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Climate change reduces extent of temperate
drylands and intensifies drought in deep soils
Daniel R. Schlaepfer1,2, John B. Bradford3, William K. Lauenroth2,4, Seth M. Munson3, Britta Tietjen5,6,

Sonia A. Hall7,8, Scott D. Wilson9,10, Michael C. Duniway11, Gensuo Jia12, David A. Pyke13,

Ariuntsetseg Lkhagva14 & Khishigbayar Jamiyansharav15

Drylands cover 40% of the global terrestrial surface and provide important ecosystem

services. While drylands as a whole are expected to increase in extent and aridity in coming

decades, temperature and precipitation forecasts vary by latitude and geographic region

suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty

in the future of tropical and subtropical drylands is well constrained, whereas soil moisture

and ecological droughts, which drive vegetation productivity and composition, remain

poorly understood in temperate drylands. Here we show that, over the twenty first century,

temperate drylands may contract by a third, primarily converting to subtropical drylands, and

that deep soil layers could be increasingly dry during the growing season. These changes

imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the

importance of appropriate drought measures and, as a global study that focuses on temperate

drylands, highlight a distinct fate for these highly populated areas.
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G
lobal climate models (GCMs) project consistent increases
of climatological aridity for the twenty first century1–5.
Yet, GCM projections of meteorological droughts are

uncertain and suggest robust increases in some but not all
regions6,7. This uncertainty could have particularly strong
consequences for dryland regions5,8, which are already limited
by water9,10. Drylands may respond to climate change in their
distribution, driven by aridity, or in ecosystem structure,
function, and composition, driven by ecohydrological processes.
Global drylands expanded over the twentieth century by 4–8%2,3

and represent currently c. 40% of the global terrestrial surface
(refs 2,5). Despite observations of increasing overall aridity,
forecasts of extreme drought events in the second half of the
twentieth century remain uncertain1,4,10,11. Model projections
largely agree, however, that drylands will likely continue to
expand during the twenty first century1–3,5,10 due to increases in
evaporative demand and a global hydrological cycle with longer
and more severe dry periods10,12,13. A net expansion of drylands
may reduce ecosystem services and impact human livelihoods14

through water scarcity15,16, vegetation die-offs17 and land
degradation18 all of which are exacerbated by human land
use19. The projected global trend towards increased aridity is
largely robust to variation among models and data sources, even
though potential evapotranspiration by itself is unsuitable for
understanding drying trends11,20,21. However, global temperature
and precipitation projections vary geographically and
latitudinally1,10 suggesting different outcomes for tropical and
subtropical (hereafter subtropical) drylands versus temperate
drylands at mid-latitudes5. Of particular concern for dryland
ecosystems, trends in meteorological drought and soil moisture
are highly uncertain and generally model dependent6,7.

This uncertainty is especially complicated for soil moisture
availability, which is dictated by the combination of weather,
vegetation, soil and landscape attributes. In dryland ecosystems,
soil moisture controls most ecosystem processes8,22. Reduced
primary productivity occurs primarily during periods of reduced
soil moisture and not directly to an absence of precipitation8,22,23.
Conditions that diminish harvest yields due to below-normal
levels of soil moisture, particularly during the growing period,
have traditionally been called agricultural drought (in contrast,
for example, to meteorological drought which is a period of
below-normal precipitation8). The notion of reduced soil
moisture has been extended to ecosystems and is referred to as
ecological drought8. Ecological drought is commonly described as
a ‘prolonged and widespread deficit in naturally available water
supplies [y] that create multiple stresses across ecosystems’
(US Geological Survey, US Climate Science Centers and the
Science for Nature and People Partnership) and has recently
garnered widespread attention as one of the topics defining
twenty first century climate change14. Because of the complexity
of the water cycle, soil moisture and ecological drought
projections show large uncertainties among GCMs1,3,6,7. Soil
moisture projections and drying trends are better constrained in
subtropical drylands because these are closely linked to the well-
represented Hadley Circulation1. Much of the existing research
on climate change impacts to drylands has focused on climatic
aridity and meteorological droughts, or has been restricted to
subtropical drylands. As a result, much less is known about
impacts of climate change on soil moisture and ecological
droughts, and in particular in temperate drylands.

