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Climate change or regional human impacts? Remote

sensing tools, artificial neural networks, and wavelet

approaches aim to solve the problem

Ehsan Foroumandi, Vahid Nourani and Elnaz Sharghi
ABSTRACT
Lake Urmia, as the largest lake in Iran, has suffered from water-level decline and this problem needs

to be investigated accurately. The major reason for the decline is controversial. The current paper

aimed to study the hydro-environmental variables over the Lake Urmia basin using remote sensing

tools, artificial neural networks, wavelet transforms, and Mann–Kendall trend tests from 1995 to

2019 in order to determine the primary reason of the decline and to find the most important

hydrologic periodicities over the basin. The results indicated that for the monthly-, seasonally-, and

annually-based time series, the components with 4-month and 16-month, 24- and 48-month, and

2- and 4-year, respectively, are the most dominant periodicities over the basin. The agricultural

increase according to the vegetation index and evapotranspiration and their close relationship

with the water-level change indicated that human land-use is the main reason for the decline.

The increasing agriculture, in the situations that the precipitation has not increased, caused the

inflow runoff to the lake to decline and the remaining smaller discharge is not sufficient to stabilize

the water level. Temperature time series, also, has experienced a significant positive trend which

intensified the water-level change.

Key words | artificial neural networks, Lake Urmia, remote sensing, trend tests, water resources,

wavelet transforms
HIGHLIGHTS

• The results indicate that for the monthly-, seasonally-, and annually based time-series, the

components with 4-month and 16-month, 24- and 48-month, and 2- and 4-year, respectively are

the most dominant frequencies over the Urmia lake basin.

• The results indicate that human land-use is the primary reason for the decline of the water-level.

The increasing temperature, also, intensifies the water-level decline of the lake.
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GRAPHICAL ABSTRACT
INTRODUCTION
The impacts of climate change and its effects have put

stress on natural processes such as hydrological cycles,

environmental variables, and ecological balance of the

eco-systems (Erler et al. ), and global climate change is

resulting in a thermodynamic intensification of the hydrolo-

gic cycles. While climate change is one of the reasons for

hydro-environmental changes, human land- and water-use

activities have affected water and land resources and have

made a great many changes in the natural processes (Pokh-

rel et al. ). The over-use of water resources by humans

causes socio-environmental problems, especially in semi-

arid and arid regions such as the Middle East (Madani

). The main reasons for water resources problems are

controversial among researchers due to the different

approaches that they use to answer the question.

Iran, as a country in the Middle East, and due to the low

annual precipitation, is situated among the semi-arid and

arid regions. Located in the northwest part of Iran, Lake

Urmia is the largest inland lake and has experienced rapid

water-level decrement in the past years (Delju et al. ).

The decline of the water-level equaled 8 m from 1995 to

2010, and up to 2012, the lake lost about 60% of its area

and more than 90% of its volume, which makes the shrink-

ing problem of Lake Urmia an outstanding tragedy in the

Middle East (Hassanzadeh et al. ). The reason for the

water-level decline is controversial and a great number of

researchers have tried to answer the question. Several
://iwaponline.com/hr/article-pdf/52/1/176/846791/nh0520176.pdf
studies argue that the reduction of the surface water inflow

due to excessive agricultural extraction caused the problem

(e.g., see Alborzi et al. ; Nourani et al. ). Some other

researchers proposed that building a large number of dams

over the rivers which inflow to the lake has created the

problem. This idea was triggered due to the extensive con-

struction of reservoirs, although it was rejected in a paper

written by Fathian et al. (), showing that decreasing

trends were observed in the headwater catchment areas.

Several other studies found that the climate change impacts

over the region are the main cause of the decline in the

water volume of Lake Urmia (e.g., see Delju et al. ;

Tahroudi et al. ; Schulz et al. ).

Data gathering is one of the main processes in perform-

ing an accurate study. Various methods and indices are

utilized to monitor and study hydrologic, environmental,

and climate factors. These methods are divided into two

main categories, which are remote sensing-based (RS-based)

and site-based indices (Liu et al. ). Although some

researchers use site-based tools to study trends in hydro-

climatologic variables and climate change over regions,

they are not available for every time and region due to the

scarcity of ground-based data and they have low accuracy

because of some disadvantages such as human mistakes

and ungauged stations. One of the most important reasons

for the disagreement among researchers about the reason

for water resources problems is data. Using ground-based
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data has several drawbacks. Moreover, using different

ground-based stations, some of which are far away from

each other, is confusing to study the same basin. Also,

even in more recent studies, researchers used old datasets

and they could not use near to real-time data to study

trends in hydro-environmental variables and the water

level, which means what is happening with the lake in

recent years is unknown and there is no certainty regarding

their conclusions about the reasons for the lake problem.

Therefore, RS-based approaches are more efficient, reliable,

and accurate to study climate change and factors affiliated to

nature at a large scale with lower cost and less time con-

sumption (Ji & Peters ). In this regard, various RS

sensors are employed to collect data, among which the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) is

the most popular sensor in terms of climate studies to collect

vegetation cover and temperature data (Wan et al. ).

Hydro-environmental processes contain many variables

in nature, among which, vegetation cover, temperature, eva-

potranspiration, and precipitation are the most attention-

getting ones to solve water resources problems. Among the

vegetation indices, Normalized Difference Vegetation

Index (NDVI) is most often used to monitor and model

environmental conditions and to study vegetation situations

(e.g., see Kalisa et al. ; Huang et al. ; Li et al. ).

Land Surface Temperature (LST) is a remotely sensed temp-

erature index and a climate factor that is widely utilized to

study hydro-environmental variables (e.g., see Varouchakis

; Chen et al. ; Ren & Liu ). Recently, researchers

have used different RS sensors to collect data on precipi-

tation amounts. The Tropical Rainfall Measuring Mission

(TRMM) Multisatellite Precipitation Analysis (TMPA) pro-

vides a calibration-based scheme for combining multiple

satellites’ precipitation estimates (Zhong et al. ). After

precipitation, evapotranspiration (ET) is the most important

factor in the surface hydrologic cycles, and it can be an indi-

cator of the vegetation growth because all water taken up by

vegetation is evapotranspired. In recent years, a great

number of global ET products have become available from

various satellite microwave sensors. Most of the ET datasets

are validated using ground-based data (Jackson et al. ).

From the year 2000, the Noah model from the Global

Land Data Assimilation System (GLDAS) has provided

ET, and other land surface variables (Dorigo et al. ).
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Recently, researchers have been using the data produced

by GLDAS for hydrologic studies (e.g., see Awange et al.

; Lv et al. ; Sehler et al. ; Zhang et al. ).

