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 37 

Potential climate-related impacts on future crop yield are a major societal concern first 38 

surveyed in a harmonized multi-model effort in 2014. We report here on new 21st-century 39 

projections using ensembles of latest-generation crop and climate models. Results 40 

suggest markedly more pessimistic yield responses for maize, soybean, and rice 41 

compared to the original ensemble. Mean end-of-century maize productivity is shifted 42 

from +5 to -6% (SSP126) and +1 to -24% (SSP585) — explained by warmer climate 43 

projections and improved crop model sensitivities. In contrast, wheat shows stronger 44 

gains (+9 shifted to +18%, SSP585), linked to higher CO2 concentrations and expanded 45 
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high-latitude gains. The ‘emergence’ of climate impacts — when the change signal 46 

emerges from the noise — consistently occurs earlier in the new projections for several 47 

main producing regions before 2040. While future yield estimates remain uncertain, these 48 

results suggest that major breadbasket regions will face distinct anthropogenic climatic 49 

risks sooner than previously anticipated. 50 

  51 

 52 

Climate change already affects agricultural productivity worldwide via many mechanisms, driven 53 

largely by warmer mean and extreme temperatures, altered precipitation regimes and drought 54 

patterns, and elevated atmospheric CO2 concentrations ([CO2])
1. Uncertainties arising from 55 

greenhouse gas emission scenarios, climate model projections, and the understanding and 56 

representation of complex impact processes render estimates of future crop yield highly 57 

uncertain2. A way towards improving yield projections is the development of benchmarked multi-58 

model ensemble simulations driven by harmonized simulation protocols3. Facilitated by the 59 

Agricultural Model Intercomparison and Improvement Project (AgMIP)4 and the Inter-Sectoral 60 

Impact Model Intercomparison Project (ISIMIP)5, here we present a new systematic assessment 61 

of agricultural yield projections, based on a protocol similar to the one used by Coupled Model 62 

Intercomparison Project (CMIP) for climate models6. Previous projections of AgMIP’s Global 63 

Gridded Crop Model Intercomparison (GGCMI) based on CMIP5 identified substantial climate 64 

impacts on all major crops, with strong temperature and CO2 responses and regional patterns of 65 

losses and gains7. As the first systematic intercomparison, GGCMI-CMIP5 (hereafter ‘GC5’) 66 

demonstrated in 2014 that crop models might indeed introduce larger uncertainty than current 67 

climate models. CMIP6 now provides new reference climate model projections8,9, and recently 68 

improved bias-adjustment and downscaling methods10 benefit the impact modeling community 69 

and support an advanced ensemble of process-based crop models. With improved and further 70 

harmonized inputs and configuration of cropping systems, GGCMI is able to provide a new 71 

standard in crop yield projections for the 21st century for several major crops using state-of-the-72 

art modeling approaches with CMIP6 scenarios (hereafter ‘GC6’). 73 

 74 
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Climate change impacts are often quantified in terms of differences over time, but especially in 75 

view of adaptation measures, it is the amplitude of the change compared to the local 76 

background variability and uncertainty of the recent past that is often more relevant11. Time of 77 

climate impact emergence (TCIE) — the point in time by which the yield levels of exceptional 78 

years (negative or positive) have become the new norm — is a critical measure for risk 79 

assessment. Time of emergence12 metrics have been applied to climate variables including 80 

temperature13,14, precipitation15, and others16,17 and demonstrate that major food producing 81 

regions are increasingly facing changing climate profiles in the near term. Here we introduce the 82 

TCIE concept with respect to future agricultural risks. 83 

 84 

The analyses presented here shed new light on the projected effects of elevated [CO2], which 85 

have been neglected in many previous studies that focused on direct temperature responses18–86 

20. CO2 effects are among the largest sources of uncertainty inflating the range of crop model 87 

projections by the end of the century21–24, but they must be reflected in plausible future yield 88 

projections25. The uncertainty in the mechanisms and overall size of the effects of CO2 89 

fertilization manifested in farmers’ fields are reflected in a wide range of CO2 sensitivities among 90 

the crop models contributing to the GGCMI archive21,25. 91 

 92 

Here we present an ensemble of process-based projections of global productivity estimates for 93 

the major crops for the 21st century. This work represents the first update since GC5 in 20147 94 

and includes updated climate projections based on CMIP6 and latest-generation crop models 95 

for maize, wheat, rice, and soybean. This study is based on constant management 96 

assumptions, focusing on the isolated climate change effect on current crop production 97 

systems. Opportunities associated with farming system adaptation and management trends will 98 

be addressed in upcoming GGCMI simulations.  99 

 100 
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The simulation protocol is based on two Shared Socioeconomic Pathways related to 101 

Representative Concentration Pathways (RCPs), RCP2.6 and RCP8.5 (hereafter ‘SSP126’ and 102 

‘SSP585’; adaptation measures associated with the SSPs are not considered)9, chosen to 103 

sample the range of available scenarios26 and to make the results comparable with GC5. 104 

Twelve GGCMs each simulated 5 GCM forcings, resulting in nearly 240 climate-crop model 105 

realizations per crop (GGCMs x GCMs x RCPs x CO2 settings). The climate projections from the 106 

5 GCMs (Table S1), centrally bias-adjusted and downscaled for different research sectors, were 107 

selected by ISIMIP based on benchmark performance, equilibrium climate sensitivity, and 108 

output availability (see Methods). All simulations were carried out globally on a 0.5° grid, 109 

covering the time period 1850 to 2100. We evaluate results based on the transient atmospheric 110 

CO2 concentration (i.e., ‘default’ [CO2]) and only refer to counterfactual simulations without 111 

[CO2] increase after the year 2015 (‘constant’ [CO2]) to quantify the CO2 fertilization effect for 112 

further uncertainty evaluation and climate change factor attribution. 113 

 114 

Recent literature has focused on capturing the temperature sensitivity of crops18–20,27–29 in 115 

isolation. To quantify climate change impacts more comprehensively, additional factors 116 

including precipitation changes, temperature-moisture feedbacks, and [CO2] need to be 117 

considered. The aims of this first GC6 study are to: i) provide new ensemble projections for the 118 

productivity of major crops under climate change, ii) assess climate change impacts on crop 119 

yields from a risk perspective, employing the TCIE concept, iii) improve understanding of 120 

regional patterns of change, and iv) explore drivers of uncertainty related to climate models, 121 

crop models, and responses to [CO2]. 122 

Global production response of major crops 123 

The ensemble response across the new generation of climate and crop models to the SSP126 124 

and SSP585 forcing is markedly more pronounced than in GC57 (Fig. 1). Wheat results are 125 
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more optimistic, while maize, soybean, and rice results are decisively more pessimistic. For 126 

maize, the most important global crop in terms of total production and food security in many 127 

regions, the mean end-of-century (2069-2099) global productivity response is ~10% (SSP126) 128 

and ~20% (SSP585) lower than in GC5. This shifts the SSP585 estimate from +1% 129 

(interquartile range of crop-climate model combinations: -10 to +8%) to -24% (-38 to -7%) and 130 

for SSP126 from +5 to -6%. For wheat, the second largest global crop in terms of production, 131 

the SSP585 ensemble estimate is shifted upwards from +10% (-1 to +15%) to +18% (-2 to 132 

+39%), and under SSP126 from +5 to +9%. The SSP585 ensemble estimates for soybean are 133 

revised downward from +15% (-8 to +36%) to -2% (-21 to +17%) and for rice from +23% (+1 to 134 

+33%) to +2% (-15 to +12%). Overall, the new climate and crop model combinations narrow the 135 

range of crop yield projections for soybean and rice, but disagreement among crop models 136 

remains substantial and is largely indecisive about the sign of change at the global level (p-137 

value > 0.5 for both crops). The maize and wheat responses are robust and became more 138 

distinct since GC5. While the range of crop projections somewhat increased, 85% of model 139 

combinations indicate negative maize changes and 73% project positive wheat changes under 140 

SSP585. Both responses are now statistically significant (p-value < 10-5); the maize response in 141 

GC5 was not (p-value > 0.6). There is larger agreement on positive change for wheat under 142 

SSP126 (89%) than under SSP585, indicating peak-and-decline trajectories for parts of the 143 

ensemble under high-emissions scenarios (Fig. S1). 144 

 145 

As a C4 crop, maize has a smaller capacity to benefit from elevated [CO2]
30, and it is also grown 146 

across a wider range of low latitudes that are projected to experience the largest adverse 147 

impacts due in large part to current proximity to crop-limiting temperature thresholds31. As a C3 148 

crop, the positive wheat response is explained by its relatively stronger CO2 response and the 149 

fact that global warming leads to wheat yield increases in high-latitude regions that are currently 150 

temperature-limited29. 151 
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 152 

Three factors explain the more-pronounced crop yield response in GC6. First, CMIP6 has 153 

markedly higher [CO2] than CMIP5 (Fig. 2), with year 2099 concentrations increased from 927 154 

ppm (RCP8.5) to 1122 ppm (SSP585)9. Second, CMIP6 has a higher average end-of-century 155 

warming level compared to CMIP5, adequately represented in the 5 GCMs sampled here (Table 156 