Vegetation responds to and influences soil moisture
through transpiration, interception, shading, and hydraulic
redistribution8. Despite adaptations of dryland vegetation to
ambient aridity levels8,24, responses to increased droughts and
warming under climate change remain difficult to constrain.
Potential outcomes include plant functional type shifts18,25,

woody plant mortality17 and encroachment26, and resistance of
some vegetation types24. These vegetation responses vary among
plant functional types and depend on seasonal and soil depth
dynamics of soil moisture in addition to climate8,22,27. Three
plant functional types—shrubs, C3 grasses and C4 grasses—most
frequently dominate temperate dryland vegetation. While all
types use shallow soil moisture, shrubs can use water from greater
depths8,22. Shifts in the relative dominance of plant functional
types, particularly those involving woody species, can impact
ecosystem water balance by altering water uptake and
evapotranspiration26. Woody plant encroachment has been a
concern in grass-dominated drylands worldwide during the
twentieth century and is projected to increase under climate
change26. Changes in vegetation in response to changes in soil
moisture may impact ecosystem services in temperate dryland
ecosystems globally.

We applied a two-tiered approach to assess consequences of
climate change for global temperate, arid and semiarid drylands.
First, we quantified zones of contraction, expansion and stability
of the distribution of five temperate dryland regions. Second, we
estimated impacts of climate change on seasonal and depth
patterns of ecological drought, and their consequences for plant
water uptake using SOILWAT28,29, an ecosystem water balance
simulation model. SOILWAT utilizes site-specific soils and
weather data (here we evaluated spatially and temporally
downscaled output from 16 GCMs driven by an intermediate
and a high emissions scenario), and SOILWAT soil moisture
outputs compare very favourably with GCM estimates (see
Methods). Furthermore, SOILWAT provides high temporal
resolution (daily) information about ecosystem water balance
and plant available moisture that reflects the influence of
site-specific soil conditions.

Here we illustrate that GCMs for the late twenty first century
project a net loss of c. 15% (following the representative
concentration pathway (RCP) 4.5 (ref. 1)) to 30% (following
RCP8.5) of current temperate dryland extent due to climatic
changes. We show that the duration of ecological droughts during
growing periods may substantially increase, especially in deeper
(420 cm) soils. Water uptake by vegetation under future climate
could be increasingly reliant on surface soil moisture, favouring
shallow-rooted over deep-rooted vegetation, which contrasts
with previous projections of increasing dryland woody
encroachment26. Plant water uptake patterns within and among
regions are projected to become more similar, suggesting a
homogenization of niche spaces and vegetation composition. Our
findings emphasize contrasting spatial trajectories between
subtropical and temperate drylands and highlight the need to
assess seasonal as well as spatial patterns of soil moisture
dynamics to understand factors that shape the future of temperate
drylands and the services they provide.

Results
Spatial response of temperate drylands to climate change.
The extent of temperate drylands under current climate is
8.3� 106 km2 based on aridity, climate zone, and mean annual
temperature (MAT) (Fig. 1 and Supplementary Table 1). This
corresponds to c. 5.6% of the global terrestrial surface and to
20–30%, varying by published estimates2,5, of all arid and
semiarid areas globally. Changes in aridity, climate zone, and
mean annual temperature projected by GCMs will alter the future
distribution of temperate drylands, which we defined here
climatologically2. By the end of this century, climate change
could lead to a net contraction of temperate drylands of up to
2.4� 106 km2 (1.2–3.3� 106 km2 among 16 GCMs following
RCP8.5) with considerable variation among regions (Fig. 1 and
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Supplementary Fig. 1 and Supplementary Table 2). RCP8.5
represents a ‘business as usual’ scenario, that is, no mitigation to
curb climate change, which will not occur if the Paris agreement30

to keep the global mean temperature ‘well below 2 �C above pre-
industrial levels’ is implemented. All results for the intermediate
emissions scenario RCP4.5, which assumes a stabilization of
emissions without overshoot, are given in Supplementary Figs
1–10 and Supplementary Tables 1–3, 5, 7, and 10, but are
qualitatively similar. While other studies indicate that drylands in
total may increase by 5–23% globally2,5, that general statement
masks our result that temperate drylands may contract while
subtropical drylands expand. We found that a median of 36%
(24–51% among GCMs) of current temperate drylands would be
converted under the considered scenario mainly to warmer
subtropical drylands (Supplementary Table 3). An area equal to
9% (6–20%) of the current extent would be added in the future as
temperate drylands, primarily because of increased aridity in
currently sub-humid areas (Supplementary Table 3). Our
assessment of contracting, stable, and expanding zones among
GCMs showed consistency in four regions (32–80% agreement),
but not in North America (19%; Fig. 1b–f insets).