Over the past decade, several studies have indicated that

water level can be estimated using satellite radar altimetry

instead of ground measurements with reasonable accuracy

(e.g., see Awange et al. ; Cai et al. ; Carabajal &

Boy ; Zaidi et al. ). Among radar altimetry datasets,

the multi-satellite altimetry dataset of the Radar Altimeter

Database System (RADS), which provides different orbit

altitudes and geophysical corrections of water level for

seas and lakes, is mostly used in studies related to water-

level problems (e.g., see Cai et al. ; Din et al. ;

Rose et al. ).

Nowadays, new black-box approaches known as

artificial intelligence (AI) methods are widely used for

assessment of environmental and hydrologic processes. In

various aspects of hydrology, AI models such as artificial

neural network (ANN) are employed. Recent literature has

reported numerous applications of ANNs for monitoring

and estimation of hydro-environmental variables (e.g., see

Bomers et al. ; Nourani et al. ; Dehghanian et al.

).

In recent years, researchers have tried to detect the

effects of potential climate change on big lakes. According

to previous studies, long-term trends in hydro-environmental

variables can be the reason for spatial-temporal changes in

surface water contents. The intensification of the cycles

related to hydrology is one of the explicit effects of changes

in the behavior of climate factors (Zhang et al. ). Mann–

Kendall (MK) trend test is one of the popular approaches

among statistical methods which is used to analyze hydro-

environmental time series (e.g., see Nourani et al. ; Ma

et al. ; Bian et al. ). Although statistical methods

work based on the stationary mode of the given time

series, most of the hydro-environmental signals are non-

stationary and show non-linear, periodic properties which

means that the methods are not suitable to analyze them

and the methods should be combined with other approaches

(Karpouzos et al. ).

Wavelet transform (WT) is widely used to decompose

the signals with either high or low frequency (e.g., see

Roushangar et al. ; Nalley et al. ; Nourani et al.

). The classical signal analysis methods, including
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Fourier transform (FT), use a single-window analysis which

leads to losing the frequency localizations at low frequency

and the time localization at high frequencies. The WT

decomposes a one-dimensional signal into two-dimensional

time-frequency domains. Also, the irregular shapes of the

mother wavelets make the method useful to study the time

series with noises and discontinuities (Drago & Boxall

). The signals produced by nature, due to its compli-

cated behaviors, are always difficult to study without using

machine learning tools. WT can reveal various aspects of

datasets, including discontinuities, trends, short- and long-

term periodic intervals, and breakdown points, especially

in long-term, complex signals.

The current study aimed to determine the main reason

for the water-level decline problem of Lake Urmia using

RS tools, ANNs, wavelet approaches, and trend test tech-

niques as a high research priority for water resources

engineering and management. To this end, RS tools were

utilized to collect the hydro-environmental datasets from

1995 to 2019, and ANNs were employed to estimate the

missing data. Thereafter, wavelet approaches were used to

determine the most dominant periodicity over the basin

for the water management plans. The Mann–Kendall trend

tests were, also, utilized to study potential trends in the
Figure 1 | Lake Urmia location.
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time series. Conclusions based on the fundamental hydrol-

ogy theories are important in solving the controversial

problems of water resources.

Water-level fluctuation is among the common hydrolo-

gic problems for big lakes across the world. These changes

are mostly associated with climate change and anthropo-

genic activities. It is very important to determine the main

reason for the fluctuations in order to make effective

decisions in water resources management. The proposed

methodology can be applied to other big lakes across the

world in order to investigate potential impacts of climate

change and regional human activities on them and, also,

to determine the most dominant periodicities of the hydro-

environmental variables over the basins.
MATERIALS AND METHODS

Case study

Located in the northwestern part of Iran (Figure 1), between

37�40 to 38�170 latitude and 45�130 to 46� longitude, Lake

Urmia is a saline and shallow lake. The lake was among

the largest lakes and the second hypersaline lake in the
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world. According to the statistics, the lives of about seven

million people depend on their relationship with the

lake and that is why Lake Urmia has an important socio-

economic role in the country. The Lake Urmia basin is

mainly surrounded by mountains and it makes the climate

of the region harsh and continental. In recent years, the

lake has lost 6 m of its depth out of 16 m (Delju et al.

). The annual average precipitation in the region is

341 mm and the minimum and maximum temperatures

are �23 �C and 39 �C, respectively (Iran Meteorological

Observation (IRIMO)). The area of the lake was about

5,650 and 4,610 km2 in 1998 and 2001, respectively, and

the normal catchment area of Lake Urmia is almost

51,676 km2 (Lake Urmia Basin Integrated Water Resources

Management (IWRM)). In the past years, the lake’s water

level has been decreasing and a quarter of the lake has

become saline.

Figure 2 shows the water-level fluctuations for Lake

Urmia from 1965 to 2015 (IWRM) and indicates a more

than 8 m decline in water level from 1995 to 2015.

Data collection

The present paper employed RS tools, RS-based datasets,

and RS-based models to collect data for hydro-environ-

mental indices and factors, and the water-level data to

study precipitation, temperature, vegetation cover, and eva-

potranspiration of Lake Urmia from 1995 to 2019. All of

the RS-based datasets were validated using ground-based

measurements.
Figure 2 | Water-level fluctuation of Lake Urmia (1965–2015).
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NDVI is one of the important indexes that researchers

use to evaluate vegetation. The structural basis of this

index is the presence of chlorophyll in different plants,

which absorbs red light, also, the mesospheric layer of the

leaf reflects near-infrared (NIR) light. This index well exhi-

bits the response to photosynthetic effects, with higher

values indicating denser and fresher vegetation, that greatly

influence environmental parameters. Plants and their roots

affect the physical properties of soil, such as moisture con-

tent, infiltration rate, and shear strength, which play a

significant role in environmental conditions. NDVI is a nor-

malized parameter and its value ranges between �1 and 1.

The general equation of the NDVI is (Pettorelli et al. ):

NDVI ¼ (N �D)=(N þ R) (1)

where N and R denote the near-infrared band and the red

band, respectively.

The NDVI dataset from satellite imagery was used and

the dataset was collected using vegetation index product of

the MODIS (MOD13A1v006).

Temperature data (LST) was extracted using another

product (MOD11A1) of MODIS. LST is an important par-

ameter in land surface physics and energy flux between

the Earth and atmosphere. LST is utilized in a wide range

of hydrology and environment sciences and studies, particu-

larly in projects in which a wide view of the location is

needed. Surface temperature is very important in environ-

mental studies because it measures the temperature in

the air close to the Earth’s surface. Air gets warm owing to

radiation exchange from land to the atmosphere. LST

as a RS-based index is used to monitor climate and under-

standing the hydro-environmental conditions (Sobrino

et al. ).