S1, S2). While both RCP2.6 and RCP8.5 are on average ~0.3 °C warmer in CMIP6 than CMIP5 157 

over land and oceans, the difference is even more pronounced (>0.5 °C) across main maize-158 

producing regions (Fig. 2). Third, the new crop model ensemble features advanced versions of 159 

previous models, several new members, and improved input data, which resulted in more 160 

realistic sensitivities to climate and [CO2] changes (see details below). 161 

Emergence of the climate change signal in agriculture 162 

The Time of Climate Impact Emergence (TCIE) describes the point in time when average 163 

climate change impacts are projected to occur outside the envelope of historical variability and 164 

uncertainty (‘noise’). We define TCIE as the year in which the multi-model 25yr moving-average 165 

crop production change (‘signal’) emerges from the noise (i.e., standard deviation of simulated 166 

variability across all GCM x GGCM combinations in 1983-2013).  167 

 168 

Maize consistently shows emerging negative productivity changes (‘negative TCIE’) among 169 

major producer regions. The ensemble median signal emerges from the noise at global level in 170 

the year 2032 under SSP585 and the year 2051 under SSP126 (Fig. 3). Of all individual GCM x 171 

GGCM realizations, 84% show a negative TCIE by 2099 under SSP585 (52% under SSP126) 172 

and the inter-quartile range spans from 2014 to 2056, indicating sizeable agreement among 173 

models. This is a substantial shift away from the GC5 simulations in which the ensemble 174 

median shows no emergence by 2099 under any emission pathway, only seen in 46% of 175 

individual GCM x GGCM combinations under RCP8.5 (inter-quartile range 2044-2080). Overall, 176 
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the TCIE signal at global level is shifted 30-40 years earlier and is more pronounced in the new 177 

generation of climate and crop model projections (Fig. 4). 178 

 179 

By the end of the century, 10% (SSP126) to 74% (SSP585) of current global maize cultivation 180 

areas are projected to undergo negative TCIE (Fig. 5). Under SSP585 this trajectory is markedly 181 

earlier, with higher late-century fractions of cropland area affected compared to the respective 182 

47% in GC5 (RCP8.5). Crop models indicate early negative maize TCIE before 2040 even 183 

under SSP126 in Central Asia, the Middle East, Southern Europe, Western USA, and tropical 184 

South America. Projections referencing the 1983-2013 period suggest that the mean yield signal 185 

is already starting to emerge in some of these regions (Fig. 3e and Fig. 5), patterns largely in 186 

line with recent observations15,32,33. The tropical zone is the only climate zone in which the GC5 187 

ensemble median also indicated a negative maize TCIE (Fig. 3e). 188 

 189 

The standard deviation of grid-level TCIE estimates under SSP585 ranges between 25 and 35 190 

years across most breadbasket regions, with slightly higher values under SSP126 (Fig. S2). 191 

Such uncertainty ranges are in line with time of emergence estimates for climatological 192 

variables, yet somewhat higher due to the additional layer of crop model uncertainties12,13. 193 

Clearest emergence signals, i.e., largest signal-to-noise ratios with values < -2, are found 194 

among lower latitudes in the tropics but also in Central Asia, the Middle East, and Western USA 195 

(Fig. S3). As internal variability — and thus total noise — decreases with averaging, earlier 196 

TCIE is generally found for larger spatial scales. 197 

 198 

For wheat, ensemble projections indicate TCIE of positive productivity changes (‘positive TCIE’) 199 

at the global level (Fig. 3b) and across large parts of currently cultivated areas (Fig. 5). While 200 

also found in GC5 simulations, TCIE is shifted ~10 years earlier in GC6, suggesting that 201 

climate-related increases might occur globally within the next few years (year 2023 under 202 
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SSP585, year 2025 under SSP126; inter-quartile ranges 2014-2029 and 2015-2029) and across 203 

major breadbasket regions within the next two decades (Fig. 5). In some regions we already 204 

detect a TCIE signal today, which is in line with the range of time of emergence estimates for 205 

temperature and precipitation13,15. Such effects are difficult to distinguish from rapidly changing 206 

management practices in observational data, but climate change impacts have been 207 

documented for example in Central and South Asia, Northern China, and the USA32,34. The 208 

TCIE estimates for wheat show high consistencies across the model ensemble — 76% 209 

(SSP126) and 88% (SSP585) of individual model combinations show positive TCIE by 2099. As 210 

for maize, the TCIE signal is shifted earlier and is more pronounced in GC6 than in GC5 (Fig. 211 

4).  212 

 213 

The share of wheat cultivation areas projected to see positive TCIE increased substantially in 214 

GC6, from 8% (GC5, RCP8.5) to 37% (GC6, SSP585; Fig. 5f). This share levels off by mid-215 

century, a result of peak-and-decline trajectories seen in some crop models (Fig. 5f ; compare 216 

Fig. 3d and Fig. S3 for regions that show TCIE early on but not by late century). Wheat also 217 

exhibits negative TCIE among important growing regions in South Asia, Southern USA, Mexico, 218 

and parts of South America around mid-century. The uncertainty among grid-level TCIE 219 

estimates is generally higher for wheat than for maize (Fig. S2) and the extent of areas with very 220 

high signal-to-noise ratios (i.e., >2) is smaller (Fig. S3). 221 

 222 

Ensemble median soybean and rice productivity peak mid-century and decline towards the end 223 

of the century at the global level (Fig. S4). The soybean response exhibits late-century negative 224 

TCIE (year 2096) under SSP585; rice on the other hand shows early positive TCIE (year 2030, 225 

SSP585) but late-century declines are not projected to reach the level of negative TCIE at the 226 

global level. Rice is the only crop in this study that indicates positive TCIE in the tropics, which 227 
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drives early net global gains before productivity is simulated to decline again by about 2060 228 

(Fig. S4c). 229 

Regional patterns of yield change 230 

Projections of crop yield changes include regions of losses and gains for all crops (Fig. 3, S4). 231 

Global average responses can hide important regional changes, which are supported by strong 232 

crop model agreement. Maize projections show spatially homogeneous losses especially 233 

among main growing regions in North America, Mexico, West Africa, Central Asia, and China, 234 

where crop model agreement is high (Fig. 3c). The high-latitude gains found in GC5 are not as 235 

prevalent in GC6 and associated with high crop model uncertainty and low baseline yields. 236 

Wheat shows distinct geographic gradients with losses in spring wheat regions in Mexico, 237 

Southern USA, South America, and South Asia, supported by good model agreement. Sizable 238 

wheat gains are projected by many models for the North China Plains, Australia, Central Asia, 239 

Middle East, and for the winter wheat growing regions in the Northern USA and Canada (Fig. 240 

3d). Soybean shows the greatest losses in the main-producer regions — the USA, Brazil, and 241 

Southeast Asia — paired with large gains across parts of China and generally higher latitudes 242 

(Fig. S4). Major declines in rice yields are simulated in Central Asia, and gains in South Asia, 243 

NE China, and South America. Both soybean and rice yield changes must be interpreted in view 244 

of the wide range in crop model ensemble results (Fig. 1, S4). A breakdown of yield responses 245 

for the top-10 producer countries per crop highlights a wide range of CO2 effects embedded in 246 

the signal (Fig. S5, S6). 247 

 248 

A latitudinal profile of yield changes under SSP585 — simulated in all grid cells irrespective of 249 

the current cropland distribution — indicates that losses are most prevalent among low-latitude 250 

tropical regions with highest gains found at higher latitudes beyond 50°N and 30°S for all crops 251 

(Fig. 6). Maize exhibits widespread losses between 50°N and 30°S, while losses for the other 252 



10 

crops are more concentrated in the tropics with a less distinct signal for soybean and rice. Major 253 

wheat breadbaskets are generally located at higher latitudes than maize, which further 254 

contributes to overall wheat gains when aggregated across currently cultivated areas. Although 255 

more than 90% of maize and wheat is currently produced in the temperate and subtropical 256 

climate zones, major yield losses will affect the livelihoods and food security of many 257 

smallholder farmers in the tropics. Overall, our results show that lower latitudes face the largest 258 

losses for all crops, while higher latitudes see potential gains. These conclusions are in line with 259 

the IPCC AR535 and recent studies7,36,37 and such uneven distribution of impacts may further 260 

increase regional disparities that are a ‘Reason for Concern’38 regarding climate change risks. 261 

Drivers of more pronounced ensemble response 262 

It is difficult to determine to what degree the differences in crop yield projections between GC6 263 

and GC5 can be explained by the new atmospheric forcing, the new crop model ensemble, or 264 

new input data. A subset of GC6 and GC5 crop models that participated in both ensembles 265 

(albeit in different versions) shows very similar responses compared with the respective full 266 

ensemble, suggesting that the crop model selection does not explain the differences (Fig. 7). 267 

Further, standardized comparisons of crop model responses to specific mean temperature 268 

increases over cropland areas (‘warming sensitivity’; under constant [CO2] conditions, but 269 

including changes in other climate variables) from 1-2°C and from 2-3°C, respectively, highlights 270 

that the isolated warming sensitivity in GC6 has substantially increased for maize (from 2-3% in 271 

GC5 to 8-9% in GC6) and decreased for wheat (from 7% to 3-6%; Fig. 7). With higher overall 272 

warming levels in CMIP6, net warming-related maize losses by 2069-2099 thus increased from 273 

12% (4.6°C maize cropland warming) to 30% (5°C maize cropland warming) in GC6. Further, 274 

the CO2 sensitivity at 500 and 700 ppm, but also net effects by the end of the century, have 275 

decreased for both maize and wheat. In summary, the more pessimistic maize response in GC6 276 

can largely be attributed to a higher sensitivity to warming and a lower compensating effect due 277 
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to CO2 fertilization in the crop models, and to a smaller extent to the higher absolute warming 278 

levels in CMIP6. For wheat on the other hand, the more optimistic response in GC6 can be 279 

explained by lower losses per degree warming (with stronger temperature-related gains in high-280 

latitude regions), overcompensating for a lower CO2 fertilization effect than in GC5 (despite 281 

higher total [CO2] levels). For soybean and rice, in contrast, the more pessimistic response in 282 

