded that tropical deforestation is profitable and can sometimes lead to

poverty reduction. Typically, there are tradeoffs between carbon stored and profit, and

while there are no win–win (high carbon and high profit) land uses, there are certainly

some no regrets options with medium to high profit and medium carbon stocks. Policy
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makers and project developers could promote these options as part of a climate change

mitigation scheme (Fig. 4).

Agroforestry also has an important carbon sequestration role to play in the sub-humid

tropics, and may contribute to reducing farmer vulnerability to mid-season droughts. IC-

RAF has studied improved fallow systems intensively over the past 7 years. Improved

fallows follow a rotation between cereal crops and tree-legume fallow. The duration of

trees in the cycle depends upon the level of soil degradation and the nature of the rainfall.

Coppicing fallows are newer, but follow a similar principle. These short rotation agro-

forestry systems are attractive to small-scale farmers because they improve soil nutrient

status and water relations. They also have high potential to sequester C in both the

aboveground and belowground biomass (Table 3). While these systems are cut frequently,

the average aboveground carbon stocks exceed stocks in degraded land, cropland or pas-

tures. Belowground C storage in these systems represents the potential for long-term C

storage, as long as trees remain in the rotation, but the storage capacity is largely dependent

upon soil texture and total rainfall. Nitrous oxide emissions following the leguminous tree

fallows was found to be almost 10 times that of unfertilized maize (Chikowo et al. 2003)

but these levels were still extremely low in comparison to the amount of C stored.

Restoration of degraded land using improved fallows has the potential no only to

sequester significant amounts of C from the atmosphere, it also offers opportunities for

improving rural livelihoods by turning unproductive land into productive land that can

produce food, wood and other tree products, and generate income.

4 Adaptation

The last decade of the past millennium witnessed weather patterns and global temperatures

outside of the range in the millennium as a whole, and the likelihood of climate change

(with ‘climate’ lagging behind actual weather, by definition) that brings the global average

temperature into a new realm is broadly accepted. Yet, for many places on earth, the new

climate, or the trajectory of the transient climate if we recognize continuous change, will

not be globally new, but already exists somewhere else. Hence, from a local perspective we

may consider the issue of ‘climate shift’, which focuses attention on the lateral flow of

organisms, farming systems and technologies that may be needed to cope with this change.
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Climates that are currently on the extreme of the distribution, such as tropical lowlands at

the bottom of the elevational gradients as well as the latitudinal ones, may experience

novel climates. The similarity of the climates on any two places on earth (or place A now

and place B in future) requires a certain level of lumping of fine-level details (e.g., specific

rainfall distribution). But, the main message for ‘adaptation’ is that answers to many of the

location specific problems to be expected due to a misfit of germplasm and management

systems to future climates, may be resolved by learning from experience elsewhere.

While adapting to changes in long-term averages may be feasible through technology

and germplasm transfer, increased climate variability with concomitant increased fre-

quencies of extreme events poses a greater challenge, particularly in the semi-arid tropics

(SAT). In order to understand how adaptation to increased climate variability might be

accomplished, it is fruitful to look at how populations are coping with current climate

variability and extreme events.

Vulnerability of dryland agriculture in the SAT is distinguished by the high incidence of

rainfall related production risk. The consequences range from slower diffusion of more

profitable but riskier technologies, to spatially diversified but more fragmented landhold-

ings, and even to higher population growth rates to compensate for the absence of an

income safety net outside the family. This can exact a heavy toll on human welfare, as

shown in the Indian SAT in the mid 1980s. Rural financial markets were fragmented,

which did not allow households to save and borrow to smooth income variability, insur-

ance markets were incomplete, and futures price markets were nonexistent or rudimentary.

While the situation has improved through evolution of self-help groups and government

credit schemes, vulnerability among marginalized farming population remains.