To collect the precipitation dataset, TMPA3B43 product

was utilized, which creates a monthly precipitation average,

released by the TRMM. The TRMM, launched in 1997, car-

ries several instruments including the Visible Infrared

Radiometer (VIRS), TRMM Microwave Imager (TMI),

Cloud and Earth Radiant Energy Sensor (CERES), Light-

ning Imaging Sensor (LIS), and a precipitation radar (PR)

and uses different techniques to provide precipitation data

using satellite observations. The multi-satellite TMPA



181 E. Foroumandi et al. | Climate change or regional human impacts? Hydrology Research | 52.1 | 2021

Downloaded from http
by guest
on 09 August 2022
algorithm combines satellite-based observations, infrared

sensors, and ground rainfall gauges’ analysis in order to pro-

duce 3-hourly rainfall estimates. Although the TRMM

mission has come to an end and the spacecraft returned to

the Earth’s atmosphere, the TMPA continues to provide

data using inputs from other satellites (Fang et al. ).

The GLDAS model was used to calculate the ET over

the Lake Urmia basin. GLDAS combines satellite and

observed data in advanced land surface models to provide

land surface data from 1948. The GLDAS data contain

hydrological, environmental, and meteorological variables.

The data validation indicated that the model can be used

in Iran for water resources engineering and management

studies (Moghim ).

The RADS as an altimetry dataset was employed to col-

lect data for the water level of the lake. The RADS dataset,

which was launched by the Delft Institute for Earth-oriented

space research at the Delft University of Technology, is

based on TOPEX/Poseidon/Jason satellite series (at 10-day

resolution), the ERS/ENVISAT/SARAL series (at 35-day

resolution), or the Sentinel-3 series (at 27-day resolution)

(Cai et al. ).

Proposed methodology

The current paper aimed to investigate potential trends in

the long-term hydro-environmental time series and to ana-

lyze the interactions between them and the water-level

fluctuations of Lake Urmia. In this way, RS instruments

were used to collect data for NDVI, LST, precipitation,

and ET over the Lake Urmia basin, and the water-level

fluctuations of the lake during 1995–2019. WT, then, was

used to decompose the hydro-environmental signals into

sub-signals with different frequencies in order to find the

most dominant periodicity of the variables over the basin.

Thereafter, MK tests were employed as trend test tech-

niques to study potential trends in original time series

and their components. MATLAB 2016a was utilized in

this study.

Artificial neural networks

A major problem of using RS tools is the lack of data for

old years. When it came to the current study, the data
://iwaponline.com/hr/article-pdf/52/1/176/846791/nh0520176.pdf
collection of MOD13A1 for NDVI started from 2000

and it did not provide NDVI data for 1995–2000. To

address this problem, an ANN was designed to predict

the NDVI dataset for 1995–2000. In recent decades, the

unique features of the human brain have led researchers

to simulate the abilities of the human brain with compu-

ters. ANNs are dynamical systems that transfer the

knowledge or rule behind data to a network structure

through processing the empirical data. The input,

hidden, and output layers are the main layers of an

ANN. Each layer contains a group of neurons that com-

monly communicate with all neurons in the other layers.

Each input in a neural network has its corresponding

weight, which enters the transfer function under the influ-

ence of this weight and with the purpose of processing

and producing inputs of subsequent layers (Nourani

et al. ). It has already been shown that the most

widely used neural network in hydrologic studies is a

feed-forward neural network (FFNN). The output of an

FFNN can be calculated as:

ŷk ¼ fo[
XMN

j¼1

Wkj � fh(
XNN

i¼1

WijXi þWjo)þWko (2)

In Equation (2), Wji exerted to a hidden layer neuron

which connects the ith input neuron to the jth neuron

of the hidden layer; Wjo is the exerted bias to the jth

hidden neuron; fh shows the activation function of the

related hidden neuron; Wkj denotes the exerted weight

to a neuron of output layer which connects the jth

neuron of hidden layer to the kth neuron of output

layer; Wko is the exerted bias to the kth neuron of the

output layer; f0 indicates output neuron activation func-

tion; xi is the ith neuron of the input layer, and, ŷk and

y is the network estimated and evaluated values, respect-

ively. NN and MN indicate the number of neurons in

input and hidden layers, respectively. Output and

hidden layers have different weights and should be calcu-

lated within the training phase (to read more about

artificial neural networks please see Nourani et al.

()).

To assess the performance of the model, determination

coefficient (DC) and root mean square error (RMSE)
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efficiency criteria were used as Equations (3) and (4) (Nour-

ani ).

DC ¼ 1�
Pn

i¼1 (NDVIevali �NDVIesti )
2Pn

i¼1 (NDVIevali �NDVIeval)
2 (3)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 (NDVIevali �NDVIesti )
2

n

s
(4)

where n, NDVIevali , NDVIeval, and NDVIesti are, respectively,

the number of years, averaged value of the evaluated NDVI

(via the instrument), and estimated NDVI.
Autocorrelation analysis

Autocorrelation analysis should be applied to time series in

order to study the seasonality patterns and correlations. The

results of the trend analysis of time series can be a misunder-

standing if a significant autocorrelation has been presented

in the time series since it can change the variance which

will cause a change in the dispersion of data distribution.

Altering the dispersion of data distribution increases the

risk of founding a significant trend in the dataset while

there is no such trend (Nalley et al. ). The monthly

and seasonal visions of data are expected to have more auto-

correlation issues than the annual timescale. Lag-1

autocorrelation coefficient was used to assess autocorrela-

tion for hydrological time series which is calculated as

(Yue et al. ):

R ¼
1
n
� 1

� �Pn�1
t¼1 [xt � xt][xtþ1 � xt]

1
n

� �Pn
t¼1 [xt � xt]

2
(5)

�1� 1:645
ffiffiffi
n

p � 2
� �

n� 1
� R � �1þ 1:645

ffiffiffi
n

p � 1
� �

n� 1
(6)

where R is the autocorrelation coefficient of the sample, xt,

xt is the mean value of the sample, and n is the number of

samples. If R satisfies Equation (6), there is not a significant

autocorrelation in the dataset. In the case of the appearance

of a significant autocorrelation, Nourani et al. ()

suggested using the pre-whitening MK test instead of the

original MK.
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Wavelet transform

The WT decomposes a non-stationary signal into multiple

levels by shifting and scaling the mother wavelet and using

high- and low-pass filters. WTs can analyze data on a local

scale and reveal various aspects of the dataset at different

frequencies. WTs are widely used in hydro-environmental

studies due to their robust properties (Nalley et al. ).

Generally, the WT is sorted into two main classes: discrete

wavelet transform (DWT) and continuous wavelet transform

(CWT). DWT is often used to decompose hydrologic

time series because of the discrete instincts of hydrologic vari-

ables. DWT decomposes the signals into the approximation

and detail components using high-pass and low-pass filters.