GC6 is largely attributed to higher warming levels in CMIP6 compounded by a higher crop 283 

model sensitivity to warming, with similar sensitivities to changes in [CO2] (Fig. S7). 284 

Crop and climate model uncertainty 285 

The range of crop model responses under SSP585 (mean across climate models) is 286 

substantially larger than the range introduced by the five climate models (mean across crop 287 

models; Fig. 1). However, for all crops and RCPs, the uncertainty associated with the five 288 

CMIP6 climate models has increased compared to the five climate models sampled in GC5. In 289 

turn, the fraction of total variance induced by the crop models is substantially reduced for all 290 

crops in GC6 (for maize from 97 to 69%; Fig. 8), which highlights that the crop response 291 

became more consistent, even though the number of crop models increased. Absolute variance 292 

induced by the climate models has increased for all crops (Fig. 8), 293 

which is explained by a wider distribution of climate sensitivities tracked by the five CMIP6 294 

GCMs (Table S1, S2), but also by higher [CO2] assumed in CMIP6 (Fig. 2). In this sample, 295 

UKESM1 is the most pessimistic GCM for both RCPs and all crops, the global mean warming 296 

level by 2099 is about 2.6°C higher than in GFDL-ESM4, and the Transient Climate Response 297 

is 1.2°C higher (see Table S1 for more details)6. Generally, the least pessimistic crop impacts 298 

are found with MRI-ESM2 (Fig. 1). 299 

 300 

Higher emission scenarios inflate the crop model uncertainty (SSP585), while the overall 301 

climate- and crop model-induced uncertainty range in GC6 is of comparable size under SSP126 302 
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(Fig. 1). Uncertainty in the CO2 effect causes much of the crop model uncertainty for wheat, 303 

soybean, and rice (Fig. S8), yet the range of maize responses is not fundamentally reduced 304 

without the CO2 effect. In line with physiological knowledge30, crop models mostly show the 305 

smallest CO2 effects for C4 crops (maize) and much larger responses for C3 crops (wheat, 306 

soybean, rice). However, the CO2 effects differ widely across crop models; the ensemble 307 

median rainfed response is 19% for maize, 33% for wheat, 48% for soybean, and 37% for rice 308 

by the year 2099 (Fig. S8), which is generally in line with field experiments given that model 309 

simulations include nutrient limitations25,30. CYGMA and CROVER exhibit a strong peak-and-310 

decline CO2 response for some crops, resulting in negative CO2 effects for maize in CYGMA 311 

after 2090 (Fig. S8). This is driven by increased water use efficiencies under elevated [CO2], 312 

eventually leading to adverse excess moisture effects in humid regions — a new feedback 313 

represented primarily in CYGMA and underexplored in previous studies39. 314 

 315 

In addition to the CO2 effect, climate change affects simulations of crop growth and 316 

development in various ways. These include for example changed precipitation patterns, 317 

extreme heat and drought events, and importantly, accelerated maturity. Higher temperatures 318 

lead to faster phenological development and substantial reductions in the growing season 319 

length in all crop models (Fig. S9), which in turn lead to complex processes affecting yield, 320 

including shorter grain filling periods, smaller canopy, and reduction in photosynthesis. This 321 

effect varies across models and additional work is needed to further narrow the range of crop 322 

model responses40. After all, the standard deviation of simulated yield variability matches 323 

observational data to a much higher degree in GC6 (R = 79%) than in GC5 (R = 44%), adding 324 

to more realistic yield responses (Fig. S10). 325 
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Discussion 326 

We introduce the concept of climate impact emergence to the field of agriculture impacts, 327 

highlighting that major shifts in global crop productivity due to climate change are projected to 328 

occur within the next twenty years, several decades sooner than estimates based on previous 329 

model projections. The impact on crop productivity under SSP126 and SSP585 is largely similar 330 

for the coming decade, which leaves little room for climate mitigation efforts. In light of the much 331 

larger climate and crop model agreement for these short-term projections than for the late 332 

century, the findings highlight challenges for food system adaptation faced with significantly 333 

shorter lead times. 334 

 335 

These CMIP6 multi-model crop yield projections suggest that climate change impacts on global 336 

agriculture will be more pronounced than in GC5, with substantially larger losses for maize, 337 

soybean, and rice and additional gains for wheat. This is supported by a generally more 338 

consistent crop model ensemble. However, large uncertainties remain, particularly in TCIE 339 

estimates — the standard deviation for global maize TCIE is 24 years (SSP585), which is 340 

similar to estimates of temperature emergence12. Yet the signal is robust: More than 80% of the 341 

GCM-GGCM combinations indicate TCIE for maize and wheat by late century across major 342 

breadbaskets (SSP585). TCIE estimates based on different metrics qualitatively agree (e.g., 343 

multi-model ensemble mean TCIE for maize is found in the year 2032, the median of individual 344 

GCM x GGCM estimates in the year 2027, and the mean in the year 2036). Leaving one crop 345 

model out at a time introduces a TCIE standard deviation of only 1.5 years for both maize and 346 

wheat (SSP585). That said, time of emergence estimates are sensitive to the underlying 347 

definitions (e.g., noise, pre-industrial or recent climate, smoothing approach, threshold 348 

selection) and can push the emergence date earlier or later in time12,13,15,41. Absolute TCIE 349 
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estimates are therefore more challenging to interpret than relative comparisons among regions, 350 

crops, and especially the two ensemble projections GC5 and GC6. 351 

 352 

Wheat yield increases are projected to level off by midcentury and part of the climate-crop 353 

model ensemble indicates net losses under SSP585 by 2099 (Fig. 1, S1). Maize yield on the 354 

other hand is projected to decline steadily, supported by higher model agreement than for 355 

wheat. These general response differences are also in line with previous findings42. The more 356 

pronounced response of the new projections can be explained primarily by higher equilibrium 357 

climate sensitivities, higher [CO2], and different crop model sensitivities per degree warming and 358 

[CO2] changes. With regard to CMIP6, higher and wider-ranging climate sensitivities are 359 

critically discussed and associated with differing parameterizations of cloud feedback and cloud-360 

aerosol interactions14,43–49. While better simulations of cloud liquid water contents and their 361 

radiative behavior render the climate models more realistic, it is unclear whether these 362 

improvements translate into more accurate estimates of equilibrium climate sensitivity (ECS) 363 

and overall warming levels. Additional improvements of the GCMs, and the bias-adjustment and 364 

downscaling methods used, result in better representations of extreme events and internal 365 

variability10,47,50–52, which are critical for crop modeling. Higher [CO2] in CMIP6 are due to a 366 

revised tradeoff between [CO2] and [CH4] resulting from updated observations and assumptions 367 

in the MAGICC7.0 model53.  368 

 369 

The GGCMI crop model ensemble has substantially changed and consists of revised and new 370 

members. For example, LPJmL contributed to GC5 and has since been fundamentally improved 371 

with the addition of the nitrogen cycle54 and heat unit parameterization55. In addition, input data 372 

and model harmonization have been improved, including growing season harmonization based 373 

on a new crop calendar developed for this study (see Methods). A comprehensive attribution of 374 

crop response differences between GC5 and GC6 to changes in climate forcing, crop model 375 
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selection and sensitivities, and input data is not feasible. But standardized comparisons of 376 

changes in cropland warming and [CO2] indicate that for maize and wheat changes in crop 377 

model ensemble sensitivities dominate the response, and for soybean and rice higher warming 378 

levels and warming sensitivity explain much of the differences (Fig. 7, S7). 379 

    380 

The new GCM bias adjustment, crop model advancement, improved input data, and a new crop 381 

yield bias correction serve to substantially reduce the amount of variance induced by the crop 382 

models compared to the climate models, rendering the new GC6 ensemble more balanced and 383 

consistent than GC5 despite a larger ensemble size (12 crop models in GC6, 7 in GC5; Fig. 8). 384 

In a similar vein, Müller et al.56 comprehensively compared crop yield uncertainties under all 385 

CMIP5 and CMIP6 GCMs based on GGCMI crop model emulators57, confirming that CMIP6 386 

introduces a wider range of yield responses with more pessimistic average impacts. In view of 387 

improved model harmonization, inputs, and GGCM versions and performance, we consider 388 

GC6 more reliable than GC5 – despite ongoing discussions on the temperature sensitivity in 389 