Duration and distribution of ecological droughts. Ecological
droughts during growing periods, which we estimated as the
longest snow-free, frost-free period when soil water potential was
continuously o� 3.0MPa, could last longer under projected
future scenarios (Fig. 2). Our model, driven by soil data and

climate inputs from 16 GCMs, projected increasing drought
periods in every temperate dryland region, except for parts of
Asia, that are not projected to shift in distribution under climate
change (Fig. 2 and Supplementary Tables 4–5). Ecological
droughts may become longer over 65% (31–96% among GCMs)
of the area of temperate drylands in surface soil layers (0–20 cm)
and 85% (68–97%) in deeper layers (420 cm). This increase in
growing season droughts coincided with a reduction of the warm/
wet season overlap due to increasing cold-season precipitation
(Supplementary Figs 2–6 and Supplementary Tables 6–7).
Increasing ecological drought, particularly during the warm
and dry season13, is consistent with other evaluations1–4, and
will have consequences for dryland vegetation, including
elevated plant mortality, more frequent wildfires, and shifts in
plant functional types8,17,19,22,23. East Asia is the only region
with projections that consistently diverged from the trend of
increasing ecological drought, which is consistent with previous
studies1. This may be related to East Asia being the only region
with a positive warm/wet season overlap (Supplementary Fig. 5).
Ecological droughts in East Asia may become shorter instead of
longer in over 43% (surface layers) and 26% (deeper layers) of the
region.

The projected intensification of ecological droughts is more
pronounced for deep layers (þ 10%, 0–20%, corresponding
to þ 18 days, 8–38 days, longer dry periods) than surface layers
(0%, � 12 to 30%; þ 2.6 days, � 7 to 17 days) particularly for
contracting and expanding zones. This result was surprising since
increased cold-season precipitation might be expected to enhance
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Figure 1 | Current and future distribution of temperate drylands. (a) Five temperate dryland regions with their current extent for 1980–2010 (green):

(b) South America; (c) North America; (d) Western and Central Asia; (e) Mediterranean Basin; (f) Eastern Asia. (b–f) Future projected change in extent

under RCP8.5 for 2070–2100, depicted as stable (grey), contracting (orange; no longer temperate dryland in 2070–2100), and expanding (blue; newly

temperate dryland in 2070–2100) zones. Inset vertical histograms for b–f illustrate areal abundance in each category of GCM agreement about expansion

or contraction of temperate drylands. Left (grey-orange) histogram depicts GCM agreement (that is, number of GCMs that agree in the direction of

change) about the fate of current temperate drylands and shows the number of cells within each category ranging from pure grey (all 16 GCMs forecast

stable temperate drylands) to pure orange (all GCMs forecast conversion from temperate dryland to non-temperate and/or non-dryland). Right (light

blue—dark blue) histogram indicates GCM agreement of temperate dryland expansion into new areas and shows the number of cells within each category

ranging from dark blue (all GCMs forecast conversion to temperate dryland) to light blue (one GCM forecasts conversion).
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available soil moisture at depth due to reduced evaporative
competition for percolating soil moisture8,22. As a consequence of
differential drying of deep versus surface soil layers, future
vegetation was projected to extract more water from shallow
rather than deeper layers. Our simulations suggest that overall the
importance of transpiration from shallow layers increases under
climate change, that is, the proportion of total transpiration that
derives from deep layers decreases (Fig. 3 and Supplementary
Tables 4–5). We estimated the proportion of transpired water
derived from deep soil layers to decrease by a median of 8%
(4–12%) for South America, 2% (� 2 to 7%) for Central and
Western Asia, 11% (7–15%) for the Western Mediterranean
basin, and 5% (� 1 to 9%) for North America. The exception was
again East Asia where we estimated increased water uptake (2%,
� 2 to 5%) from deep soil layers (Supplementary Fig. 7 and
Supplementary Tables 4–5). Our simulation results suggest also
that transpiration from shallow layers may increase in the median
case in most regions. Median decreases occur in the Western

Mediterranean basin and the expanding zone of South America.
In addition, our results also indicate a heterogeneous pattern
where the overall regional trends are interrupted at smaller spatial
scales (Supplementary Fig. 8 and Supplementary Tables 4–5).
This heterogeneous pattern of the geographic distribution of
increases and decreases is more prominent for transpiration
derived from soil moisture at deep soil layers (Supplementary
Fig. 9 and Supplementary Tables 4–5). Among regions and within
some regions (specifically East Asia, South America and the
Western Mediterranean), we found a negative relationship
between the projected change in the proportion of transpiration
derived from deep soil moisture and the current value (Fig. 4).
This negative relationship indicates a homogenization of plant
water uptake among soil layers implying a reduction of niche
spaces, associated plant functional types, and biodiversity8,22

within temperate drylands as a whole and within those regions
that display the negative relationship (Fig. 4).