The high-pass filter is the wavelet function that produces

the detailed sub-signals which are low-scale or high-frequency

components of the original signal. The low-pass filter is the

scaling function, which produces the approximate coefficient

which is the low-frequency or the large-scale of the original

signal (Nalley et al. ). DWT is defined as:

Ψm,n(t) ¼ 1ffiffiffiffiffiffi
am0

p Ψ
t� nb0am0

am0

� �
(7)

where Ψ(t) is called the mother wavelet, and a and b are the

numbers that control the wavelet dilation and translation,

respectively. a0 and b0 are a dilation step greater than 1,

and the location parameter greater than 0.

The mother wavelet function for DWT at timescale is

generally defined as (Nourani et al. ):

Ψa,b(t) ¼ 1ffiffiffi
a

p Ψ
t� a
b

� �
(8)

where t represents time, and the parameters a¼ 2m and b¼
a × n are the scaling parameter and the location parameter,

respectively.

DWT is performed at dyadic scales in hydro-environ-

mental studies and the wavelet function for this method is

(Nourani et al. ):

Ψm,n(t) ¼ 2
�
m
2Ψ(2�mt � n) (9)
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Therefore, the DWT for discrete signals (fi(t)) can be

defined as (Nourani et al. ):

Ti(m, n) ¼
XN�1

i¼0

Ψi:(t)fi(t) ¼ 2�m=2
XN�1

i¼0

Ψ(2�mi � n)fi(t) (10)

where Ti(m,n) is the WT coefficient at level m for the

sample n, and N is an integer in the power of two.

Original Mann–Kendall trend test (MK1)

The MK test is widely used in hydrologic, climatologic, and

environmental studies because the test does not require the

dataset to have any kind of statistical distributions (Nourani

et al. ). The MK trend test is based on the assumption

that the samples in the dataset are independent. A positive

or negative trend in a dataset is indicated by computing

the MK S-statistics which can yield a positive or negative

value as (Hirsch & Slack ):

S ¼
Xn�1

i¼1

Xn
j¼iþ1

sgn(xj � xi) (11)

sgn(xj � xi) ¼
1 if xj � xi > 0
0 if xj � xi ¼ 0
�1 if xj � xi < 0

8<
: (12)

where n is the number of samples and xj stands for the data

point at the time j.

The null-hypothesis of the MK test is no-trend, therefore,

S is normally distributed with mean¼ 0 and the variance (σ)

is calculated as (Rashid et al. ):

σ ¼ [n(n� 1)(2nþ 5)�P
d(d� 1)(2dþ 5)

18
(13)

where summation is over the ties and d is the extent of any

tie. When the observations are not repeated, d equals to 0.

Thereafter, when the continuity correction is applied,

the S-statistic becomes S
0 ¼ S� sgn(S), with a normal distri-

bution. For testing the no-trend hypothesis, the Z-value

associated with S-statistics of the test is defined as:

Z ¼ S
0ffiffiffi
σ

p (14)
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High positive values of Z denote a positive trend and

low negative values indicate a negative trend. The magni-

tude of the Z-value, also, represents the strength of the

trend in the dataset. The probability value (p-value) obtained

from the Z-value is used to determine the significance of a

trend. In the conditions that p-value is less than pre-deter-

mined significant level (here, α ¼ 5%) or greater than the

confidence level (here,¼ 95%), the null hypothesis of no

trend is not acceptable (Rashid et al. ).

The pre-whitening Mann–Kendall test (MK2)

The pre-whitening Mann–Kendall test (MK2) proposes to

first remove the autocorrelation such as lag-one or higher

processes from the dataset and, then, apply the test. This

method is called pre-whitening and is beneficial in terms

of high autocorrelation (Burn & Hag Elnur ). According

to Yue et al. (), the method contains four major steps:

1. Calculating the slope of the sample data (β) as:

β ¼ Median
xi � xj
i� j

� �
(15)

where xi and xj are the ith and jth observation of the data-

set.

Then, remove the trend from data as:

X
0

i
¼ Xi � (β × i) (16)

2. Compute the autocorrelation of the de-trended data as in

section ‘Autocorrelation analysis’.

3. Remove the autoregressive component from the new

dataset to get a residual time series as:

y
0
i ¼ X

0
i � (R ×X

0
i�1) (17)

4. Add the trend back to the residual series as:

yi ¼ y
0
i þ (β × i) (18)
Wavelet transform–Mann–Kendall method

The WTMK technique contains two main steps. As the first

step, DWT is applied to each signal in order to decompose it
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into its components. Choosing the best mother wavelet and

the level of decomposition are important parts of this step.

The appropriate mother wavelet can be selected according

to the similarity between the shape of the time series and

that of the mother wavelet. Recent literature recommended

Daubechies function as an appropriate mother wavelet to

decompose hydrological signals due to the shape of the Dau-

bechies function that can cover the limbs of the hydrologic

time series (Nourani et al. ).

Finding the best decomposition level is controversial

among researchers and they suggest decomposing the data-

sets based on their noises which are revealed after each

decomposing level. The number of decomposition levels is

based on the number of samples in the dataset, as well as

the used mother wavelet. The number should be chosen in

a way that it corresponds to the data points at which the

filter length becomes larger than the last sub-signal (de Arti-

gas et al. ). Wang & Ding () suggested finding the

minimum required decomposition level as:

M ¼ INT (logn) (19)

where n and INT are the length of the time series and integer

number, respectively.

Moreover, to avoid unnecessary levels of decompo-

sition, de Artigas et al. () proposed a method to find

the maximum decomposition level as:

L ¼
log

n
2v� 1

� �
log (2)

(20)

where L stands for the maximum number of decomposition

levels, v is the number of vanishing moments of a Daube-

chies wavelet function which is half of its starting length,

and n stands for the number of data points in a time series.

The current study utilized smooth Daubechies wavelet

functions (db5–db10) because smoother functions are gradual

and can represent slowly changing processes, and that is why

they are used to investigate long-term time-varying behaviors

such as the behavior of hydrological variables. The length of

the time series for a monthly viewpoint, for example, is 300,

so according to Equation (19), the minimum required

decomposition level is 2. Also, with the smoother db
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functions, the maximum level of decomposition, according

to Equation (20), is between 3.98 and 5.05 (for monthly

scale), 2.39 and 3.47 (for seasonal scale), and 0.39 and 1.47

(for annual scale). Therefore, three, four, and five levels,

and two, three, and four levels, and one and two levels of

decomposition were tried for monthly, seasonal, and annual

time series, respectively.