CMIP6. 390 

 391 

The wide range of CO2 effects across GGCMI models is generally in line with field 392 

experiments25,58,59, but the broad range of simulated CO2 fertilization effects merits more 393 

rigorous model testing at the process level, which in turn requires better reference data, 394 

especially at high [CO2] levels. Moreover, elevated [CO2] boosts crop yield, but it may also affect 395 

the nutritional content of the crops60–62. Impacts related to excess moisture, water resource 396 

limitations, and new distributions of pests and diseases may lead to additional regional biotic 397 

stresses requiring follow-on analysis. 398 

 399 

Cropping system adaptation can substantially reduce and even outweigh adverse climate 400 

change impacts, for example by switching to other crops63 or better-adapted varieties27,64. 401 
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Integrated into ISIMIP’s wider cross-sector activities, GGCMI will systematically evaluate 402 

farming system adaptation and changes in yield variability and extreme event impacts in 403 

subsequent efforts. 404 

 405 

In conclusion, the new generation of AgMIP’s GGCMI provides the most comprehensive 406 

ensemble of process-based future crop yield projections under climate change to date. The 407 

degree to which even high mitigation climate change scenarios are projected to push global 408 

farming outside of its historical regimes suggests that current food production systems will soon 409 

face fundamentally changed risk profiles.  Despite prevailing uncertainties, these ensemble 410 

projections spotlight the need for targeted food system adaptation and risk management across 411 

the main producer regions in the coming decades. 412 

  413 
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Figures 414 

 415 

Fig. 1: Ensemble end-of-century crop productivity response. Global productivity changes (2069-2099 416 

compared to 1983-2013) for SSP126 and SSP585 are shown as the mean across climate and crop models 417 

for the four major crops (highlighted by bullets underneath the plot). Whiskers indicate the range of individual 418 

climate model realizations (dashed line, as the mean across crop models), and the range across crop 419 

models (solid line, as the mean across climate models). Individual model results are indicated by the bullets 420 

along the whisker lines (for SSP585 only); violin shades additionally highlight the model distribution. For 421 

context, gray bars and whiskers reference previous GGCMI simulations based on CMIP5 (GC5; Rosenzweig 422 

et al. 2014)7 in the same way, without specifying individual models. Data are shown for the default [CO2]. 423 

Not all crop models simulate all crops, see Table S3 for details. 424 
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 426 

Fig. 2: Comparison of [CO2] and temperature changes between CMIP5 and CMIP6. [CO2] pathways for 427 

RCP26 and RCP85 in CMIP5 compared to SSP126 and SSP585 in CMIP6 (a). Box-and-whisker plots (b) 428 

show the difference of the average maize growing season temperature changes [°C] (2069-2099 compared 429 

to 1983-2013) between the CMIP6 and CMIP5 ensemble. Each ensemble is represented by the mean of 5 430 

GCMs (Table S1 and S2) in each grid cell. CMIP6 and CMIP5 differences are separated for SSP126 (green) 431 

and SSP585 (yellow) for all grid cells (maize production > 0; lighter shade) and for the highest-producing 432 

grid cells that together account for 50% of global production (darker shade). 433 
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 434 

Fig. 3: Projections of global crop productivity for the 21st century. For maize (a) and wheat (b), 435 

productivity time series are shown as relative changes to the 1983-2013 reference period under SSP126 436 

(green) and SSP585 (yellow). Shaded ranges illustrate the interquartile range of all climate-crop model 437 

combinations (5 GCMs x 12 GGCMs). The solid line shows the median response (and a 25yr moving 438 

average). Horizontal dashed lines mark the standard deviation of historical yield variability and model 439 

uncertainty (i.e., ‘noise’ from individual climate-crop model combinations) and open circles highlight the 440 

‘Time of Climate Impact Emergence’ (TCIE), the year in which the smoothed climate change response 441 

emerges from the noise. For context, the TCIE calculated from GC57 simulations is indicated in lighter 442 

shades above the TCIE based on GC6 (>2099 if no TCIE occurs by 2099). The maps (c, d) show median 443 

yield changes (2069-2099) under SSP585 across climate and crop models for current growing regions (>10 444 

ha). Hatching indicates areas where less than 70% of the climate-crop model combinations agree on the 445 

sign of impact. Regional productivity time series (e, f) are similar to (a), but stratified for the four major 446 

Koeppen-Geiger climate zones (temperature limited, temperate/humid, subtropical, and tropical). The 447 

percentage of the total global production contributed by each zone is indicated in the top right corner of the 448 

insets. All data are shown for the default [CO2] (see Fig. S4 for all four crops).  449 
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 450 

Fig. 4: Shift towards earlier and more pronounced climate impact emergence. Density plots of 451 

individual TCIE estimates across the GCM x GGCM ensemble under SSP585 are shown for global maize 452 

productivity (a; negative TCIE) and wheat (b; positive TCIE). Histogram counts are smoothed with a loess fit 453 

(span=0.5) and shown as the fraction of the respective ensemble size. The GGCMI-CMIP6 ensemble 454 

includes 12 crop models, GGCMI-CMIP5 includes 7 crop models; both comprise 5 GCMs. The total 455 

ensemble fraction that shows TCIE by 2099 is indicated in the top-right corner (‘Sum’). The ensemble 456 

median TCIE is highlighted with vertical dashed lines.  457 
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 458 
 459 

Fig. 5: Geographic patterns in TCIE. The maps show TCIE estimates for maize (a, b) and wheat (c, d) 460 

under SSP126 and SSP585 — calculated as the median of individual TCIE estimates from each climate-461 

crop model combination. Hatching indicates areas in which less than 70% of the crop models agree on the 462 

emergence signal by 2099. See Figure S2 for the associated standard deviation of TCIE estimates, and 463 

Figure S3 for the signal-to-noise ratio. Panel (e) and (f) illustrate the annual percentage of the respective 464 

global cropland area affected by negative (maize) and positive (wheat) TCIE under SSP126 and SSP585, 465 

separated for results from GC57 and GC6. Vertical bars indicate the inter-quartile range of all climate-crop 466 

model combinations, with the median value in the circle. The maps show the first TCIE occurrence, even if 467 

the signal is reversed by late century (e.g., parts of India for wheat; compare with Fig. S3); estimates of the 468 

affected areas (e, f) account for signal changes. 469 

  470 
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 471 
 472 

Fig. 6: Latitudinal profile of crop yield changes. Yield changes (SSP585, 2069-2099) are shown as 473 

latitude averages for maize (a), wheat (b), soybean (c), and rice (d), based on crop simulations in all grid 474 

cells, unconstrained by current cropland extent (bottom x-axis). For context, the current cropland extent is 475 

shown across latitude bands as fractions of the crop-specific global extent (top x-axis; mirrored to allow 476 

overlaps with both positive and negative yield changes). Yield data are shown as the climate and crop model 477 

median (marginal areas with yield lower than the 20th percentile per crop are excluded). 478 
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 479 

Fig. 7: Driver attribution of crop model responses. Projected end-of-century global productivity changes 480 

for maize (a) and wheat (b) under RCP8.5 (climate model mean) are shown for all members of the crop 481 

model ensemble GGCMI-CMIP5 (GC5) and GGCMI-CMIP6 (GC6), and for a subset of crop models that 482 

participated in both rounds (note substantial differences between model versions). The sensitivity to global 483 

mean warming (c, d) of the full ensembles is shown for temperature changes (over respective cropland 484 

areas per crop) from 1 to 2°C, from 2 to 3°C, and for the total change between 1983-2013 and 2069-2099. 485 

The warming sensitivity is based on [CO2] held constant at the 2015 level but includes changes in other 486 

climate variables. The CO2 sensitivity (e, f) in GC5 and GC6 is shown at specific [CO2] concentrations and 487 

for the 2069-2099 mean concentrations. Warming and CO2 sensitivities are calculated based on crop model 488 

responses over a 21-year window centered on the year in which a certain temperature change or [CO2] 489 

concentration occurs in each climate model. Filled circles indicate the median crop model response, 490 
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additionally highlighted by circled numbers underneath each plot. Black bars show the inter-quartile range 491 

and individual models are indicated by numbers. Note that both panel c and d include two different legends. 492 

See Figure S7 for soybean and rice results. ACEA and DSSAT-Pythia have not submitted simulations for 493 

the constant [CO2] setting and are excluded from panel c-f. 494 

 495 

 496 

 497 

 498 

 499 

 500 

Fig. 8: Variance decomposition of ensemble projections. Stacks show the fraction of total variance of 501 

mid-century crop production changes (2030-2070 mean) induced by the climate model ensemble (GCMs; 502 

yellow) and by the crop model ensemble (GGCMs; pink), for GGCMI-CMIP6 (GC6) and GGCMI-CMIP5 503 

(GC5), respectively. Variance fractions are normalized by the variance cross term to be additive. The 504 

absolute variance introduced by GGCMs and GCMs is indicated at the base of each stack. The GCM 505 

ensemble has 5 members in both cases, the GGCM ensemble has 12 members in GC6 and 7 members in 506 

GC5, which further highlights that the crop model response became more consistent in GC6 compared to 507 

the climate model uncertainty.  508 
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Methods 509 

Time of emergence metric 510 

We define Time of Climate Impact Emergence (TCIE) as the year in which the smoothed climate 511 

change signal (‘signal’) exceeds the underlying internal variability and model uncertainty (‘noise’). The 512 

signal is the multi-model ensemble mean crop productivity change against the 1983-2013 reference 513 

period (smoothed with a 25-yr moving window). Noise is defined as the standard deviation of simulated 514 

historical variability of crop productivity across all individual GCM x GGCM combinations (1983-2013). 515 

TCIE is the first year in which the signal emerges from the noise, i.e., when the signal-to-noise ratio 516 

becomes greater than 1. Similar time of emergence definitions have been used in previous 517 

studiese.g.10,13,68,69. Historical productivity time series are not detrended as we hold all management 518 

factors constant throughout the simulations. To assess TCIE uncertainties, we calculate TCIE also for 519 

each individual climate-crop model realization as suggested by Hawkins and Sutton 201212, and we 520 

analyze the distribution of the individual estimates (including mean, median, inter-quartile range, and 521 