Empirical research facilitated by panel data from ICRISAT’s Village Level Studies

(VLS) provides a better understanding of when and under what conditions risk and the

household’s vulnerability play a significant role in conditioning human welfare. For the

Table 3 C stocks (Mg ha�1) in improved fallow systems (adapted from Albrecht and Kandji, 2003 and
assuming that biomass is 47% C)

Fallow species Aboveground Belowground Fine root Total

12-month-old fallows

Crotolaria grahamiana 4.0 1.3 – 5.3

Crotolaria calothyrsus 9.9 3.3 – 13.2

Cajanus cajan 4.0 1.8 – 5.8

Senna spectabilis 3.3 2.3 – 5.5

Sesbania sesban 6.7 3.4 – 10.1

Tephrosia vogelii 5.1 1.9 – 7.0

18-month-old fallows

Crotolaria grahamiana 11.6 5.1 3.0 19.7

Crotolaria paulina 9.3 6.4 1.7 17.4

Tephrosia candida 14.6 15.6 1.7 31.9

22-month-old fallows

Crotolaria calothyrsus 12.7 7.3 1.3 21.3

Sesbania sesban 17.3 5.1 1.1 23.5

Grevillia robusta 15.3 8.3 1.3 25.0

Eucalyptus saligna 20.4 9.0 1.1 30.5
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overwhelming majority of cultivator households in the SAT, the main source of vulner-

ability is conditioned by crop revenue risk. However, as extreme events become more

frequent, production risk will increase due to higher yield variability, which will translate

to uncertainty in crop revenue. High rainfall uncertainty also manifests itself in seasonal

labor demand patterns that can change markedly from 1 year to the next. In the VLS, net

crop revenue risk was the most important source of income variability for most farm

households. Net crop revenue risk depends on variability from five sources: input prices,

input levels, planted areas, output prices, and yields. More recent results from VLS surveys

show that farm households increasingly diversify their sources of income to include

livestock, non-farm income and remittances from out-migration.

Bidinger et al. (1991) studied the consequences of mid 1980s drought in India on the

economic, health, and nutritional consequences of drought in Dokur, a village represen-

tative of the wetter irrigated villages where tank and well irrigation was common. Al-

though this drought was very harsh, grain price stability and the widespread availability of

consumption credit permitted villagers to maintain their consumption pattern of normal

years. However, due to lack of public works programs, laborers, particularly women

workers, endured unemployment. The scarcity of clean water, compounded by a severe

shortage of electricity, led to a sizeable increase in water related morbid symptoms in the

second drought year: diarrhea, eye infections, and scabies. Adaptation to drought followed

a progression as illustrated by Jodha (1975):

• Restructuring of current farm activities to maximize effective availability of products

(including a variety of salvage operations).

• Minimization of current commitments, de-emphasizing current consumption and

reallocating available resources to protect the potentially productive enterprises like

non-milking of animals to permit adequate milk for young calves and plowing back of

practically the whole of the returns from milk production for sustaining the animal

enterprise.

• Disposal of inventories of home produced goods as well as purchased goods stocked for

some planned use such as marriage etc

• Sale or mortgage of assets.

• Out-migration with animals, etc.

The impact of drought, when farmers are unable to protect their production base during

the drought year, is the loss of production during the drought year and the loss of

productive capacity for subsequent years. For example, the loss of draft power during the

drought year, results in reduced future production due to inability to cultivate the same

area, delayed sowing, and adoption of less intensive methods of cultivation in the

following years with adequate rains. In the case of livestock enterprises, the loss of the

productive stock built over a long period (dictated partly by biological factors in the case

of home-bred stock) is a permanent loss of productive capacity of the enterprise. Non-

conception due to under-feeding in the drought year also has forward reaching

implications for herd productivity. Thus, the effects of drought (or other extreme events)

go beyond the immediate effects, and impact farmers’ ability to produce and react to

changing conditions and new opportunities in the future. The challenge for scientists,

policy makers, and land managers working on developing productive adaptation strategies

is to strengthen current farming practices and farming systems to make them less

vulnerable to climate variability.
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For agro-ecosystems farmer management can play a large role in adaptation, yet agro-

ecosystems differ in the way they sustain the farmer’s agility to respond to external

pressures, stresses and fluctuations. The concept of ‘sustainagility’ (allowing farmer’s

agility to continue) may capture the dynamic complements to the ‘sustainability’ assess-

ment of whether or not current systems can survive. Sustainability at any level of com-

plexity, from sustainability of cropping systems to that of livelihoods, can be based on the

sustainability of its components, or on the agility in finding and fitting in new components.

We can thus identify a number of sustainagility aspects (Fig. 5). Sustainable livelihood

options outside of agriculture will not be considered in detail here, but will have to form

the escape route for the vast majority of today’s rural population, as it has already done in

the ‘developed’ world as the result of agricultural transformation.