According to the above-mentioned theories, four and

five levels, and two and three levels of decomposition

were used for monthly and seasonal time series, respect-

ively. All smooth mother wavelets (db5–db10) were

applied to the signals to determine the more appropriate

one in terms of the lowest mean relative error (MRE). The

MRE can be calculated as (de Artigas et al. ):

MRE ¼ 1
n

Xn
j¼1

jaj � xjj
jxjj (21)

where n is the number of records of a signal with xj original

data value, and aj is the approximation component of xj.

For the monthly timescales of the hydro-environmental

datasets, the lowest MRE was generally obtained for five

levels of decomposition when the different db functions for

three, four, and five levels of decomposition for each signal

were applied. Therefore, five levels of decomposition were

chosen to decompose the signals with a monthly horizon

using DWT (db types vary from one variable to another).

Thereafter, MRE was used to determine the best db to ana-

lyze the datasets of each variable. For the monthly dataset

of LST, for example, applying different db mother wavelets,

produced the lowest MRE using db6 (MRE¼ 0.46).

Similar procedures were utilized for the seasonal data-

sets in order to find the best methods to analyze the

signals in terms of the lowest MRE. Two, three, and four

levels of decomposition were applied to the datasets with

the seasonal horizon and four levels of decomposition

admitted the lowest MRE. Therefore, four levels of

decomposition were applied to the datasets to analyze

them using DWT (db types vary from one variable to

another). For annual datasets, also, one and two levels of

decomposition were applied and the lowest MRE was

obtained for two levels of decomposition. Thereafter, the

same steps as for monthly and seasonal horizons were
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applied to find the best smooth db which varied from one

dataset to another.

As the second step of WTMK, the MK trend tests were

employed to determine potential trends in approximation

and detail components’ subseries, as well as the detail com-

ponents’ combination with relevant approximations.
Correlation coefficient

The correlation coefficient (CO) is widely used in data

analysis to show the relationship between two datasets.

The current study used CO as well as Z-value to determine

the most important components in producing trends in the

original time series and to find the most dominant hydro-

environmental periodicities over the basin. The higher CO

value indicates the most efficient component. The CO is cal-

culated as (Nourani et al. ):

CO ¼
P

(n� �n)(m� �m)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(n� �n)2

P
(m� �m)2

q (22)

where �n and �m are the average of the variables n and m,

respectively.
RESULTS AND DISCUSSION

Reviewing the datasets

The current paper used RS tools’ instruments to acquire

hydro-environmental data over the Lake Urmia basin and

the water-level fluctuations of the lake for 1995–2019. In

this regard, NDVI, LST, ET, and precipitation datasets

were used as hydro-environmental time series to analyze

their trends with monthly, seasonal, and annual scales and

to study the interactions between these variables and the

water-level fluctuations over the past 25 years.

While this study aimed to investigate the hydro-environ-

mental variables for the last 25 years, the MODIS

instrument provided data for NDVI only for 2000–2019. In

this way, the structure of the FFNN model with the best

results in terms of the RMSE and DC was employed as a

desirable and optimal structure for modeling to predict the
://iwaponline.com/hr/article-pdf/52/1/176/846791/nh0520176.pdf
monthly NDVI time series for 1995–2000. In the training

phase, the FFNN was trained to learn the relationship

between input and output datasets. The input datasets con-

tained LST, ET, and precipitation and the output was

NDVI time series from 2001 to 2019 in order to design the

FFNN. The FFNN was designed using a scaled conjugate gra-

dient scheme of the back propagation (BP) algorithm

considering tangent sigmoid as activation functions, also a

trial-and-error procedure was used to determine the best

number of neurons in the hidden layer. In the training pro-

cess, the learning algorithm tries to minimize the error

between the targets and the outputs by redistributing the

error back through the model. This job is achieved through

several iterations and the cycles are known as epoch (Singh

et al. ). The best epoch number for the FFNN was deter-

mined as 12 in the validation phase. All of the datasets were

normalized before entering the model (Nourani et al. ).

The datasets were randomly separated into three parts, 60%

for training the model, 20% for validating, and 20% for test-

ing the performance. The performance for the testing phase

with eight hidden layers showed the best results as RMSE¼
0.08 and DC¼ 0.91, and the model was chosen to predict the

monthly NDVI time series for 1995–2000.

The NDVI, LST, precipitation, and ET time series over

the Lake Urmia basin and the fluctuations of the water

level of the lake are illustrated in Figure 3 with a monthly

scale from 1995 to 2019. According to the data of the

water level above the mean sea level (MSL) (Figure 3(e)),

the lake has experienced about a 7 m decline in the water

level. The datasets of the hydro-environmental variables

(Figure 3(a)–3(d)) had various kinds of patterns with differ-

ent frequencies which are typical in these datasets. The

patterns indicated that the time series were non-stationary;

therefore, using the WTMK method would be a beneficial

test to investigate the signals of nature. In this way, the

WTMK test was used to analyze the hydro-environmental

variables and the water level at annual, seasonal, and

monthly horizons. First, the autocorrelation of each original,

approximation, detail components, and various combi-

nations of sub-series of the hydro-environmental dataset

for monthly, seasonal, and annual time-scales were com-

puted in order to determine the lag-one autocorrelation.

Table 1 presents the lag-one autocorrelation for original

time series. The autocorrelation significances of the other



186 E. Foroumandi et al. | Climate change or regional human impacts? Hydrology Research | 52.1 | 2021

Downloaded fr
by guest
on 09 August 2
datasets were controlled using correlograms (examples are

given in Figure 4). After using DWT to decompose the orig-

inal signals into their components, different sub-series were

created by combining the approximation with each detail

component, separately and the next generations of sum-

mations. The combinations helped to reveal signal features

via the multi-resolution analysis.

Two MK tests were utilized to detect potential trends in

the original time series and the components. The MK1 was

used to study the datasets without a significant autocorrela-

tion and MK2 was employed to study the datasets with a

statistically significant lag-one autocorrelation.

Results of WTMK technique

The approximation (A), and detail components (D) of the

hydro-environmental variables with five, four, and two

levels of decomposition for monthly, seasonal, and annual

datasets, respectively (the mother wavelets were different

from each dataset to another), were collected (an example

is given in Figure 5). It is noteworthy that due to the space

limitation, the results of all variables and time-scales are

not presented graphically. The approximation sub-signal at

each time horizon reflected the smoothing trend of the

given time series, and the detailed sub-signals represented

the various periodicities at different frequencies. Thereafter,

the combinations of the approximations with each detail

component were used to generate different sub-series.

Then, the MK tests were applied on the original, decom-

posed, and combinations of sub-series in order to determine

potential trends in the time series. Also, CO was computed

for each sub-series with the original time series to find the

strength of the relation between them. The Z-values and

COs of time series for monthly, seasonal, and annual

scales are presented in Tables 2–4, respectively. It should

be noted that the most dominant periodicities to produce

the trends were the compounds with the Z-value close to

that of the original time series and the highest CO.