SD). We find that the multi-model ensemble mean TCIE usually occurs between the median and the 522 

mean of individual TCIE estimates. For example, global-level maize production under RCP8.5 shows a 523 

multi-model ensemble mean TCIE in year 2032, the median of individual estimates occurs in year 2027, 524 

the mean in year 2036. Wheat shows the same pattern and results are qualitatively the same across 525 

the different methods. To test the robustness of results in another way, we calculate the multi-model 526 

ensemble mean TCIE iteratively while removing one crop model at a time. The SD of this distribution at 527 

global level is marginal; 1.5 years for both maize and wheat under RCP8.5. As a final metric, we also 528 

compare the number of climate and crop model combinations that show an emergence signal by the 529 

end of the century. We calculate TCIE at global level, for different Koeppen-Geiger climate zones, and 530 

for individual grid cells. Earlier TCIE is generally found for larger spatial scales as the variance of 531 

internal variability decreases with averaging. For additional discussions see for example references11–532 

13. 533 
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ISIMIP climate input datasets 534 

GGCMI simulation efforts for CMIP6 impact assessment are aligned with the ISIMIP3 activity in which 535 

GGCMI represents the agriculture sector. Key modeling inputs such as information on climate, land 536 

use, fertilizer input, soils, among others, are harmonized across various research sectors. CMIP6 537 

climate model outputs are centrally bias-adjusted and downscaled by the ISIMIP framework to provide 538 

climate-input datasets on a daily regular 0.5°x0.5° global grid. The bias-adjustment method employs a 539 

quantile mapping approach and uses the observational W5E5 v1.0 dataset67,68. This historical dataset 540 

compares favorably with climatic forcing datasets that have been used previously by AgMIP GGCMI69. 541 

The new quantile-mapping method adjusts biases and preserves trends in all quantiles of the 542 

distribution of simulated daily climate model outputs; for more details see Lange (2019)10. To lower the 543 

barrier for participation in this study we provide climate input data for five CMIP6 GCMs: GFDL-ESM4, 544 

IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL (see Table S1 for further details). The 545 

GCM selection is based on data availability at the time of selection, performance in the historical period, 546 

structural independence, process representation and equilibrium climate sensitivity (ECS). The five 547 

GCMs are structurally independent in terms of their ocean and atmosphere model components and 548 

overall they represent the range of ECS across the full CMIP6 ensemble, including three models with 549 

below-average ECS (GFDL-ESM4, MPI-ESM1-2-HR, MRI-ESM2-0) and two models with above-550 

average ECS (IPSL-CM6A-LR, UKESM1-0-LL)8. ECS and transient climate response (TCR) for all 551 

GCMs used are listed in Table S1. The mean and standard deviation (SD) of both ECS (mean = 3.7°C, 552 

SD = 1.1) and TCR (mean = 2.0°C, SD = 0.5) across the five GCMs used here precisely match the 553 

mean and SD across the full CMIP6 ensemble with 38 members (Table S1 and S2), much better than 554 

in GC5, although the range of ECS in the CMIP6 ISIMIP models is larger than in the CMIP5 ISIMIP 555 

models. 556 

 557 

The daily weather variables at a 0.5° spatial resolution that are used as input for the crop models 558 

include: daily mean, minimum, and maximum 2-m air temperature (T, Tmin, and Tmax, respectively 559 
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[°C]), daily total precipitation (P [mm]), and daily mean shortwave and longwave radiation (SR and LR 560 

[W/m2]). 561 

GGCMI Phase 3 crop modeling protocol 562 

Bias-adjusted climate model projections are used to drive transient crop model simulations, i.e., 563 

uninterrupted runs for the historical (1850-2014), and future (2015-2100) time period. Potential future 564 

trajectories are represented by SSP1 with RCP2.6 (here SSP126) and SSP5 with RCP8.5 (here 565 

SSP585). Therefore, each crop model performs 20 future simulation runs for each crop (5 GCM x 2 566 

RCP x 2 [CO2] settings). Note that in this study any socio-economic forcing or adaptation effort 567 

associated with the SSP storylines is held constant at the year 2015 level to isolate the climate signal 568 

(i.e., year 2015 land-use, fertilizer application, growing seasons, crop cultivars, but also NO3 and NH4 569 

deposition rates, are used in years after 2015). To help isolate yield effects associated with the CO2 570 

fertilization effect, all crop model simulations are run for two separate assumptions: i) transient [CO2] in 571 

line with the respective RCP (‘default [CO2]’), and ii) [CO2] concentration held constant at the 2015 level 572 

at 399.95 ppmv (‘constant [CO2]’). Differences between the two [CO2] levels are not a measure of [CO2] 573 

uncertainty, as there is no plausible climate change scenario without increasing [CO2]
22. Instead, this 574 

setup is used to quantify the size of the CO2 fertilization effect. All simulations are carried out at the 0.5° 575 

global grid. In addition to the GCM forcing, we include historical simulations based on the reanalysis 576 

product GSWP3-W5E5 v1.067,68 for each crop model and crop to better evaluate crop model 577 

performance against observational data. 578 

 579 

We focus on the four major global grain crops, that is, maize (Zea mays L.), wheat (Triticum sp. L.), rice 580 

(Oryza sativa L.), and soybean (Glycine max L. Merr.). Wheat is simulated as winter and spring wheat 581 

individually; grain and silage maize are not distinguished. These four main crops contribute 90% of 582 

today’s global caloric production of all cereals and soybean70. 583 

  584 
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All crops are simulated under both rainfed conditions and full irrigation (where soil moisture is set to 585 

field capacity every day, without constraints to water availability) in all grid cells — independent of the 586 

current cropland distribution. The physical cropland extent is applied in post-processing based on the 587 

MIRCA2000 (Monthly Irrigated and Rainfed Crop Areas around the year 2000) reference dataset71 and 588 

irrigated fractions are adapted from Siebert et al. (2015)72; both are held constant over time. 589 

 590 

Soil moisture and soil temperature for various soil layers are calculated by most crop models in a 591 

transient way, that is, without reinitializing at the beginning of each year. All models use a classic 592 

phenological heat sum approach to determine physiological stages between planting and maturity. Heat 593 

unit accumulation can be modified by the sensitivity to day length (photoperiod) and for winter wheat it 594 

is stalled until vernalization requirements are reached, that is, the exposure to cold temperatures before 595 

anthesis. Planting dates (see section ‘Crop calendar and crop varieties’ below) are constant over time 596 

but the heat sum approach leads to different growing season lengths depending on the daily 597 

temperature distribution in each growing season. Except for rice, we simulate only one growing season 598 

per calendar year. The first and last years of the transient runs are removed from crop model 599 

simulations due to partially incomplete growing seasons. Simulations in grid cells with a growing 600 

season length less than 50 days are removed, as are simulations resulting in premature harvest (i.e., 601 

accumulated heat units <80% of required heat units and applies only to those models that can provide 602 

such outputs). 603 

 604 

The harmonization of crop models includes the required use of a central crop calendar product (new 605 

development for this study, see below), fertilizer inputs, and soil information. Additional protocol 606 

characteristics are recommended but not required, as not all models can address all features (see 607 

below). 608 

 609 

Simulation protocols determine mineral and organic fertilizer [kg N/ha] inputs per crop and grid cell. 610 

Mineral fertilizer (ammonium nitrate; NH4NO3) application is crop-specific and is derived from the LUH2 611 
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product73,74, harmonized by ISIMIP. Manure application inputs (C:N ratio of 14.5) are grid cell specific, 612 

but constant across crops75. All other nutrients are considered non-limiting. Fertilizer scheduling follows 613 

a simple assumption with 20% applied at sowing and 80% applied when 25% of the heat units required 614 

to reach maturity are accumulated. As all other management aspects, fertilizer application is held 615 

constant throughout the simulation period. Atmospheric N deposition is considered, separating NHx and 616 

NOy, based on Tian et al. (2018)76 and held constant at the year 2015 level.  617 

 618 

Soil input is harmonized across crop models for the first time in GGCMI, derived from the Harmonized 619 

World Soil Database (HWSD)77. While the same HWSD dataset is used across ISIMIP sectors, in this 620 

study we employ a different algorithm to aggregate the data to 0.5° in order to be cropland specific. The 621 

pDSSAT model uses the Global Soil Data set for Earth system modeling (GSDE)78 and DSSAT-Pythia 622 

uses the Global High-Resolution Soil Profile Database for Crop Modeling Applications79 due to 623 

difficulties in retrieving all soil parameters from HWSD. 624 

 625 

Finally, the following management aspects are encouraged to be harmonized across crop models, but 626 

are not accounted for by all teams: tillage (2 tillage events, planting day and harvest day, 200 mm 627 

depth, full inversion), residues (70% of above-ground residues removed), no pest and disease damage, 628 

no soil erosion, and no cover crops. Except for rice and wheat, which are simulated for two separate 629 

growing seasons, we do not consider multi-cropping systems or crop rotations. Inputs are provided for 630 

18 different crops globally, but most crop models can only simulate the major crops, which we focus on 631 

in this study. All socio-economic and farm management input data are publicly available via 632 

www.isimip.org. 633 

Participating GGCMI crop models 634 

Twelve process-based global crop models participate in this study: ACEA, CROVER, CYGMA1p74, 635 