The resource base for sustainagility can be viewed in the light of the five types of capital

recognized in recent natural resource management literature (Carney 1998): natural re-

source, human, social, physical and financial capital, with partial but incomplete options

for exchange between capital types (Fig. 6). Adaptation of agro-ecosystems—and thus

sustainagility—can be based on essentially two mechanisms, one internal and one external

to the current system. Agro-ecosystems, especially those rich in agrodiversity and bio-

logical resources (Natural resource capital), can adapt (depending on their Human and

Social capital) by increasing the use of currently under-exploited local resources, or on the

basis of (locally or globally) new technology (new crops, new cultivars, new management

practices, new external inputs), depending on their Financial, Human and Social capital.

An indication of the types of capital required for the various sustainagility aspects is given

in Fig. 7.

Sustainable livelihoods 
somewhere on the globe

Sustainable livelihoods 
at current location

Sustainable farms
at current location

Sustainability of current
farming system

Sustainability of current 
trees/crops/animals

Sustainability of  current 
cropping system

Sustainagility E:
human migration

Sustainagility D:
shift to non-ag 

sectors

Sustainagility C:
other farming 

system

Sustainagility B:
other cropping 

system

Sustainagility A:
other trees/crops/

animals

Fig. 5 Relationship between sustainability and
sustainagility at different spatial scales
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5 Sustainagility in relation to agro-ecosystem complexity: Internal and external
sources of adaptation and their limits

The likelihood of externally driven adaptation is greater in the simple agro-ecosystems of

the more developed parts of the world, with effective ‘technology delivery systems’.

Research and knowledge delivery systems are expensive, so they depend on rigorous

priority setting mechanisms identifying the few components with the greatest potential

market value. Agricultural research has by and large supported a drive towards the sim-

plification of agro-ecosystems, at least in part because it is less effective in dealing with

more complex systems even if these would be superior (Vandermeer et al. 1998). Access

to the fruits of this increasingly commercialized research depends on financial and

social capital and is less likely in the less endowed parts of the world. Farmers will have

to rely more on innovation from within the system if they are going to adapt to changing

climates.

Sustainagility based on resources in the current landscape becomes more likely with an

increasing choice of new components and resources in more complex agro-ecosystems,

although we are not yet able to quantify how much complexity is required for how much

resilience (Vandermeer et al. 1998). In general, smallholder farmers have diversified

Five types of capital:

Human
capital

Natural resource
capital

Social
capital

Physical capital
(incl. infrastructure)

Financial
capital

Fig. 6 Five types of capital
involved in development
pathways (Carney 1998)

Sustainable farms
at current location

Sustainability of current
farming system

Sustainability of current 
trees/crops/animals

Sustainability of  current 
cropping system

Sustainagility C:
other farming 

system

Sustainagility B:
other cropping 

system

Sustainagility A:
other trees/crops/

animals

Local genetic resources,
currently under-exploited

Externally maintained
genetic resources

Local multipur-
pose soil & water resour-
ces, pest & weed control

External nutrient & 
water resources, pest 
& weed control

Local knowledge,
 infrastructure, machinery

External knowledge, 
new infrastructure & 
machinery

N,H,S

F,H,S

F,H,S

F,H,S

N,H,S

H,S,P

Fig. 7 Resource base for local and externally acquired new components that can be incorporated into
farming systems during an adaptation process (N, H, S, P and F refer to the five types of capital
distinguished in Fig. 6 )
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production systems. We propose a hypothesis that there is a middle range of agro-eco-

system complexity where vulnerability is highest. Farmers in these situations have little

resilience based on local resources, and are not effectively reached by technologies

(Fig. 8A). More simple and well-adapted agro-ecosystems are less vulnerable to climate

change as these systems tend to be run by specialized farmers with access to the resources

that will facilitate adaptation. More diversified farming systems suffer less from shocks and

maintain the agility of farmers to adapt to changing conditions. In the absence of data,

there is considerable uncertainty over the shape of the overall response (Fig. 8B).