Monthly data analysis

Each monthly time series was decomposed into six com-

ponents via DWT. The detail sub-series contained five

components: 2-month periodicity (D1), 4-month periodicity
om http://iwaponline.com/hr/article-pdf/52/1/176/846791/nh0520176.pdf
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(D2), 8-month periodicity (D3), 16-month periodicity (D4),

and 32-month periodicity (D5) which were high-frequency

components and the approximation component (A5)

which represented the low frequency or the large scale of

the original signal. The lower detail level components rep-

resented the higher frequencies to show the rapidly

changing behavior of the time series, and the higher-level

details had lower frequencies which showed the slowly

changing behavior of the original signal. The approximation

component (A) represented the slowest changing behavior

and the trend of the time series.

According to the results (Table 2), the water level had a

significant negative trend in the original dataset (Z-value¼
�4.3096) which, also, could be seen in its approximation

component. The precipitation time series did not have any

statistically significant trend (according to the Z-value) in

the original signal nor its components. It indicated that the

precipitation was almost moderate from 1995 to 2019.

Therefore, precipitation could not be the main reason for

the water-level decline, although it could be an intensifier

factor for the problem. The original NDVI time series

(Z-value¼ 2.5644) and its approximation component

(Z-value¼ 2.0775) had statistically significant positive

trends which indicated that the vegetation cover over the

basin has increased. The positive trend in NDVI in the con-

dition that precipitation did not have any significant trend

showed that agriculture in the basin has occupied a greater

area and vegetation health is increased. This conclusion is in

agreement with several studies that show water withdrawal

is increased in the basin (e.g., see Ashraf et al. ; Chaud-

hari et al. ). According to Table 2, the ET time series had

a significant positive trend in the original dataset (Z-value¼
2.0565) and its approximation component (Z-value¼
2.5814). The positive trends in NDVI and ET in the con-

ditions that the precipitation did not have a significant

trend, given the high correlation between vegetation cover

and ET according to the previous studies (Khazaei et al.

), is interesting. As a consequence of fundamental

water balance in the basin, the positive trend in the ET

time series under positive vegetation trend and stable pre-

cipitation situation, the inflow discharge to the lake must

have decreased. In this situation, the significant positive

trend in the ET time series is due to inefficient or intensive

irrigation (Destouni et al. ). Therefore, inefficient



Figure 3 | Monthly time series of (a) NDVI, (b) precipitation, (c) ET, (d) LST, and (e) water level over the Lake Urmia basin during 1995–2019.
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Table 1 | Lag-one autocorrelation of the hydro-environmental variables

Variable Monthly Seasonal Annual

LST 0.8426a 0.0836 0.8791a

NDVI 0.6457a �0.1861 0.2078

Precipitation 0.4476a �0.0447 �0.1057

ET 0.7549a �0.1191 0.6496a

aThe bold values indicate a significant autocorrelation.
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irrigation in agriculture is the major reason for the decline in

the water level. The LST time series had a statistically signifi-

cant positive trend (Z-value¼ 4.9509) in its original dataset

which, also, was obvious in the approximation component

(Z-value¼ 3.0495). The positive trend in LST can be another

major reason for the decline in water level because it can

amplify the evaporation from the surface of the lake and

its basin. It is worth mentioning that the significant positive

ET and temperature trends which were seen in the basin are

in agreement with findings from several other studies (e.g.,

see Khazaei et al. ; Schulz et al. ). It can be seen

in Table 2 that the detail components (except for D3 of

water level and D2 of LST) did not have a significant

trend even for the datasets that their original time series

had a statistically significant trend. The approximation com-

ponent, which is the indicator of trend with low frequency,

of the time series with a significant trend, indicated a con-

siderable trend. In some cases, the trend direction of detail
Figure 4 | The correlograms of (a) approximation of (a) seasonal precipitation and (b) D1 of m
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components was not in agreement with the original time

series, but when the approximation component was added

to them, the direction of trend was changed because the

approximation component had the most major effect on

the original time series and it represented the main trend.

This subject supports the theory of adding the approxi-

mation to the detail components to have a better

interpretation. According to the linear structure of WTs,

the next generation of summations have the same behaviors

as the first ones. Adding more than one detail component to

the approximation showed that the detail component with

stronger trend and CO played a leader role for the other

ones. The highest CO was seen between the approximation

component and the original time series which was another

witness to the close relationship between the low-frequency

component with the original dataset. Detail components

(except for D3 of LST, precipitation, and ET) did not have

high values of CO between each of them with their original

time series. The high value of CO for D3 in the hydro-

environmental variables indicated the high influence of 8-

month periodicity over the basin. The dominant detail com-

ponent was different from one variable to another, which

could be due to the different nature of the hydro-environ-

mental variables. The most influential periodicities, generally,

were between D1 and D3 (according to the Z-values and

COs) which means the main drivers of the trends were the

events between 4-month and 16-month in the basin.
onthly LST.



Figure 5 | The approximation (A4) and detail (D1–D4) components of seasonal water level decomposed using db6.
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Seasonal data analysis

The presence of annual and seasonal cycles in hydro-

environmental signals in monthly-based data analysis

showed the need to study the seasonal-based data. Each

dataset with seasonal timescale was decomposed into five

components including an approximation (A4) and four
://iwaponline.com/hr/article-pdf/52/1/176/846791/nh0520176.pdf
detail sub-series, 6-month periodicity (D1), 12-month period-

icity (D2), 24-month periodicity (D3), and 48-month

periodicity (D4). The D2 sub-series with 12-month period-

icity could help to explain the trends which were found in

the monthly-based analysis, in annual timescale.

According to the results (Table 3), the water level had

a significant negative trend in the original dataset



Table 2 | Mann–Kendall Z-values and correlation coefficient (CO) of the monthly time series

Time series

Water level LST Precipitation ET NDVI

Z-value CO Z-value CO Z-value CO Z-value CO Z-value CO

Original � 4.3096 þ 4.9509 þ � 0.0078 þ 2.0565 þ 2.5644 þ
A5 � 4.3656 0.9969 3.0495 0.7805 0.6844 0.7349 2.5814 0.8491 2.0775 0.8712

