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Climate change will affect global water availability
through compounding changes in seasonal
precipitation and evaporation
Goutam Konapala1,2,3, Ashok K. Mishra1✉, Yoshihide Wada 4 & Michael E. Mann5

Both seasonal and annual mean precipitation and evaporation influence patterns of water

availability impacting society and ecosystems. Existing global climate studies rarely consider

such patterns from non-parametric statistical standpoint. Here, we employ a non-parametric

analysis framework to analyze seasonal hydroclimatic regimes by classifying global land

regions into nine regimes using late 20th century precipitation means and seasonality. These

regimes are used to assess implications for water availability due to concomitant changes in

mean and seasonal precipitation and evaporation changes using CMIP5 model future climate

projections. Out of 9 regimes, 4 show increased precipitation variation, while 5 show

decreased evaporation variation coupled with increasing mean precipitation and evaporation.

Increases in projected seasonal precipitation variation in already highly variable precipitation

regimes gives rise to a pattern of “seasonally variable regimes becoming more variable”.

Regimes with low seasonality in precipitation, instead, experience increased wet season

precipitation.
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A
ccessibility of water resources for human consumption
and ecosystems largely depends on the spatio-temporal
distribution of both precipitation and evaporation1–3. As

a result, changes in characteristics of precipitation and evapora-
tion due to human-caused climate change in the 21st century may
result in changes in water availability (WA) that have implica-
tions for both humans and the biosphere4,5. Previous studies have
elucidated trends in precipitation in terms of both annual
mean6,7, seasonal variation8,9, and the distribution of extreme
events10,11. Studies have also examined the corresponding chan-
ges in evaporation characteristics12–14. Though the combined
monthly distribution of precipitation and evaporation have
widespread implications for regional hydrology15,16, crop
yield17,18, and ecology19,20, few studies have examined the con-
comitant changes in both annual mean and seasonal variation in
these variables. Moreover, the existing global climate classifica-
tions21–23 that form the basis for WA studies rarely consider
seasonal variation characteristics from a non-parametric stand-
point, even though they vary in a complex manner across global
land regions24,25.

An analysis of the collective changes in both hydrological
annual means and seasonal variations can better inform assess-
ments of societal and ecological vulnerability with respect to
potential future WA. For instance, an increase in seasonal varia-
bility of precipitation might possibly disrupt the continuous
atmospheric water supply, leading to extended dry periods in
regions of unimodal precipitation distribution26,27. In regimes
with high precipitation, this redistribution may result in more
water concentrated over relatively short periods of time, leading to
floods and operational difficulties in reservoir water management.
Similarly, an increase in seasonal variation in evaporation might
lead to changes in the monthly terrestrial water budget depending
on the water supply regime28,29. It is thus important to understand
the combined role of projected future changes in both mean
precipitation and evaporation and their seasonal variations in
assessing impacts on any particular region’s water supply regime.

Here, we examine spatially aggregated future projections for
nine distinct regimes, characterizing joint changes in annual
mean and seasonal precipitation and evaporation. Each regime
displays concomitant increases in annual mean precipitation and
evaporation. However, only four of the nine regimes display
increased seasonal variation in precipitation. We observe a ten-
dency for increased seasonal variation for regimes that already
exhibit high seasonal variability, establishing a pattern wherein
seasonally variable regimes become more variable in the future.
Regimes with low seasonality in precipitation, instead, experience
increased wet season precipitation.

Results
Global classification of precipitation regimes. In this study, we
first classify the global land regions into distinct hydroclimatic
regimes based on annual means and seasonal variations using
observed monthly gridded precipitation data from the Global
Precipitation Climatology Centre (GPCC) (See “Methods”)30. For
quantifying seasonality, we used apportionment entropy (AE),
which provides a descriptive non-parametric measure determin-
ing the seasonal variation for data, such as precipitation, that are
not Gaussian distributed, as it captures higher-order statistics
unlike parametric methods that characterize the data in terms of,
e.g., coefficient of variation and standard deviation3. In our case,
higher AE values imply lower seasonal variation, and lower AE
imply higher seasonal variation (see “Methods” for further
details).

To understand the regime classification framework qualita-
tively, we plotted various characteristics of the resulting regimes

in Fig. 1. The spatial distribution of regimes based on
precipitation means and seasonal variations is shown in Fig. 1a.
The percentage of land occupied by each classified regime is
shown in Fig. 1b. The plot region in the legend is divided into
nine zones, each of which is delineated with two intersecting
dividing lines that pass through the limits of the respective
thresholds of the two variables. Global land regions are classified
into nine regimes based on percentiles thresholds (i.e., <30th—
Low; 30–70th—Moderate; >70th—High) of seasonal variation (as
defined by AE) and annual mean precipitation during the
1971–2000 reference period (See “Methods”). We chose four
critical zones (HpHAE, LPHAE, LPLAE, HPLAE) to illustrate extreme
scenarios based on combinations of either low (<Pr30) and high
(>Pr70) variation and mean value of precipitation. Here, HAE