6 Agroforestry as a means for adaptation

Agroforestry options may provide a means for diversifying production systems and

increasing the sustainagility of smallholder farming systems. The most worrisome com-

ponent of climate change from the point of view of smallholder farmers is increased

interannual variability in rainfall and temperature. Tree-based systems have some obvious

advantages for maintaining production during wetter and drier years. First, their deep root

systems are able to explore a larger soil volume for water and nutrients, which will help

during droughts. Second, increased soil porosity, reduced runoff and increased soil cover

lead to increased water infiltration and retention in the soil profile which can reduce

moisture stress during low rainfall years. Third, tree-based systems have higher evapo-

transpiration rates than row crops or pastures and can thus maintain aerated soil conditions

by pumping excess water out of the soil profile more rapidly than other production systems.

Finally, tree-based production systems often produce crops of higher value than row crops.

Thus, diversifying the production system to include a significant tree component may

buffer against income risks associated with climatic variability.

Research into the contributions of agroforestry in buffering against climate variability is

not well advanced. We have begun looking at ongoing trials and reanalyzing results to see

what we can learn about the performance of different systems in exceptional years. One

system that we have looked at closely is the improved fallow system that is practiced in

many areas of East and Southern Africa, described above. These systems greatly improve

maize yields on degraded soils where nitrogen is limiting production. A modeling exercise
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Fig. 8 Illustration of the hypothesis that the probability that agro-ecosystems will be able to cope with the
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on resilience and technology-based adaptation (A). It is likely that systems of intermediate complexity
will be the most vulnerable, but there is large uncertainty on the shape of the curve, as shown by lines I, II
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suggested that this system might maintain maize yields in dry years when traditional

practices give very low yields (Fig. 9). This ability to maintain yields may be due to a

number of factors that are improved with this system including soil physical properties,

water holding capacity, biological properties, and soil nutrient status (Albrecht and Kandji

2003).

Another important agroforestry system which is well-known to buffer against produc-

tion risk associated with climate variability is the parkland or scattered tree systems (Ong

and Leakey 1999). In the traditional farmed parklands of West Africa, dense shading by

shea butter trees (Vitellaria paradoxa) and néré (Parkia biglobosa) often reduces millet

yield by 50–80% (Kater et al. 1992). Nevertheless, the trees are highly valued by farmers

because economic yields from marketable tree products compensate for the loss of crop

yield. In semiarid Kenya, farmers have recently developed an intensive parkland system

using the fast-growing indigenous species Melia volkensii (Meliaceae), which is reputed to

be highly compatible with crops and can provide high value timber in 5–10 years (Stewart

and Blomley 1994).

To determine whether growing M. volkensii trees in croplands is cost effective or not,

Ong et al (1999) compared the value of timber products gained with that of the crop value

lost due to competition over an 11-year rotation at Kitui district, Kenya. The balance sheet

does not take into account costs for seed, cultivation, tree planting stock or labor into

account, which would increase the surplus of cash from the tree products because in recent

years, crop failure occurs 50% of the time. Their estimates show that at the end of the

rotation, the accumulated income from tree products exceeds the accumulated value of

crop yield lost through competition by US$10 or 42% during average years and US$22 or

180% with the assumption of 50% crop failure due to drought. (In this district of Kenya, on

average six of the 16 cropping seasons have failed). Factors which encourage farmers to

plant M. volkensii include good financial returns in a relatively short time, strong demand

for the product, high value timber and the ability to produce a range of products contin-

uously even in drought years, when crops normally fail.

Our hypothesis is that on poor soils, the long-term prospects of systems purely based on

annual food crops are bleak and a transition into tree-based farming offers better prospects.

In practice, the transition to tree-based systems often depends upon temporary urban

employment or remittances from overseas labor. Government support will be required to
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help smallholder farmers make the transition to tree-based production system, particularly

when the switch entails a few years of reduced production and reduced income security.

7 Conclusion

Impacts of climate change will be felt on several levels in the agricultural sector: at the

level of the individual crop species, the farming system (whole farm), and at the level of

the natural resource base upon which rural communities depend. Preliminary vulnerability

estimates may be too pessimistic for many agricultural systems with high adaptive

capacity, but there clearly are limits to adaptation within agriculture, and this may put

pressure on other sectors to absorb some of the impact. Impacts will be felt most by rural

poor in developing countries, who are the most vulnerable because of their low adaptive

capacity. The adaptive capacity of farmers in developing countries is severely restricted by

heavy reliance on natural factors and lack of complementary inputs and institutional

support systems.