Discussion
Net reductions in the area of temperate drylands occurred in our
projections following an intermediate and a high-emission
scenario across all five temperate dryland regions and illustrate
the different impact of climate change on the distribution of
temperate versus subtropical drylands. The latter are projected
to expand due to conversions from temperate to subtropical
climate in addition to increased aridity in currently sub-humid
subtropical regions1,3,5,10. Consequences for vegetation of a
shift from temperate to subtropical drylands include loss of
temperature-controlled seasonal cycle, phenological shifts,
increases in frost-intolerant species and dominance of C4 over
C3 grasses. Furthermore, impacts on ecosystem services could
have large consequences for human well-being: aggressive human
diseases, including dengue and schistosomiasis31, as well as
mound-building termites32, occur in subtropical climates and
could expand as temperate drylands warm, whereas cool season
crops such as wheat and potato would no longer be economically
viable33.

Our findings suggest large and regionally variable shifts in the
distribution of temperate drylands under a changing climate, and
highlight the complex interplay between seasonal soil water
resources and intensified ecological droughts during the growing
season that differ with soil depth. While increased water
availability at depth would be expected with more cold-season
precipitation (favouring woody and deep-rooted species8,22),
our results suggest instead a soil moisture regime that is
increasingly dominated by longer ecological droughts
particularly at depth and by available water restricted to surface
soils (favouring shallow-rooted herbaceous species8,22) and the
cool season (favouring winter annuals, including invasive
grasses34). Increasing water scarcity in deep soils is relevant for
ecosystem function because soil moisture at depth is an important
resource for deep-rooted woody species as drought proceeds27.
This indicates, for instance, that expected future increases of
woody plant encroachment26 may not be generalizable across all
drylands. Our study emphasizes the need to differentiate among
drylands and describes intensifications of seasonal and soil depth
patterns of drought that could affect temperate dryland plant
communities and the services they provide, including water
resources, wildlife habitat, soil conservation, agriculture and
carbon storage.

Methods
Study area. We identified temperate drylands using three criteria: mean annual
temperature (MAT), the Trewartha climate classification scheme35, and the
FAO/UNEP aridity index (AI) (ref. 36). In addition, we restricted the analysis to
areas with soils of less than 90% sand content. We classified temperate areas if
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MAT40 �C and Trewartha climate group was category D, that is, the number of
months with mean temperatures Z10 �C is Z4 but o8. We included areas as
drylands if 0.05rAIo0.5, that is, arid and semiarid types excluding hyper-arid37.
AI was calculated as MAP/PET, where PET is potential evapotranspiration and
MAP is the mean annual precipitation37, particularly, this index is equivalent to the
inverse aridity index of the Budyko framework20. Because our classification is

climate dependent, we determined the study area under current climate and for
each future climate scenario.

We applied a geographic raster with 0.3125� square cells, so that exactly one cell
centre of the NCEP/CFSR T382 Gaussian grid38 fell in each of our cells. Our raster
contained 1,152� 576 cells and had its origin at 90� S and 179.84375�W. We made
an initial generous estimate due to lack of complete knowledge about which cells
may be identified as temperate drylands. From the total possible 663,552 cells in the
raster, we included 20,021 cells for running simulations. After completing
simulation runs, we determined that 12,638 out of the 20,021 raster cells classified
as temperate drylands under either current climate or at least one future scenario.
We considered only this subset of cells for further analysis.

We grouped the 12,638 raster cells in six geographic regions (Fig. 1) based on
the UN geoscheme (United Nations Statistics Division: Composition of macro
geographical (continental) regions, geographical sub-regions, and selected
economic and other groupings; available at http://unstats.un.org/unsd/methods/
m49/m49regin.htm; accessed on 4 Feb 2014). ‘South America’ (o15�N
&425�W); ‘Southern Africa’ (o0�N & (40 &o55)�E)—we omitted Southern
Africa from further analysis because only one cell under a few climate conditions
was identified as temperate dryland; ‘Eastern Asia’ including the eastern portion of
Southern Asia (along border of Afghanistan/Pakistan except area around city of
Quetta) and the eastern portion of Eastern Europe (487� E starting about at the
border point of Russia, Kazakhstan, and China); ‘Western and Central Asia’
including the western portion of Southern Asia (along border of Afghanistan/
Pakistan plus area around city of Quetta) and western portion of Eastern Europe
(o87� E); ‘Western Mediterranean basin’ (W of the Dinaric and Pindus
Mountains) including Europe and Northern Africa, but excluding Eastern Europe
(40�N and (o25�W and o14�E); ‘North America’ (425�N and 450�W).