represents higher AE values, which implies lower seasonal
variation. The spatially aggregate precipitation climatology of
the selected four regimes is detailed in Fig. 1c. For each grid, the
month with lowest rainfall is plotted as starting month for
rainfall. Regime HpHAE witnesses a higher precipitation rate and
lower intra-annual variability (i.e., high AE). As a result, the
precipitation is uniformly distributed, indicating perennial water
supply for both human and ecological needs3,31. On the contrary,
regime HPLAE presents a scenario (high precipitation and high
variability), where most of the precipitation is concentrated in a
limited number of months. As a result, excess water needs to be
stored to prevent floods as well as to enhance water supply for
stakeholders in dry months. In low-precipitation regimes (LPHAE

and LPLAE), virtual water transfers and drought-tolerant crops are
prevalent32. However, regions with less precipitation and higher
AE (LPHAE) are perennial in nature. Regions characterized by a
combination of lower precipitation and AE (LPLAE) are arid in
nature, indicating water resources availability is extremely low.
Therefore, based on these principles, the remaining regimes have
precipitation conditions between these extreme limiting cases.

The spatial distribution of regimes across global land is found
to be as follows: regime HPLAE and MPLAE can be found mostly in
the Indian subcontinent, Northeast Asia, Northern Australia, and
much of north-central and south-central Africa, covering land
area of ~15%. These regions are influenced mostly by
monsoons33. Regime HPMAE and HPHAE mostly occupy eastern
North America, Northern South America, central Africa, Western
Europe, and South Eastern Asia, occupying a combined land area
of 24%. These regions are mostly moist forest areas. Regime
MPMAE spans across most of central North America and is
scattered in western parts of South America and Northern and
central Asia, Southern part of Africa and Southern Australia
amounting to ~15% of land area. Regime MPHAE occupies most
of European Continent and further extends to western Russia
occupying 16% of the total land area. Regime LPLAE occupies
Northern Africa, the Middle East, and further extends to central
Asia. In addition, central Australia, the interior western United
States and central western South America are classified as
belonging to LPLAE, occupying a land area of 15%. LPMAE is
mostly confined to the Northern parts of North America and
Siberia region occupying ~13% of land area. Finally,
regime LPHAE is confined to a small region in the central Russian
region.

Trends in annual changes of precipitation and evaporation.
Precipitation and evaporation projections from Coupled Model
Intercomparison Project Phase 5 (CMIP5) models are aggregated
over these nine precipitation regimes. We evaluate linear trends
over the 21st century (2005–2100) using Bayesian model aver-
aging (BMA) (31–32, see “Methods”) applied to both annual
means and seasonal variation in precipitation and evaporation for
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three future scenarios (representative concentration pathway
(RCP) 2.6, 4.5, and 8.5).

The changes in BMA-weighted future annual precipitation and
evaporation totals and seasonal variability for the RCP scenarios
2.6, 4.5, and 8.6 are shown in Fig. 2a, b, respectively (note that the
horizontal axis scales are different for both panels in Fig. 2a, b). In
Fig. 2a, the change in annual precipitation total (TOTP) indicates
an increase in precipitation in all regimes, with the least increase
in regime LPLAE, In addition, a proportional relationship was
observed in terms of an increase in the precipitation magnitude
with an increase in the emission forcing. In addition, in
precipitation regimes LPHAE, MPHAE, and HPHAE that are
characterized by a relatively consistent water supply, the TOTP

exhibit a higher magnitude of precipitation increase compared
with those regimes characterized by a moderate and high seasonal
variability. Conversely, regions LPLAE, MPLAE, and HPLAE with

inconsistent water supplies exhibit a lower magnitude of
precipitation increase. The highest magnitude increase is evident
in regime HPHAE, which is characterized by high volumes of
consistent water supply in which RCP 8.5 exhibits an increase of
1.3 mm/year, followed by RCP 4.5 exhibiting 0.7 mm/year and
RCP 2.6 exhibiting 0.25 mm/year. In addition, a larger uncer-
tainty in the case of GCM model use is evident in precipitation
regime HPHAE. Similar to TOTP, an increase in the annual
evaporation total (TOTE) is observed in all regimes with the
lowest increase observed in regime LPLAE. In addition, a direct
proportional relationship is also evident here; the higher emission
scenarios exhibit a higher magnitude of increased evaporation. As
in the case of TOTP, TOTE in the precipitation regimes of LPHAE,
MPHAE, and HPHAE that are characterized by relatively consistent
water supply exhibit a higher magnitude of evaporation increase.
The greatest change is evident in regime MPHAE, which is
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Fig. 1 Classification of the precipitation regimes. a Spatial distribution of precipitation regimes based on the percentile (Pri) thresholds concept using

mean apportionment entropy (AE) and annual precipitation P during the 1971–2000 reference period. b Percentage of land occupied by each regime.

c Precipitation climatology of the spatially aggregated monthly rainfall climatology for regimes HPLAE, HPHAE, LPHAE, LPLAE. These regimes are selected as

they represent boundary case scenarios. H, M, and L represent high moderate and low values, respectively.
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characterized by moderate precipitation but low seasonal
variability. In this regime, RCP 8.5 exhibits an increase of
0.68 mm/year, followed by RCP 4.5 with an increase of 0.4 mm/
year and RCP 2.6 with an increase of 0.19 mm/year. We observe

that the changes in magnitude of TOTE are generally less
uncertain than those in precipitation.