The concepts of resilience and sustainability are well established in agriculture and can

be linked directly to the discussions within the climate change arena about adaptation and

mitigation. Thus, policy makers can draw upon a substantial body of knowledge on how to

enhance the adaptive capacity and mitigation potential of agricultural systems. Agrofor-

estry management systems offer important opportunities for creating synergies between

actions undertaken for mitigation and activities undertaken for adaptation. Within inter-

national fora, there is much talk about ‘mainstreaming’ adaptation into planning processes.

The concept of ‘sustainagility’ provides a constructive framework for national planning to

reduce vulnerability of the agricultural sector to climate change.

We have shown above, through the specific case of agroforestry, that some mitigation

options also provide opportunities to increase the resilience of agricultural systems. These

cases, where there are synergies between mitigation and adaptation ought to be privileged

in the CDM. However, if agroforestry is to be used in carbon sequestration schemes such as

the CDM, better information is required in several areas. For example, we need better data

on aboveground and belowground C stocks, and the non-CO2 emissions of different

agroforestry systems. Whereas agroforestry systems are primarily production systems,

there will be periodic harvesting and marketing of wood products. The debate on durable

wood products is ongoing, but provisions will be needed to allow farmers to market wood

products from their agroforests and accounting methods will be needed to account for the

lifetime of the C sequestered in agroforestry products. As small-scale farmers are enrolled

in carbon offset projects, we will need to develop a better understanding of the implications

for C sequestration by agroforestry and what it means to livelihoods. Finally, the CDM has

very stringent rules for participation that may be beyond the reach of small-scale farmers to

understand or to provide evidence of compliance. There is a need to understand the

institutional requirements to allow small-scale farmers to participate in the CDM and to put

appropriate institutional frameworks in place.

In the attempt to develop adaptation strategies for the agricultural sector, scientists and

policy makers must consider the complex interactions of constraints created by changing

climates in light of other stress factors. Government and international support in terms of

research, education, and extension will be required to help farmers in developing countries

cope with the additional stresses created by climate change and increased climate vari-

ability. Agroforestry can very likely contribute to increasing the resilience of tropical
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farming systems. However, our understanding of the potential of agroforestry to contribute

to adaptation to climate change is rudimentary at best. Better information is required on the

role of agroforestry in buffering against floods and droughts from both the biophysical

(hydraulic lift, soil fertility) and financial (diversification, income risk) points of view. If

we accept that farmers ability to adapt is not based on their ability to keep on doing what

they are doing, where they are doing it, but rather on their ability to continually adapt to

changing biophysical and economic conditions, then we will need to determine the po-

tential of tree-based production systems in vulnerable areas by quantifying the relationship

between biodiversity and sustainagility.

Agroforestry offers the potential to develop synergies between efforts to mitigate cli-

mate change and efforts to help vulnerable populations adapt to the negative consequences

of climate change. The research agenda in this area is fairly well defined. Yet, much is

already known and putting these ideas into practice on the ground with small-scale farmers

will allow us to learn important lessons through practical experience.

References

Abeygunawardena P, Vyas Y, Knill P, Foy T, Harrold M, Steele P, Tanner T, Hirsch D, Oosterman M,
Rooimans J, Debois M, Lamin M, Liptow H, Mausolf E, Verheyen R, Agrawala S, Caspary G, Paris R,
Kashyap A, Sharma R, Mathur A, Sharma M, Sperling F (2003) Poverty and climate change—reducing
the vulnerability of the poor through adaptation. World Bank Press

Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosys Envi
99:15–27

Aggarwal PK, Mall RK (2002) Climate change and rice yields in diverse agro-environments of India. II.
Effect of uncertainties in scenarios and crop models on impact assessment. Clim Change 52:331–343

Aggarwal PK, Sinha SK (1993) Effect of probable increase in carbon dioxide and temperature on pro-
ductivity of wheat in India. J Agric Meteorol 48:811–814

ten Berge HFM, Aggarwal PK, Kropff MJ (1997) Applications of rice modelling. Elsevier Publishers,
Netherlands, p 161

Bidinger PD, Walker TS, Sarkar B, Ram Murthy A, Babu P (1991) Consequences of mid-1980s drought:
Longitudinal evidence from Mahbubnagar, Economics Group Progress Report, Resource Management
Program. Patancheru: ICRISAT