Simulation framework. We utilized SOILWAT, a daily time step, multiple
soil layer, process-based, simulation model of ecosystem water balance28,29,39.
SOILWAT has been applied and validated in dryland ecosystems including
temperate grasslands28,40, temperate shrub-dominated ecosystems29 and temperate
dry-domain forests41. Inputs to SOILWAT include daily weather conditions
(mean daily maximum and minimum temperature and daily precipitation), mean
monthly climate conditions (mean monthly relative humidity, wind speed and
cloud cover), latitude, elevation, vegetation (mean monthly live, standing and litter
biomass, active root depth profile) and soil properties (texture of each soil layer).
SOILWAT estimates processes for each functional plant group including
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Figure 3 | Climate-driven changes in the proportion of transpiration derived from deep soil moisture. (a) Current values; dark green indicates areas

with transpiration primarily from deep layers, 420 cm depth. (b–f) Impact of climate change in the study regions, expressed as the difference in the

proportion of transpiration derived from deep layers between future consensus projections under RCP8.5 for 2070–2100 and current conditions. Dark

orange indicates decreasing proportion of transpiration from deep layers, dark blue indicates increasing, and grey indicates no change. Areas depicted

include all cells that are either current and/or future temperate drylands under any GCM (Fig. 1).
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interception by vegetation and litter, evaporation of intercepted water,
transpiration and hydraulic redistribution from each soil layer. Transpiration and
evaporation are estimated by limiting potential rates with stress functions of soil
water potential, atmospheric demand, seasonal leaf area, rooting distribution,
vegetation-specific critical soil moisture values of water extraction and shading of
canopy and litter41. This is an approach comparable to the modified Jarvis–Stewart
model42,43. SOILWAT estimates hydrological processes including partitioning of
precipitation into snowfall and rain, snow accumulation, melt and loss, infiltration
into the soil profile, percolation for each soil layer, bare soil evaporation and deep
drainage29,39. PET is calculated using the Sellers’ formulation44 of Penman45 which
incorporates day length effects. Because estimations of PET with Penman-based
equations using data from NCEP/CFSR tend to under-estimate PET in dry
regions46, we corrected our PET estimates by multiplication with 1.2 based on a
comparison with PET values for 1961–1990 (FAO global map of monthly reference
evapotranspiration—100 ; available at http://www.fao.org/; accessed on 24 Oct 2012)

Our simulation experiment consisted of a total of 20,020 cells, which we
subjected to present climate and two RCPs (RCP 4.5 and RCP 8.5) and the
resulting climate projections of 16 global circulation models. We executed
this experiment on Yellowstone at the National Center for Atmospheric Research-
Wyoming Supercomputing Center47 and Advanced Research Computing Center’s
Mount Moran/Bighorn facilities at the University of Wyoming.

Input data for weather conditions and climate scenarios. We used NCEP/CFSR
products38 on a T382 Gaussian grid (resolution of B0.312��B0.312�) to
simulate current climate conditions (1979–2010; Supplementary Figs 2–6 and
Supplementary Tables 6–7). Specifically, we extracted daily maximum and
minimum temperature (2m above ground) and precipitation from the 6-hourly
data sets (ds093.0 and ds093.1 (ref. 48)). We also extracted relative humidity (2m
above ground), u- and v-wind speed components (10m above ground), and total
cloud cover, which we converted to sky cover via sunshine per cent49 from the
monthly data set (ds093.2 (ref. 48)) and calculated mean monthly values.

We extracted for the centre of each cell 32 projected future climate conditions
as monthly time-series for 2069–2099 from 1/2� downscaled and bias-corrected
products of the fifth phase of the Climate Model Intercomparison Project50

(CMIP5) of 16 global circulation models (GCMs) for two RCPs51, RCP4.5 and
RCP8.5, from the ‘Downscaled CMIP3 and CMIP5 Climate and Hydrology
Projections’ archive52 at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
(data accessed on 4 Feb 2014). We combined historical daily data (NCEP/CFSR)
with monthly GCM projections of historical and future conditions with a hybrid-
delta downscaling approach to obtain future daily forcing53,54. We selected 16
GCMs from all those that participated in CMIP5 that represented the most
independent and best performing subset of GCMs55 (Supplementary Table 8).