D1 0.0945 0.0128 0.7967 0.1207 0.0655 0.4594 0.1802 0.2047 0.0800 0.2219

D2 1.0542 0.0192 � 2.5056 0.3259 0.1529 0.4777 1.6905 0.4480 2.5601 0.1957

D3 � 3.3573 0.0644 0.2624 0.8675 � 0.8202 0.6801 � 0.6661 0.8347 � 0.2040 0.1439

D4 1.0705 � 0.0108 0.0256 0.1704 1.0202 0.2744 0.3436 0.1281 1.9842 0.0267

D5 � 1.2137 0.0737 � 0.5935 0.0799 1.1938 0.1456 � 0.8399 0.0758 0.1687 0.0374

AþD1 � 4.3670 0.9970 3.2697 0.6454 0.0949 0.4787 2.1933 0.2785 1.5516 0.7347

AþD2 � 4.3602 0.9973 4.8642 0.5997 0.4103 0.4967 2.4286 0.7868 1.4585 0.6978

AþD3 � 4.2752 0.9984 4.0492 0.9125 � 0.1815 0.6928 1.5514 0.8540 1.3917 0.6841

AþD4 � 4.3814 0.9974 3.7374 0.3227 0.5692 0.3052 1.6218 0.2351 2.3680 0.5123

AþD5 � 4.4156 0.9977 3.2134 0.2958 0.2580 0.2003 1.3390 0.1941 1.6540 0.5214

AþD1þD2 � 4.3507 0.9971 4.8460 0.6210 � 0.2292 0.4875 2.4782 0.5784 1.5703 0.7103

AþD1þD3 � 4.2562 0.9980 4.2502 0.8852 � 0.6962 0.6192 1.8363 0.6193 1.6931 0.7098

AþD1þD4 � 4.3777 0.9972 3.7801 0.5584 0.5501 0.4258 2.1781 0.2502 2.2425 0.6741

AþD1þD5 � 4.3692 0.9973 3.2556 0.5127 0.2713 0.3289 1.9890 0.2215 1.5540 0.6249

AþD2þD3 � 4.2545 0.9975 5.0087 0.8249 � 0.0020 0.5565 2.0104 0.8149 1.4127 0.6881

AþD2þD4 � 4.3428 0.9973 4.3268 0.4561 0.5475 0.4369 2.5635 0.5497 2.0146 0.5942

AþD2þD5 � 4.3507 0.9975 5.0140 0.4104 0.9273 0.3127 2.2812 0.5123 1.5591 0.5714

AþD3þD4 � 4.2428 0.9978 3.7355 0.7846 0.0612 0.5268 1.8673 0.6471 1.9933 0.5637

AþD3þD5 � 4.3133 0.9974 4.0702 0.7203 � 0.2764 0.4987 1.3232 0.5749 1.2954 0.5789

AþD4þD5 � 4.3583 0.9978 3.6602 0.3010 0.4836 0.2534 1.9491 0.2213 2.2170 0.5197

AþD1þD2þD3 � 4.2621 0.9984 5.1861 0.7248 � 0.2315 0.6129 1.9824 0.7782 1.4987 0.7046

AþD1þD2þD4 � 4.3224 0.9988 4.2114 0.5927 0.0904 0.4199 2.4408 0.4106 2.0326 0.6169

AþD1þD2þD5 � 4.3270 0.9979 5.0613 0.5413 � 0.0463 0.3273 2.0133 0.3987 1.6174 0.6340

AþD2þD3þD4 � 4.2483 0.9987 4.7640 0.7314 � 0.0680 0.4879 2.1050 0.6234 2.002 0.6513

AþD2þD3þD5 � 4.2914 0.9980 5.1122 0.6120 � 0.1438 0.4196 1.8854 0.6031 1.5861 0.6642

AþD2þD4þD5 � 4.3236 0.9989 4.5118 0.3947 0.6306 0.3841 2.5056 0.4971 2.0344 0.5709

AþD3þD4þD5 � 4.3049 0.9990 3.7585 0.6403 0.0897 0.4539 1.8894 0.5107 1.9185 0.5436

AþD1þD2þD3þD4 � 4.2497 0.9994 4.8704 0.5412 � 0.0455 0.5023 2.2075 0.5478 2.1009 0.6703

AþD1þD2þD3þD5 � 4.2832 0.9991 5.0875 0.6178 � 0.2540 0.5742 2.1602 0.5274 1.6974 0.6952

AþD2þD3þD4þD5 � 4.3071 0.9992 4.9379 0.6749 0 0.6421 2.0671 0.5197 2.2051 0.6127

The bold values have statistically significant trends.

The values with underline have a significant autocorrelation and MK2 was used to study their trends.
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(Z-value¼�3.9656) and the approximation component

(Z-value¼�3.9278). The LST, ET, and NDVI, again, had

significant positive trends in their original time series

(Z-values¼ 2.9066, 2.6350, and 2.1615, respectively). The

positive trends in LST and ET were the reasons for the
om http://iwaponline.com/hr/article-pdf/52/1/176/846791/nh0520176.pdf
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decline in the water level. The precipitation dataset, again,

did not have a statistically significant trend. The approxi-

mation components showed a high relationship with the

original time series (according to the COs) and when the

original dataset had a significant trend, the approximations



Table 3 | Mann–Kendall Z-values and correlation coefficient (CO) of the seasonal time series

Time series

Water level LST Precipitation ET NDVI

Z-value CO Z-value CO Z-value CO Z-value CO Z-value CO

Original � 3.9656 – 2.9066 – � 0.2025 – 2.6350 – 2.1615 –

A4 � 3.9278 0.9936 4.0825 0.7137 0.1705 0.7887 3.7615 0.7968 2.0379 0.8124

D1 0.0625 0.0721 0.0010 0.3696 � 0.1617 0.6435 � 0.0522 0.5314 0.5751 0.5666

D2 � 2.4449 0.7184 2.1102 0.8667 �0.1340 0.6882 2.0745 0.6389 0.1936 0.9190

D3 0.7146 0.0231 � 0.4586 0.1023 0.4317 0.2497 0.1521 0.1561 0.0177 0.1473

D4 � 0.5855 0.1428 � 0.9541 0.4254 � 0.0961 0.1803 0.3525 0.1205 1.1906 0.5416

AþD1 � 3.9507 0.9947 3.4171 0.5914 � 0.2642 0.6504 0.7349 0.7571 1.4523 0.5307

AþD2 � 3.9640 0.9912 4.0711 0.8178 � 0.2174 0.6912 2.0638 0.6683 0.9262 0.7974

AþD3 � 3.9922 0.9938 3.3917 0.5290 0.6275 0.2776 1.9677 0.6392 1.9035 0.8267

AþD4 � 3.9505 0.9978 3.6206 0.6156 � 0.6065 0.2027 1.9976 0.6169 1.9573 0.8302

AþD1þD2 � 2.921 0.9844 3.8423 0.7428 � 0.2514 0.6642 1.9845 0.6048 1.5746 0.6410

AþD1þD3 � 2.5124 0.9913 3.4017 0.5874 0.2147 0.4967 1.9874 0.7159 2.0367 0.7068

AþD1þD4 � 3.0847 0.9871 3.5472 0.6019 � 0.7412 0.6045 2.0173 0.6987 1.9767 0.7243