Carney D (1998) Implementing the sustainable rural livelihoods approach, sustainable rural livelihoods—
what contribution can we make? Department for International Development, London, UK, pp 3–23

Chikowo R, Mapfumo P, Nyamugafata P, Giller KE (2003) Mineral N dynamics, leaching and nitrous oxide
losses under maize following two-year improved fallows on a sandy loam soil in Zimbabwe. Plant Soil
259:315–330

Chirwa PW (2003) Tree and crop productivity in Gliricidia/Maize/Pigeonpea cropping systems in southern
Malawi, Ph.D dissertation, University of Nottingham

Cleaver KM, Schreiber GA (1994) Reversing the spiral: the population, agriculture and environment nexus
in sub-Saharan Africa. World Bank, Wash., DC

Crill PM, Keller M, Weitz A, Grauel B, Veldkamp E (2000) Intensive field measurements of nitrous oxide
emissions from a tropical agricultural soil. Global Biogeochem Cycles 14:85–95

Dunfield PF, Topp E, Archambault C, Knowles R (1995) Effect of nitrogen fertilizers and moisture content
on CH4 and N2O fluxes in a humisol: measurements in the field and intact soil cores. Biogeochemistry
29:199–222

FAO (1999) The state of food insecurity in the world. Food and Agriculture Organization of the United
Nations, Rome, Italy, p 35

Gockowski J, Nkamleu GB, Wendt J (2001) Implications of resource-use intensification for the environment
and sustainable technology systems in the central african rainforest. In: Lee DR, Barrett CB (eds)
Tradeoffs or synergies? Agricultural intensification, economic development and the environment, CAB
International, Wallingford, UK

Hansen S, Maechlum JE, Bakken LR (1993) N2O and CH4 fluxes in soils influenced by fertilization and
tractor traffic. Soil Biol Biochem 25:62–1630

Huang J, Pray C, Rozelle S (2002) Enhancing the crops to feed the poor. Nature 418:678–684

Mitig Adapt Strat Glob Change

123



Hutsch BW (1996) Methane oxidation in soils of two long-term fertilization experiments in Germany. Soil
Biol Biochem 28:773–782

Hutsch BW, Webster CP, Powlson DS (1994) Methane oxidation in soils as affected by land use, soil pH and
N fertilization. Soil Biol Biochem 26:1613–1622

Hutsch BW, Webster CP, Powlson DS (1993) Long-term effects of nitrogen fertilization on methane
oxidation in soil of the Broadbalk wheat experiment. Soil Biol Biochem 25:1307–1315

IPCC (2001) Climate change 2001: impacts, adaptation and vulnerability. Report of the working group II.
Cambridge University Press, UK, p 967

IPCC (2000) Land-use, land-use change and forestry. Special report of the intergovernmental panel on
climate change. Cambridge University Press, UK, p 375

Jain MC, Kumar K, Wassmann R, Mitra S, Singh SD, Singh JP, Singh R, Yadav AK, Gupta S (2000)
Methane emissions from irrigated rice fields in Northern India (New Delhi). Nutr Cycl Agroecosys
58:75–83

Jodha NS (1975) Famine and famine policies: some empirical evidence. Econ Poli Wkly 10:1609–1623
Jones PG, Thornton PK (2003) The potential impacts of climate change on maize production in Africa and

Latin America in 2055. Glob Environ Change 13:51–59
Kater LJM, Kante S, Budelman A (1992) Karite (Vitellaria paradoxa) and nere (Parkia biglobosa) associated

with crops in South Mali. Agroforest Syst 18:89–105
Keller M, Mitre ME, Stallard RF (1990) Consumption of atmospheric methane in tropical soils of central

Panama: Effects of agricultural development. Global Biogeochem Cycles 4:21–28
Kropff MJ, Teng PS, Aggarwal PK, Bouman B, Bouma J, van Laar HH (1996) Applications of systems

approaches at the field level, vol. 2 Kluwer Acad. Pub., Netherlands, p 465
Lal M, Nozawa T, Emori S, Harasawa H, Takahashi K, Kimoto M, Abe-Ouchi A, Nakajima T, Takemura T,

Numaguti A (2001) Future climate change: implications for Indian summer monsoon and its vari-
ability. Curr Sci 81:1196–1207

Mann C (1997) Reseeding the green revolution. Science 277:1038–1043
Mosier AR, Delgado JA (1997) Methane and nitrous oxide fluxes in grasslands in western Puerto Rico.