Changes in annual precipitation across temperate drylands showed an
overall median increase of þ 48mmyr� 1 (� 13 to 91mmyr� 1); however, there
was important variation among regions (� 39mmyr� 1 for South America to
þ 58mmyr� 1 for Western and Central Asia) as well as within regions
(Supplementary Fig. 2 and Supplementary Tables 6–7). MAT increased
consistently across GCMs by þ 5.2 �C (3.4–7.3 �C) for all regions except South
America, which experienced the lowest increases of þ 3.1 �C (Supplementary
Fig. 3 and Supplementary Tables 6–7). PET increased similarly consistent with an
overall median of þ 151 mm yr� 1 (94–209 mm yr� 1; Supplementary Fig. 4 and
Supplementary Tables 6–7). The typical precipitation regime under current
conditions was dominated by cold-season precipitation except for Eastern Asia,
which showed consistent warm-season precipitation. Winter precipitation is the
sum of mean monthly precipitation of December, January and February on the
northern hemisphere, and the sum of mean monthly precipitation of June, July and
August on the southern hemisphere. Wet/warm-season overlap is the mean annual
Pearson correlation coefficient between mean monthly temperature (�C) and
monthly precipitation (mm). þ 1 indicates a perfect match between the warm and
wet season; � 1 indicates a perfect match between the cold and the wet season.
Median changes in the overlap of the wet/warm-season were for each region
(except South America) and overall mostly small with a trend towards less wet/
warm-overlap by � 0.019 (� 0.064 to 0.045), but varied within regions and among
GCMs from more wet/cold- to more wet/warm-season overlap (Supplementary
Figs 5–6 and Supplementary Tables 6–7).

Input data for soil characterization. Soil texture data were derived from the
ISRIC-WISE global soil data set56 at 5 arc-min spatial resolution and at 20 cm
depth intervals up to 1m. We split the 0–20 cm layer into two 10 cm deep layers to
improve the representation of surface soil processes and account for ISRIC-WISE
cells of 10 cm depth (lithosols). We calculated sand and clay content for each layer
and cell as area-weighted averages of soil map units and soil types. Soil depth was
based on the ISRIC-WISE data set unless the soil was deeper that 1m, in which
case depth was estimated as 95% of the maximum root depth with 50 cm depth
intervals57 and soil texture was assumed to be the same as the deepest ISRIC-WISE
layer. We calculated elevation for each raster cell as area-weighted median based on
a 30-arcsec global elevation data set58.

Model representation of vegetation. We assumed that a potential vegetation
characterized by three functional groups, shrubs, C3 grasses and C4 grasses,

sufficiently described ecohydrological processes including transpiration, water
extraction by roots, timing of water use (phenology) and hydraulic redistribution.
Potential vegetation composition of the three functional groups, mean monthly
biomass, litter and phenology were based on climate relationships and calculated
for each cell and climate condition (detailed description in Bradford et al.59).
Vegetation composition estimates were based on Paruelo and Lauenroth60 with an
adjustment for the C4 grass component based on Teeri et al.61 Cell- and climate
condition-specific precipitation modulated mean monthly above ground total, live
and litter biomass and temperature-modulated growing season timing and length
for each functional group. Rooting depth distribution for each functional group
was based on a reanalysis of a global root data set62 using equations by Jackson
et al.63 for our study area.

Our simulation model made the simplifying assumption that net, ecosystem-
scale water-use efficiency and net primary productivity do not respond to
increasing atmospheric CO2-concentration. This assumption may under-estimate
the effects on soil drying11,15,21; yet several studies find a negative net effect of
elevated CO2 on soil moisture in dry ecosystems64,65 and in combination with
nutrient limitation66,67. Increases in leaf-level water-use efficiency may lead
to a positive response in biomass and transpiration in water-limited systems
(as opposed to energy-limited systems) and thus, potentially, to a decrease in soil
moisture over the long run64,65,68. Several major issues remain to be addressed
for an accurate representation of responses and their interactions to increasing
CO2-concentration at ecosystem scales in models69–71 before these simulation
models will be able to represent the full range of experimental and historical
observations68,72–75. The importance of these uncertainties is illustrated by the
large range of reported values from observations and experiments. These indicate
that responses to elevated CO2-concentration of ecosystem water-use efficiency
may range from 0 to þ 120%, of transpiration from � 14 to þ 11%, of
productivity from 0 to 40%, and of soil moisture from � 20 to þ 10%. While the
physiological response to CO2-concentration of photosynthesis and leave-level
water-use efficiency are reasonably understood67,76, our ability to predict net
impacts at the ecosystem-scale has been described as ‘very low’76.