DSSAT-Pythia, EPIC-IIASA, ISAM, LandscapeDNDC, LPJmL, pDSSAT, PEPIC, PROMET, 636 

SIMPLACE-LINTUL5 (see Table S3 for further details and references). The full ensemble, therefore, 637 
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consists of roughly 240 future crop model simulations per crop plus one historical reference run for 638 

each crop and climate model and one historical reanalysis run per crop model. Due to computational 639 

constraints, ACEA has only run GCMs UKESM1-0-LL and MRI-ESM2-0 so far, and DSSAT-Pythia has 640 

not yet run UKESM1-0-LL. ACEA and DSSAT-Pythia have not yet finished simulations for the constant 641 

[CO2] setting. 642 

 643 

All crop models are considered independent. LPJmL, pDSSAT, EPIC-IIASA, PROMET, and PEPIC 644 

have participated in previous GGCMI protocols7,80–82, and while the other models are new GGCMI 645 

ensemble members, they have been thoroughly evaluated individually (see references in Table S3). In 646 

order to participate in this study, each model was required to go through a benchmark performance 647 

evaluation for the historical period based on GSWP3-W5E5 reanalysis data (results available upon 648 

request). An overview of the degree to which the GC6 crop models explain observed inter-annual yield 649 

variability is presented in Figure S11. For the top five producer countries per crop, the ensemble mean 650 

generally shows higher performance in terms of correlation and root-mean-square error than the bulk of 651 

individual models. Generally, explained variability in individual models is satisfactory for most maize, 652 

wheat, and soybean main-producer countries. The metrics are lower for rice which also links to the fact 653 

that the weather signal in (largely irrigated) rice is smaller than in other crops, and the overall observed 654 

inter-annual variability in these rice producer countries is smaller than for the other crops. Since 655 

management decisions (planting dates, crop rotations and areas, fertilizer application, irrigation, etc.) 656 

are held constant over time, the crop models can only capture the interannual weather signal in 657 

reported yields, which in general is much smaller in the tropics compared to mid- to high-latitude 658 

regions. Additional in-depth GGCMI model comparison and evaluation is presented by Müller et al. 659 

(2017)81. Overall, crop model performance evaluation based on historical yield variability provides 660 

limited insight into the models’ capability to project future yield impacts83. 661 

 662 

Since GCM-based crop model simulations are difficult to compare with observed inter-annual yield 663 

levels (e.g., the 1988 drought does not necessarily occur in 1988 in the GCM), we compare the overall 664 
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range of simulated and observed yield variability across the historical reference period. The standard 665 

deviation of observed national yield variability is matched to a substantially higher degree in GC6 (R = 666 

79%, RMSE = 0.11) than in GC5 (R = 44%, RMSE = 0.17), which is indicative of more realistic yield 667 

responses in GC6 (Fig. S10). These improvements are linked to a combination of factors, including 668 

different internal variability in CMIP6, new GCM bias-adjustment method, improved crop model 669 

ensemble, new crop yield bias-correction, and improved crop model inputs. The match with observed 670 

yield variability using GC6 simulations based on GSWP3-W5E5 reanalysis data is only slightly better (R 671 

= 87%, RMSE = 0.09) than with GCM-forced simulations, which highlights that the CMIP6 GCMs do not 672 

introduce substantial errors in terms of historical variability (Fig. S10). 673 

 674 

While the models generally reproduce yield declines in extreme years, adverse impacts of excess water 675 

on crop growth due to lower aeration, waterlogging, and nitrogen leaching are generally 676 

underrepresented in current global crop models39. As an exception, the crop model CYGMA accounts 677 

for effects due to excess moisture stress84. ACEA, EPIC-based, and DSSAT-based crop models also 678 

have processes related to waterlogging and root aeration but associated stresses occur rarely and 679 

foremost on sensitive soils85. Many models do not handle direct effects of extreme heat (e.g., on leaf 680 

senescence, pollen sterility; see Table S3)3. Individual model responses to elevated [CO2] are shown in 681 

Figure 7 and S8 and discussed in the main text. The ISAM model requires sub-daily weather data and 682 

therefore uses CRU–National Centers for Environmental Prediction (CRUNCEP) diurnal factors to 683 

convert daily bias-adjusted climate model data to diurnal data. The PROMET model also requires sub-684 

daily weather data and uses ERA5-derived diurnal factors to convert climate model data to diurnal 685 

inputs; it also uses WFDE5 instead of GSWP3-W5E5 for reanalysis simulations. 686 

 687 

All models use spin-up simulations of various lengths to reach soil and carbon pool equilibrium. EPIC-688 

IIASA uses dynamic soil handling during spin-up to generate soil attributes. Subsequently these are 689 

used as an input in the actual simulations with static soil handling, i.e. annual re-initialization of all soil 690 

attributes (including soil organic matter fractions and soil texture among others) except mineral nutrient 691 
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pools, temperature, and soil moisture. The models do not account for human management intervention 692 

other than fertilizer application, irrigation, seed selection, growing periods, and basic field management 693 

such as tillage and residue removal. 694 

 695 

All models follow a phenology calibration with respect to grid cell-specific cultivar parameterizations 696 

(i.e., phenological heat units) based on the respective crop calendar and weather forcing (Table S3). 697 

Yield calibration is not harmonized across crop models and each team follows their individual protocol, 698 

including grid cell-specific calibration against SPAM86 reference yields (e.g., pDSSAT), various site-699 

specific efforts based on field experiments (e.g., ISAM), and calibrations with national FAO70 statistics 700 

(e.g., PEPIC). 701 

Crop yield bias correction 702 

Crop production is calculated as yield times harvested area of the respective crop. We omit grid cells 703 

with <10 ha cropland area for each crop. To compare results across crop models, but also to represent 704 

realistic overall crop production estimates and spatial pattern, we calculate fractional yield changes 705 

from each individual crop model simulation between the historical reference period (1983-2013) and the 706 

respective future projection and multiply these with a spatially explicit (0.5°) observational yield 707 

reference dataset (see Fig. S14 in ref.87). SPAM2005 (Spatial Production Allocation Model 2005)88 is 708 

used as the main reference yield data as it separates rainfed and irrigated systems. Grid cells with 709 

missing SPAM2005 yield data but with >10 ha MIRCA2000 harvested area are gap-filled with Ray et al. 710 

(2012)89 yield data; both SPAM2005 and Ray et al. represent the time period 2003 to 2007. 711 

Winter and spring wheat separation 712 

While winter and spring wheat are simulated separately by the crop models covering all land areas, our 713 

analyses distinguish winter and spring wheat harvested areas using a rule-based approach. We 714 

assume that winter wheat is grown in a specific grid cell if: i) the average temperature of the coldest 715 

month is between -10°C and +7°C, ii) the growing season length exceeds 150 days, and iii) the growing 716 
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season includes December (Northern Hemisphere) or July (Southern Hemisphere). These assumptions 717 

are slightly modified from the rule set in MIRCA200071; we use 7°C instead of 6°C as the upper 718 

temperature threshold to allow for more winter wheat in Argentina, South Africa, and Australia, but also 719 

to extend winter wheat in the US slightly towards the south (Fig. S12). This modification is done to 720 

better represent the winter wheat mega environments used by CIMMYT90. The winter and spring wheat 721 

rule set is also used to separate wheat crop calendars in case the two are not distinguished in the 722 

original crop calendar data. In line with other cropland areas as well, winter and spring wheat areas are 723 

held constant over time.  724 

Crop calendar and crop varieties 725 

We provide planting and maturity dates for each crop in each grid cell, separate for rainfed and irrigated 726 

systems, based on a new observational crop calendar product. See section ‘GGCMI crop calendar’ and 727 

Fig. S13-S15 in the Supplement for details. Growing season inputs are static over time throughout the 728 

historical and future time period to avoid confounding trends. Each model calculated required reference 729 

heat units to reach physiological maturity for each crop in each grid cell by averaging annual heat sums 730 

over all growing seasons between 1979-2010. 731 

Koeppen-Geiger climate class aggregation 732 

Koeppen-Geiger climate zones91 are aggregated to 0.5° spatial resolution and the 32 individual classes 733 

are aggregated to the following four main climate types: temperature-limited 734 

("Dfc","Dfd","Dsc","Dsd","Dwc","Dwd","ET","EF","H","BSk"), temperate/humid 735 

("Csb","Cfa","Cfb","Cfc","Csc","Cwa","Cwb","Cwc","Dfa","Dfb","Dsa","Dsb","Dwa","Dwb"),  736 

subtropical/Mediterranean ("Csa","BSh","Af","Am","As","Aw"), and tropical/other (all other classes). 737 

Map projection and smoothing 738 

Global maps are based on the Robinson projection92 and grid-level data are smoothed to improve 739 

clarity and visual appearance. Smoothing is done by first resampling the raw data to 5 times finer 740 
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resolution, followed by a 5x5 grid cell focal mean window aggregation. Map smoothing is done for 741 

visualization purposes only and all analyses are based on the raw data. 742 

Acknowledgements 743 

J.J., A.C.R., C.R., and M.P.P. were supported by NASA GISS Climate Impacts Group and Indicators for 744 

the National Climate Assessment funding from the NASA Earth Sciences Division. J.J. received support 745 

from the Open Philanthropy Project and thanks the University of Chicago Research Computing Center 746 

for supercomputer allocations to run the pDSSAT model. Ludwig-Maximilians-Universität München 747 

thanks the Leibniz Supercomputing Center of the Bavarian Academy of Sciences and Humanities for 748 

providing capacity on the Cloud computing infrastructure to run the PROMET model. J.M.S. was 749 

supported by the German Federal Ministry of Education and Research (grant-number 031B0230A: 750 

BioNex—The Future of the Biomass Nexus). O.M. and J.F.S. were supported by funding from the 751 