Chemosphere 35:2059–2082
Nagarajan S, Joshi LM (1978) Epidemiology of brown and yellow rusts of wheat over northern India. II.

Associated meteorological conditions. Plant Dis Rep 62:186–188
Ong CK, Leakey RRB (1999) Why tree crop interactions in agroforestry appear at odds with tree-grass

interactions in tropical savannahs. Agroforest Syst 45:109–129
Ong CK, Wilson J, Deans JD, Mulatya J, Raussen T, Wajja-Musukwe N (2002) Tree-crop interactions:

manipulation of water use and root function. Agr Water Manage 53:171–186
Palm CA, van Noordwijk M, Woomer PL, Alegre J, Arevalo L, Castilla C, Cordeiro DG, Hairiah K, Kotto-

Same J, Moukam A, Parton WJ, Ricse A, Rodrigues V, Sitompul SM (2004) Carbon losses and
sequestration following land use change in the humid tropics. Alternatives to Slash and Burn: The
Search for Alternatives. Columbia University Press (in press)

Palm CA, Alegre JC, Arevalo L, Mutuo PK, Mosier AR, Coe R (2002) Nitrous oxide and methane fluxes in
six different land use systems. Global Biogeochem Cycles 16:1073, doi:10.1029/2001GB001855

Rao GD, Sinha SK (1994) Impact of climatic change on simulated wheat production in India. In: Rosen-
zweig C, Iglesias I (eds) Implications of climate change for international agriculture: Crop Modelling
Study. EPA, USA, pp 1–10

Rosegrant MW, Paisner MS, Meijer S, Witcover J (2001) Global food projections to 2020: emerging trends
and alternative futures. International Food Policy Research Institute, Wash., DC, p 206

Saseendran SA, Singh KK, Rathore LS, Singh SV, Sinha SK (2000) Effects of climate change on rice
production in the tropical humid climate of Kerala, India. Clim Change 44:495–514

Smaling EMA, Nandwa SN, Janssen BH (1997) Soil fertility in Africa is at stake. In: Buresh RJ, Sanchez
PA, Calhoun F (eds) Replenishing soil fertility in Africa. Soil Sci Soc Am. Special publication No. 51.
Madison WI, pp 47–61

Steudler PA, Bowden RD, Mellilo JM, Aber JD (1989) Influence of nitrogen fertilization on methane uptake
in temperate forest soils. Nature 341:314–316

Stewart M, Blomley T (1994), Use of Melia volkensii in a semi-arid agroforestry systems in Kenya.
Commonw Forest Rev 73:128–131

Tsuruta H, Ishizuka S, Ueda S, Murdiyarso D (2000) Seasonal and spatial variations of CO2, CH4, and N2O
fluxes from the surface soils in different forms of land-use/cover in Jambi, Sumatra. In: Murdiyarso D,
Tsuruta H (eds) The impacts of land-use/cover change on greenhouse gas emissions in tropical asia.
Global Change Impacts Centre for Southeast Asia and National Institute of Agro-Environmental
Sciences, pp 7–30

Mitig Adapt Strat Glob Change

123



Vandermeer J, van Noordwijk M, Anderson J, Ong C, Perfecto I (1998) Global change and multi-species
agroecosystems: concepts and issues. Agric Ecosyst Environ 67:1–22

Vasil IK (1998) Biotechnology and food security for the 21st century: a real-world perspective. Nat Bio-
technol 16:399–400

Wassmann R, Lantin RS, Neue HU (2000) Methane emissions from major rice ecosystems in Asia. Nutr
Cycl Agroecosys 58:1–398

Weitz AM, Linder E, Frolking S, Crill PM, Keller M (2001) N2O emissions from humid tropical agricultural
soils: effects of soil moisture, texture and nitrogen availability. Soil Biol Biochem 33:1077–1093

Mitig Adapt Strat Glob Change

123


	Climate change: linking adaptation and mitigation through agroforestry
	Abstract
	Introduction
	The expected impacts of climate change on agricultural production
	Contribution of agriculture to climate change mitigation
	Adaptation
	Sustainagility in relation to agro-ecosystem complexity: Internal and external sources of adaptation and their limits
	Agroforestry as a means for adaptation
	Conclusion
	References