Analysis of response variables. Each SOILWAT simulation run produced daily
output for each process and water compartment for the 31-year simulation period
discarding the first year as spin-up (see ‘Simulation framework’). On the basis of
the daily data, we calculated derived response variables (see next paragraph) and
then aggregated temporally across 31 years by mean and standard deviation. We
calculated these derived and aggregated variables for the current climate condition
and for 16 GCMs under two RCPs. We captured the variation among GCMs for
each RCP by agreement level of temperate dryland classification and by the
selection of study area cells for the aggregation of response variable values (details
in ‘Variation of response variables’). Because our simulation experiment was
deterministic, we estimated effect sizes and performed an evaluation of simulation
results, but no statistical hypothesis testing77. We used R version 3.1.2 (ref. 78) for
all analyses and for creating figures; we used the R package ‘maps’ version 3.0.2 to
add country borders to figures of geographic data.

We chose two derived response variables to capture ecohydrological constraints
on potential vegetation. We estimated the mean annual duration of continuous
ecological droughts during growing periods for surface soil layers of 0–20 cm depth
(DDGP0) and for deep soil layers420 cm depth (DDGP20) as the longest
snow-free, frost-free period when soil water potential (SWP)o� 3.0MPa
continuously. We estimated mean annual proportion of transpiration derived from
deep soil moisture (420 cm depth; T20/T) as the ratio of transpiration resulting
from water uptake from deep soil layers (T20) to transpiration resulting from water
uptake from all soil layers (T).

Variation of response variables. We allowed for variation among raster cells
within regions, variation among regions, variation among RCPs, and variation
among GCMs. Here, we reported results under RCP8.5, which is closely tracked by
recent greenhouse gas emissions79. However, RCP8.5 represents a ‘business as
usual’ scenario without mitigation; if the Paris agreement30 to keep the global mean
temperature ‘well below 2 �C above pre-industrial levels’ is implemented, results
under RCP4.5 (Supplementary Information) or RCP2.6 (not simulated) could be
more realistic. In the article, we focus on variation among regions and among
GCMs (note: overall variation among RCP was for precipitation-related variables
as large as variation among GCMs, Supplementary Table 9). The variation among
GCMs arose due to spatial variation of extent and location of our study area
(temperate drylands are defined as a function of climate) and due to within-cell
variation in forcing from the 16 GCMs.

We estimated level of spatial agreement by counting GCMs that classified a cell
as temperate dryland. We identified three shifting zones for each GCM: the
contracting zone comprises cells with a temperate dryland under current, but not
under future climate condition; the stable zone comprises cells with a temperate
dryland under current and future conditions; the expanding zone comprises cells
with a temperate dryland under future, but not current conditions. We calculated
summaries by region and shifting zone in two steps to simultaneously account for
both aspects of variation among GCMs, that is, the within-cell and the spatial
components. We first calculated for each GCM the target summary statistic among
those cells that are part of a zone and region. In a second step, we calculated the
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median value among the 16 GCM summary values and used the minimum–
maximum GCM range as indicator of among GCM variation. We determined for
each shift the contribution of each defining factor and determined whether a cell
changed the climate classification between temperate and boreal35 (1–3 months
with mean temperatureZ10 �C), subtropical35 (Z8 months with mean
temperature Z10 �C) or tropical35 (12 months with mean temperatureZ18 �C),
and whether a cell changed the aridity classification36.

We estimated the relative contributions of cells, regions, shifting zones, GCMs,
and RCPs to the variation of two groups of variables: climate inputs/drivers (MAT,
MAP, AI, PET, wet/warm-season overlap) and the derived ecohydrological
response variables. We calculated the uniquely attributable variation based on
additive elements by Whittaker80,81 as percentage of the total variation for each
variable for the extent of the study area for each climate condition. We partitioned
the variation for the absolute variable values under each climate condition and as
difference between future and current conditions. Absolute values indicated that
most of the variation was attributable to among-cell variation (mean±1 s.d. are
68±30% for climate drivers, and 63±19% for response variables) and most of the
rest to among-region variation (Supplementary Table 9). Variation attributable to
among-GCM and among-RCP variation were of similar size, but only relevant for
differences between future and current conditions (20±11% and 22±27% for
climate drivers, and 9±5% and 7±12% for response variables). The large variation
among climate drivers for the attribution of RCP arose because MAT and PET
were primarily driven by variation in RCP whereas other drivers (MAP, AI,
wet/warm-season overlap) showed larger variation among GCMs.