AþD2þD3 � 3.9844 0.9792 3.7413 0.6913 0.2014 0.6127 2.1340 0.6587 2.0324 0.8041

AþD2þD4 � 3.8131 0.9901 3.9127 0.6874 � 0.5873 0.6412 2.1089 0.6879 1.9876 0.8124

AþD3þD4 3.8278 0.9963 3.5109 0.5976 0.0121 0.4546 1.9974 0.6245 2.1059 0.8234

AþD1þD2þD3 � 3.9785 0.9894 3.5478 0.6947 0.1947 0.5978 2.2478 0.6201 2.0179 0.7125

AþD1þD2þD4 � 3.9246 0.9478 3.6780 0.7291 � 0.7941 0.5421 2.1064 0.6097 1.9258 0.6978

AþD1þD3þD4 � 3.8843 0.9903 3.5078 0.6098 � 0.1247 0.4127 2.0974 0.6749 1.9974 0.7126

AþD2þD3þD4 � 3.9474 0.9893 3.6517 0.6569 0.0231 0.6076 2.2749 0.6149 2.1074 0.8124

The bold values have statistically significant trends.

The values with underline have a significant autocorrelation and MK2 was used to study their trends.

Table 4 | Mann–Kendall Z-values and correlation coefficient (CO) of the annual time series

Time series

Water level LST Precipitation ET NDVI

Z-value CO Z-value CO Z-value CO Z-value CO Z-value CO

Original � 3.6919 – 3.8768 – � 0.1168 – 2.6496 – 2.2187 –

A2 � 3.5868 0.9956 3.2125 0.9713 0.6714 0.8385 2.1540 0.8538 2.3452 0.9214

D1 0.0707 0.0524 1.5128 0.1480 � 1.0621 0.7897 0.0593 0.3061 0.6238 0.3419

D2 � 0.0276 0.1459 �0.0234 0.1771 � 1.0122 0.5298 0.1635 0.4398 0.1773 0.2173

AþD1 � 3.6241 0.9963 3.1614 0.9792 1.0043 0.8582 1.9944 0.9319 2.0977 0.7464

AþD2 � 3.5957 0.9991 3.0983 0.9918 0.4471 0.6657 1.9668 0.9295 1.9724 0.6953

AþD1þD2 � 3.5871 0.9874 3.1546 0.9842 0.9124 0.7421 2.0127 0.9475 1.9987 0.7124s

The bold values have statistically significant trends.

The values with underline have a significant autocorrelation and MK2 was used to study their trends.
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had a significant trend too which was due to the powerful

effect of the approximation on the original dataset. An inter-

esting point about the LST was that the trend in the original
://iwaponline.com/hr/article-pdf/52/1/176/846791/nh0520176.pdf
time series was less than the trend in the approximation

component. The negative trends in D3 and D4 showed

that 24- and 48-month time modes had made the increasing
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temperature a little smoother. Due to the different nature of

the hydro-environmental variables, each of them had a

special dominant periodicity, but generally speaking, D2

was the dominant component (according to the Z-values

and COs) in the basin which means the 12-month periodicity

plays an important role in the trends of the original sub-series.

This fact revealed the importance of studying the time series

in seasonal timescale because the 12-month periodicity was

skipped in the monthly-based analysis. D3 and D4, which

indicated the components with 24- and 48-month period-

icities, showed significant trends when the approximation

component was added to them and indicated their effect on

the trend of the original time series. The Z-value of the

approximation components in some cases not only indicated

a significant trend but also was higher than the Z-value of the

original time series. These results can be interpreted as a sign

for longer-time periodicities over the basin.

Annual data analysis

The possibility of longer-time periodicities’ presence which

was obvious in monthly- and seasonally-based data analysis

as well as the fact that higher-frequency components affect

many of the monthly- and seasonally-based datasets, led

the study to investigate the lower-frequency components of

the time series. Therefore, using DWT, each annually-

based dataset was decomposed into two levels with an

approximation (A2), and two detail sub-series (D1 and

D2). D1 and D2 corresponded to the 2-year and 4-year vari-

ations, respectively.

According to the results (Table 4), the water level had a

significant negative trend in the original time series (Z-value

¼�3.6919) and the approximation (Z-value¼�3.5868).

The LST, the same as before, had a significant positive

trend in the original time series (Z-value¼ 3.8768) and the

approximation component (Z-value¼ 3.2125). Precipitation

did not have any statistical trend in its dataset. The ET,

again, experienced a significant trend in the original dataset

and the approximation (Z-values¼ 2.6496 and 2.1540,

respectively). The NDVI time series had experienced posi-

tive trends in the original and approximation time series

(Z-values¼ 2.2187 and 2.3452, respectively). The most

dominant periodic components, generally, were D1 and

D2, which represented the 2-year and 4-year periodicity.
om http://iwaponline.com/hr/article-pdf/52/1/176/846791/nh0520176.pdf
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CONCLUSION

The current paper applied ANNs, wavelet transforms, and

Mann–Kendall trend tests to RS-based datasets of the

water level, precipitation, LST, NDVI, and ET over the

Lake Urmia basin from 1995 to 2019 in order to analyze

the time series to determine the most important periodicities

of the hydro-environmental variables over the basin and to

understand the climate change and human-landscape dri-

vers of the major decline in the water level of Lake Urmia.

There were some limitations in this study, which solving

them may reveal new aspects of basins to researchers. Study-

ing the water inflow into a lake from rivers which the

current study did not have access to could strengthen

future studies. As well, investigating groundwater level to

study its interactions with the water-level fluctuations of a

lake is a suggestion for future studies.

Given the stable condition of the precipitation during

the study period, it was concluded that the change in pre-

cipitation is not the main reason for the decline in the

water level. Instead, a significant positive trend was seen

in LST. The increasing temperature will lead to increasing

evaporation from the lake’s surface and, consequently, it

will intensify the decline of the water level. Also, the positive

trend in NDVI and ET time series in the conditions that the

precipitation was not increasing supported the hypothesis

that the human interventions over the basin in terms of agri-

culture and agricultural activities are the major reasons for

the decline in the water level. These conclusions are in agree-

ment with other research experiences over other parts of the

world that found human land-use and climate change as the

major reasons for the water resources problems.

Although the periodic components that had the major

effects on the trends were not the same for all of the hydro-

environmental variables, a general conclusion was made.

For the monthly-based time series, the components that had

frequencies between 4-month and 16-month were found to

have the most impact on the trends of the original time

series. For the seasonally-based time series, the components

with 24- and 48-month frequencies were the most important

details for the trend. For the annually-based time series, 2-

and 4-year periodicities generated the most important com-

ponents. The results indicated some useful information

about the most important periodicities that affect the
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hydro-environmental variables over the Lake Urmia basin

which can be considered to model, design, and plan in

future studies to help water resources management over the

basin.
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