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation 752 

programme (Earth@lternatives project, grant agreement No 834716). J.A.F. and H.S. were supported 753 

by the NSF NRT program (grant no. DGE-1735359). J.A.F was supported by the NSF Graduate 754 

Research Fellowship Program (grant no. DGE-1746045). RDCEP is funded by NSF through the 755 

Decision Making Under Uncertainty program (grant #SES-1463644). T.I. was partly supported by the 756 

Environment Research and Technology Development Fund (2-2005) of the Environmental Restoration 757 

and Conservation Agency and Grant-in-Aid for Scientific Research B (18H02317) of the Japan Society 758 

for the Promotion of Science. M.O. was supported by the Climate Change Adaptation Research 759 

Program of NIES, Japan. S.L. was supported by the German Federal Office for Agriculture and Food 760 

(BLE) in the framework of OptAKlim (grant no. 281B203316). S.R. acknowledges funding from the 761 

German Federal Ministry of Education and Research (BMBF) via the ISIpedia project. 762 

Author contributions 763 

J.J. and C.M. conceived the paper and coordinate GGCMI. J.J., C.M., and S.R. developed the 764 

simulation protocol. A.R. and C.R. coordinate AgMIP integration. C.M., J.J., J.B., O.C., B.F., C.F., K.F., 765 

G.H. T.I., A.J. N.K, T.L., W.L., S.M., M.O., O.M., C.P. S.R., J.S., J.S. R.S., A.S., T. S., F.Z. conducted 766 

crop model simulations, S.L. prepared climate data inputs, J.J. developed the manuscript and figures, 767 

all coauthors supported writing and discussion of the results. 768 

Data and materials availability 769 

All data needed to evaluate the conclusions in the paper are present in the paper and/or the 770 

Supplementary Materials. Model inputs are publicly available via https://www.isimip.org/ or from the 771 

corresponding author. Crop model simulations will be made public under the CC0 license pending 772 

publication. 773 

 774 

The authors declare no competing interest. This article contains supporting information online. 775 

References 776 

1. Mbow, C. et al. Food security. in Climate Change and Land: an IPCC special report on climate 777 

change, desertification, land degradation, sustainable land management, food security, and 778 



35 

greenhouse gas fluxes in terrestrial ecosystems 1, 270 (2019). 779 

2. Asseng, S. et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Chang. 780 

3, 827–832 (2013). 781 

3. Wang, E. et al. The uncertainty of crop yield projections is reduced by improved temperature 782 

response functions. Nat. Plants 3, (2017). 783 

4. Rosenzweig, C. et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): 784 

Protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013). 785 

5. ISIMIP. The Inter-Sectoral Impact Model Intercomparison Project. 2021 Available at: 786 

https://www.isimip.org/.  787 

6. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) 788 

experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016). 789 

7. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a 790 

global gridded crop model intercomparison. Proc. Natl. Acad. Sci. 111, 3268–3273 (2014). 791 

8. Meehl, G. A. et al. Context for interpreting equilibrium climate sensitivity and transient climate 792 

response from the CMIP6 Earth system models. Sci. Adv. 6, 1–11 (2020). 793 

9. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. 794 

Geosci. Model Dev. 9, 3461–3482 (2016). 795 

10. Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD 796 

(v1.0). Geosci. Model Dev. 12, 3055–3070 (2019). 797 

11. Hawkins, E. et al. Observed Emergence of the Climate Change Signal: From the Familiar to the 798 

Unknown. Geophys. Res. Lett. 47, (2020). 799 

12. Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39, 1–6 800 

(2012). 801 

13. Kirtman, B. et al. Near-term climate change: Projections and predictability. Clim. Chang. 2013 802 

Phys. Sci. Basis Work. Gr. I Contrib. to Fifth Assess. Rep. Intergov. Panel Clim. Chang. 803 

9781107057, 953–1028 (2013). 804 

14. Seneviratne, S. I. & Hauser, M. Regional Climate Sensitivity of Climate Extremes in CMIP6 805 

Versus CMIP5 Multimodel Ensembles. Earth’s Futur. 8, 1–12 (2020). 806 

15. Rojas, M., Lambert, F., Ramirez-Villegas, J. & Challinor, A. J. Emergence of robust precipitation 807 

changes across crop production areas in the 21st century. Proc. Natl. Acad. Sci. 116, 6673–808 

6678 (2019). 809 

16. Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for 810 

human tolerance. Sci. Adv. 6, (2020). 811 

17. Park, C. E. et al. Keeping global warming within 1.5 °c constrains emergence of aridification. Nat. 812 

Clim. Chang. (2018). doi:10.1038/s41558-017-0034-4 813 

18. Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three 814 



36 

independent methods. Nat. Clim. Chang. 6, 1130–1136 (2016). 815 

19. Zhao, C. et al. Plausible rice yield losses under future climate warming. Nat. Plants 3, 1–5 816 

(2016). 817 

20. Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent 818 

estimates. Proc. Natl. Acad. Sci. 201701762 (2017). doi:10.1073/pnas.1701762114 819 

21. Deryng, D. et al. Regional disparities in the beneficial effects of rising CO2 concentrations on 820 

crop water productivity. Nat. Clim. Chang. (2016). doi:10.1038/nclimate2995 821 

22. Ruane, A. C. et al. Biophysical and economic implications for agriculture of +1.5° and +2.0°C 822 

global warming using AgMIP Coordinated Global and Regional Assessments. Clim. Res. 76, 17–823 

39 (2018). 824 

23. Ahmed, M. et al. Novel multimodel ensemble approach to evaluate the sole effect of elevated 825 

CO2 on winter wheat productivity. Sci. Rep. 9, 1–15 (2019). 826 

24. Leakey, A. D. B., Bishop, K. A. & Ainsworth, E. A. A multi-biome gap in understanding of crop 827 

and ecosystem responses to elevated CO 2. Current Opinion in Plant Biology (2012). 828 

doi:10.1016/j.pbi.2012.01.009 829 

25. Toreti, A. et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat. Food 1, 830 

775–782 (2020). 831 

26. Hausfather, Z. & Peters, G. P. Emissions – the ‘business as usual’ story is misleading. Nature 832 

577, 618–620 (2020). 833 

27. Minoli, S. et al. Global Response Patterns of Major Rainfed Crops to Adaptation by Maintaining 834 

Current Growing Periods and Irrigation. Earth’s Futur. 7, 1464–1480 (2019). 835 

28. Wang, X. et al. Emergent constraint on crop yield response to warmer temperature from field 836 

experiments. Nat. Sustain. 3, 908–916 (2020). 837 

29. Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 5, 143–838 

147 (2014). 839 

30. Kimball, B. A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. 840 

Current Opinion in Plant Biology (2016). doi:10.1016/j.pbi.2016.03.006 841 

31. Zabel, F. et al. Large potential for crop production adaptation depends on available future 842 

varieties. Glob. Chang. Biol. gcb.15649 (2021). doi:10.1111/gcb.15649 843 

32. Ray, D. K. et al. Climate change has likely already affected global food production. PLoS One 844 

14, 1–18 (2019). 845 

33. Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 846 

1980. Science 333, 616–20 (2011). 847 

34. Ahmad, S. et al. Climate warming and management impact on the change of phenology of the 848 

rice-wheat cropping system in Punjab, Pakistan. F. Crop. Res. 230, 46–61 (2019). 849 

35. Porter, J. R. et al. Food security and food production systems. in Climate Change 2014: Impacts, 850 



37 

Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working 851 

Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 852 

(eds. Field, C. B. et al.) 485–533 (Cambridge University Press, 2014). 853 

36. Levis, S., Badger, A., Drewniak, B., Nevison, C. & Ren, X. CLMcrop yields and water 854 

requirements: avoided impacts by choosing RCP 4.5 over 8.5. Clim. Change 146, 501–515 855 

(2018). 856 

37. Falconnier, G. N. et al. Modelling climate change impacts on maize yields under low nitrogen 857 

input conditions in sub-Saharan Africa. Glob. Chang. Biol. 26, 5942–5964 (2020). 858 

38. O’Neill, B. C. et al. IPCC reasons for concern regarding climate change risks. Nat. Clim. Chang. 859 

7, 28–37 (2017). 860 

39. Li, Y., Guan, K., Schnitkey, G. D., DeLucia, E. & Peng, B. Excessive rainfall leads to maize yield 861 

loss of a comparable magnitude to extreme drought in the United States. Glob. Chang. Biol. 25, 862 

2325–2337 (2019). 863 

40. Zhu, P., Zhuang, Q., Archontoulis, S. V., Bernacchi, C. & Müller, C. Dissecting the nonlinear 864 

response of maize yield to high temperature stress with model-data integration. Glob. Chang. 865 

Biol. 25, 2470–2484 (2019). 866 

41. Christensen, J. H. et al. Regional Climate Projections. in Climate Change 2007: The Physical 867 

Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the 868 

Intergovernmental Panel on Climate Change (ed. Solomon, S., D. Qin, M. Manning, Z. Chen, M. 869 