Comparison of SOILWAT results with other approaches. We compared
projections of GCMs against SOILWAT output of mean monthly soil moisture.
The variable ‘mrso’ (total soil moisture content) was extracted for seven GCMs
under historical and future (RCP4.5 and RCP8.5) scenarios from non-downscaled
data from the ESGF node https://pcmdi.llnl.gov/. We calculated normalized mean
monthly values for the periods of 1980–2005 and 2070–2099 for each of our
simulated raster cells and compared agreement with equivalent soil moisture values
from SOILWAT output. We estimated agreement between models with Duveiller’s
l, which is the best performing symmetric agreement index82. l ranges between 0
and 1 where 0 indicates no agreement and 1 is perfect agreement. l is proportional
to Pearson’s correlation index and accounts for systematic and unsystematic bias.

The comparison is favourable with an overall agreement level for the historical
time period of 0.89±0.07 (mean±s.d. among 7 GCM-SOILWAT comparisons) as
well as for the future time period under RCP8.5 of 0.92±0.04 (Supplementary
Fig. 10 and Supplementary Table 10). Regional agreement is mostly similarly high.
GCM-SOILWAT agreement, however, was low for Eastern Asia in the historic time
period with 0.37±0.21, which increased to 0.67±0.09 for the future period under
the RCP8.5 scenario. Our simulations for the historic time period were run with
observation-based weather data, whereas the GCM output represents hindcasts.
For the future time periods, the representation of climate conditions for our
simulations were based on GCM output. Thus, we expected a higher agreement
between our simulation results and those from GCMs for the future time periods
than for the historic period. Freedman et al.83 compared GRACE satellite
observations of terrestrial water storage with GCM predictions for 2003–2012 for
the Mississippi River Basin and found good agreement in overall aggregated values,
but considerable GCM deviations spatially and in water flux partitioning. In a
similar exercise, Wu et al.13 compared GRACE data to GCM predictions to select
GCMs for a hydrological impact assessment and found noticeable variation among
GCM soil moisture predictions including GCMs with cycles that do not match the
seasonal variation. It is not surprising that we found modest deviations between
SOILWAT and GCM soil moisture values as well (Supplementary Fig. 10 and
Supplementary Table 10), particularly across Eastern Asia, which is a region where
several GCMs demonstrate difficulties in representing the monsoonal precipitation
regime84.

We compared SOILWAT output to the demand-supply relationship of water
availability in the Budyko framework. We fitted annual output of SOILWAT for
F¼Eactual / P, that is, the ratio of actual evapotranspiration (AET¼ Eactual, mm) to
annual precipitation (MAP¼ P, mm), against the Budyko aridity index
AIb¼ 1/AIUNEP, that is, the ratio of potential evapotranspiration (PET¼ Epotential,
mm) to annual precipitation36. We used Fuh’s equation to represent the Budyko
curve, that is, F¼ 1þAIb� (1þAIb

o)1/o (ref. 85); while AIb describes the
prevailing climatic conditions, o can be interpreted as the combined influence on
water availability of all other factors such as vegetation, soil and seasonality86. We
estimated o for each region based on mean annual SOILWAT output of AET and
PET by numerically minimizing the sum of the squared differences between F and
1þAIb� (1þAIb

o)1/o (refs 86,87) across simulated cells.
The resulting Budyko curves agree well with SOILWAT output that was

aggregated without functional constraints, for example, when summarized by
locally weighted polynomial regression lines (Supplementary Fig. 10). We find this
favourable agreement with the Budyko framework despite the fact that our
estimates of o are not precise because we used mean annual values (that is, spatial
instead of temporal variation) and because our simulations included only
temperate drylands, for example, cells with AIbo2 are mostly not included
(but would contain most of the information of the shape of the curves). This
comparison confirms that that actual evapotranspiration in dry regions is limited

not primarily by potential evapotranspiration rates, but by other factors including
seasonal soil moisture, soil conditions, and vegetation20,39. Understanding climate
change impacts in dryland regions, thus, requires models such as SOILWAT, which
simulate these ‘other’ factors in detail and which do not rely on an aridity index as
model driver11,20,21.

Code availability. The source code of SOILWAT v0.1.0-gtd is available from our
github repository as R package https://github.com/Burke-Lauenroth-Lab/Rsoilwat
and the code to run this simulation experiment as R script v0.1.0-gtd from https://
github.com/Burke-Lauenroth-Lab/SoilWat_R_Wrapper. The R scripts used to
analyse the simulation output are available from https://github.com/drschlaep/
GTD_vulnerability.

Data availability. The data (simulation outputs) that support the findings of this
study are available from the John Wesley Powell Center for Analysis and Synthesis
(https://doi.org/10.5066/F7930RB1).
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