Marquis, K.B. Averyt, M. T. and H. L. M.) 11–15 (Cambridge University Press, 2007). 870 

doi:10.1007/978-81-322-1967-5_4 871 

42. Iizumi, T. et al. Responses of crop yield growth to global temperature and socioeconomic 872 

changes. Sci. Rep. 7, 1–10 (2017). 873 

43. Sherwood, S. C. et al. An Assessment of Earth’s Climate Sensitivity Using Multiple Lines of 874 

Evidence. Rev. Geophys. 58, 1–92 (2020). 875 

44. Flynn, C. M. & Mauritsen, T. On the climate sensitivity and historical warming evolution in recent 876 

coupled model ensembles. Atmos. Chem. Phys. 20, 7829–7842 (2020). 877 

45. Zelinka, M. D. et al. Causes of Higher Climate Sensitivity in CMIP6 Models. Geophys. Res. Lett. 878 

47, 1–12 (2020). 879 

46. Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 880 

6, 1–14 (2020). 881 

47. Williams, K. D., Hewitt, A. J. & Bodas-Salcedo, A. Use of Short-Range Forecasts to Evaluate 882 

Fast Physics Processes Relevant for Climate Sensitivity. J. Adv. Model. Earth Syst. 12, 1–9 883 

(2020). 884 

48. Brunner, L. et al. Reduced global warming from CMIP6 projections when weighting models by 885 

performance and independence. Earth Syst. Dyn. 11, 995–1012 (2020). 886 



38 

49. Nijsse, F. J. M. M., Cox, P. M. & Williamson, M. S. Emergent constraints on transient climate 887 

response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and 888 

CMIP6 models. Earth Syst. Dyn. 11, 737–750 (2020). 889 

50. Ridder, N. N., Pitman, A. J. & Ukkola, A. M. Do CMIP6 Climate Models simulate Global or 890 

Regional Compound Events skilfully? Geophys. Res. Lett. 1–11 (2020). 891 

doi:10.1029/2020gl091152 892 

51. Fan, X., Miao, C., Duan, Q., Shen, C. & Wu, Y. The Performance of CMIP6 Versus CMIP5 in 893 

Simulating Temperature Extremes Over the Global Land Surface. J. Geophys. Res. Atmos. 125, 894 

1–16 (2020). 895 

52. Xin, X., Wu, T., Zhang, J., Yao, J. & Fang, Y. Comparison of <scp>CMIP6</scp> and 896 

<scp>CMIP5</scp> simulations of precipitation in China and the East Asian summer monsoon. 897 

Int. J. Climatol. 40, 6423–6440 (2020). 898 

53. Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas 899 

concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020). 900 

54. Von Bloh, W. et al. Implementing the nitrogen cycle into the dynamic global vegetation, 901 

hydrology, and crop growth model LPJmL (version 5.0). Geosci. Model Dev. 11, 2789–2812 902 

(2018). 903 

55. Jägermeyr, J. & Frieler, K. Spatial variations in crop growing seasons pivotal to reproduce global 904 

fluctuations in maize and wheat yields. Sci. Adv. 4, eaat4517 (2018). 905 

56. Müller, C. et al. Exploring uncertainties in global crop yield projections in a large ensemble of 906 

crop models and CMIP5 and CMIP6 climate scenarios. Environ. Res. Lett. 16, 034040 (2021). 907 

57. Franke, J. A. et al. The GGCMI Phase 2 emulators: global gridded crop model responses to 908 

changes in CO2, temperature, water, and nitrogen (version 1.0). Geosci. Model Dev. 13, 2315–909 

2336 (2020). 910 

58. Allen, L. H. et al. Fluctuations of CO2 in Free-Air CO2 Enrichment (FACE) depress plant 911 

photosynthesis, growth, and yield. Agric. For. Meteorol. 284, (2020). 912 

59. Durand, J. L. et al. How accurately do maize crop models simulate the interactions of 913 

atmospheric CO2 concentration levels with limited water supply on water use and yield? Eur. J. 914 

Agron. (2018). doi:10.1016/j.eja.2017.01.002 915 

60. Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510, 139–42 (2014). 916 

61. Zhu, C. et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and 917 

vitamin content of rice grains with potential health consequences for the poorest rice-dependent 918 

countries. Sci. Adv. 4, eaaq1012 (2018). 919 

62. Köhler, I. H., Huber, S. C., Bernacchi, C. J. & Baxter, I. R. Increased temperatures may 920 

safeguard the nutritional quality of crops under future elevated CO2 concentrations. Plant J. 97, 921 

872–886 (2019). 922 



39 

63. Rising, J. & Devineni, N. Crop switching reduces agricultural losses from climate change in the 923 

United States by half under RCP 8.5. Nat. Commun. 11, 4991 (2020). 924 

64. Asseng, S. et al. Climate change impact and adaptation for wheat protein. Glob. Chang. Biol. 25, 925 

155–173 (2019). 926 

65. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. 927 

Am. Meteorol. Soc. 90, 1095–1107 (2009). 928 

66. Giorgi, F. & Bi, X. Time of emergence (TOE) of GHG-forced precipitation change hot-spots. 929 

Geophys. Res. Lett. 36, L06709 (2009). 930 

67. Lange, S. WFDE5 over land merged with ERA5 over the ocean (W5E5). V. 1.0. GFZ Data 931 

Services (2019). doi:https://doi.org/10.5880/pik.2019.023 932 

68. Cucchi, M. et al. WFDE5: Bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. 933 

Sci. Data 12, 2097–2120 (2020). 934 

69. Ruane, A. C. et al. Strong regional influence of climatic forcing datasets on global crop model 935 

ensembles. Agric. For. Meteorol. 300, 108313 (2021). 936 

70. FAO. FAOSTAT, United Nation’s Food and Agricultural Organization, Rome. (2019). Available 937 

at: http://www.fao.org/faostat/. (Accessed: 10th July 2019) 938 

71. Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000 - Global monthly irrigated and rainfed crop 939 

areas around the year 2000: A new high-resolution data set for agricultural and hydrological 940 

modeling. Global Biogeochem. Cycles 24, 1–24 (2010). 941 

72. Siebert, S. et al. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth 942 

Syst. Sci. 19, 1521–1545 (2015). 943 

73. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 944 

254–7 (2012). 945 

74. Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–946 

2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020). 947 

75. Zhang, B. et al. Global manure nitrogen production and application in cropland during 1860-948 

2014: A 5 arcmin gridded global dataset for Earth system modeling. Earth Syst. Sci. Data 9, 949 

667–678 (2017). 950 

76. Tian, H. et al. The Global N2O Model Intercomparison Project. Bull. Am. Meteorol. Soc. 99, 951 

1231–1251 (2018). 952 

77. Nachtergaele, F. et al. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy IIASA, 953 

Laxenburg, Austria 1–50 (2012). doi:3123 954 

78. Shangguan, W., Dai, Y., Duan, Q., Liu, B. & Yuan, H. A global soil data set for earth system 955 

modeling. J. Adv. Model. Earth Syst. 6, 249–263 (2014). 956 

79. Hengl, T. et al. SoilGrids1km - Global soil information based on automated mapping. PLoS One 957 

9, (2014). 958 



40 

80. Elliott, J. et al. The Global Gridded Crop Model Intercomparison: data and modeling protocols for 959 

Phase 1 (v1.0). Geosci. Model Dev. 8, 261–277 (2015). 960 

81. Müller, C. et al. Global gridded crop model evaluation: benchmarking, skills, deficiencies and 961 

implications. Geosci. Model Dev. 10, 1403–1422 (2017). 962 

82. Franke, J. A. et al. The GGCMI Phase 2 experiment: global gridded crop model simulations 963 

under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0). 964 

Geosci. Model Dev. 13, 2315–2336 (2020). 965 

83. Ruane, A. C. et al. Multi-wheat-model ensemble responses to interannual climate variability. 966 

Environ. Model. Softw. 81, 86–101 (2016). 967 

84. Wang, R., Bowling, L. C. & Cherkauer, K. A. Estimation of the effects of climate variability on 968 

crop yield in the Midwest USA. Agric. For. Meteorol. 216, 141–156 (2016). 969 

85. Folberth, C., Gaiser, T., Abbaspour, K. C., Schulin, R. & Yang, H. Regionalization of a large-970 

scale crop growth model for sub-Saharan Africa: Model setup, evaluation, and estimation of 971 

maize yields. Agric. Ecosyst. Environ. 151, 21–33 (2012). 972 

86. International Food Policy Research Institute. Global Spatially-Disaggregated Crop Production 973 

Statistics Data for 2010 Version 1.0. Harvard Dataverse V1 (2019). Available at: 974 

https://doi.org/10.7910/DVN/PRFF8V. (Accessed: 15th February 2019) 975 

87. Jägermeyr, J. et al. A regional nuclear conflict would compromise global food security. Proc. 976 

Natl. Acad. Sci. 117, 7071–7081 (2020). 977 

88. International Food Policy Research Institute (IFPRI) & International Institute for Applied Systems 978 

Analysis (IIASA). Global Spatially-Disaggregated Crop Production Statistics Data for 2005 979 

Version 3.2. Harvard Dataverse V9 (2016). Available at: https://doi.org/10.7910/DVN/DHXBJX. 980 

(Accessed: 15th February 2019) 981 

89. Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. a. Recent patterns of crop 982 

yield growth and stagnation. Nat. Commun. 3, 1293 (2012). 983 

90. Reynolds, M. & Braun, H. Benefits to low-input agriculture. Nat. Plants 5, 652–653 (2019). 984 

91. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate 985 

classification updated. Meteorol. Zeitschrift 15, 259–263 (2006). 986 

92. John P. Snyder & Voxland, P. M. An album of map projections. (1989). doi:10.3133/pp1453 987 

 988 



Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

SupplementJaegermeyretalNATFOOD20111649T.pdf

https://assets.researchsquare.com/files/rs-101657/v1/55d4d97d44fa333d45d930e7.pdf