The decrease in AEP indicates an increase in the seasonal
variability of precipitation in the regimes LPLAE, MPLAE, and
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HPLAE for all RCP scenarios as detailed in Fig. 2b. Although a
negligible trend in RCP 2.6 is observed in case of regimes HPMAE,
HPHAE, and MPMAE, a significant increase in variability was
observed in the other scenarios for these three regimes. However,
although a negligible positive trend is observed in regimes LPMAE

and LPHAE for RCP 2.6, the other scenarios exhibit a decrease in
variability. Regime MPHAE, which is characterized by moderate
and consistent water supply exhibits a negligible change in all
scenarios. Further, the changes in AEE are not as substantial as
those in AEP. No significant trends are observed in AEE for
regimes HPHAE, HPMAE, HPLAE, and MPLAE. In addition,
decrease in variability of evaporation is evident in regime LPHAE,
LPMAE, MPHAE, and MPMAE. The higher emission scenarios
display greater change in magnitude for AEE. Unlike with
precipitation variability, there is a pattern of decreased variability
exhibited by AEE. These contrasting future projection changes in
precipitation and evaporation may result in spatially variable
monthly WA (i.e., P–E)6,31,34. To further assess the robustness of
our results, we also computed the grid-wise trends as shown in
Supplementary Figure 1 for RCP 8.5 scenario. Based on this
spatially explicit analysis, we see that precipitation variability is
increasing over a substantially greater region (~35.6% of the land
surface) than it is decreasing (~4% of the land surface). In
addition, the spatial analysis indicates that this increase in
variability in more prominent in regions with high variability.
Evaporation variability, conversely, is decreasing over a substan-
tially greater region (~36% of the land surface) than it is
increasing over (~6% of the land surface). Therefore, both these
analyses suggested an overall trend toward increasing precipita-
tion variability along with decreasing evaporation variability,
reinforcing our main conclusions. As these metrics aggregate the
monthly distributions of precipitation and evaporation at the
annual scale obscuring seasonal behavior, it is worthwhile to
additionally investigate, as described below, how these changes
are reflected in the monthly distribution of available water
(determined as the difference between precipitation and evapora-
tion—See “Methods”).

Precipitation and evaporation role in available water change.
We determine which seasonal components have contributed
to altering the monthly distribution of WA
(precipitation–evaporation) for each of these scenarios (See
“Methods”). The BMA-weighted historical (1971–2000) monthly
WA distribution and future projections (2070–2099) for each
regime are shown in Fig. 3 for each of the scenarios. The pro-
jected future monthly distribution of WA for the wet seasons
(8th–10th month) demonstrates that the wet season becomes
wetter, a pattern that is increasingly evident in regimes LPHAE,
MPHAE, and HPHAE with a consistent water supply albeit less
evident in regimes LPLAE and MPLAE with an inconsistent water
supply (regime HPLAE exhibits a minor increase in available
water). So, while seasonally variable regimes becoming more
variable in terms of precipitation, that is not the case for WA,
perhaps owing to competing effects between evaporation and
precipitation. The low precipitation of regime LPLAE exhibits the
least noticeable change in monthly available water, unlike the
high precipitation of regime HPLAE, wherein a more noticeable
increase in available water is evident during the wet season. This
pattern is also sensitive to the change in radiative forcing, with
greater radiative forcing corresponding to greater changes.
Therefore, in regions where water supply is constrained by low-
precipitation amounts and a more uneven distribution (low AE),
changes in precipitation and evaporation do not affect the
available water as they are more water-limited in nature. In
regions with a more even distribution, however, there is a greater

effect. Overall, these results indicate that the changes in monthly
WA distribution are dependent on both the particular regime and
the radiative forcing.

The corresponding changes in precipitation and evaporation
(relative to the historical period) during the wet and dry seasons
for three future emission scenarios (RCP 2.6, 4.5, 8.5) are
presented in Fig. 4, illustrating the competition between water
and energy balance at the seasonal scale. The role played by both
wet and dry seasons in changing WA are examined in Fig. 4. In
regions with high AE values (i.e., LPHAE, MPHAE, and HPHAE),
higher increases in evaporation can be observed in comparison
with the moderate and low AE regions, especially in the RCP
8.5 scenario. These changes are significant in the wet season but
not the dry season. As noted earlier, higher emission scenarios
show more pronounced evaporation increases. In the case of
precipitation, regimes with high AE values in both dry and wet
seasons display a pattern of increase similar to that in
evaporation. But these changes are again only statistically
significant in the wet season. Although greater changes in
precipitation are evident in the dry season, the greater spread
among models in that case hinders any confident conclusions.

The increasing wet and dry season precipitation and evapora-
tion provide an explanation for the changes in available water as
defined by the difference between precipitation and evaporation
(precipitation–evaporation). In regimes where the relative
magnitude of the increase in evaporation is less than that in
precipitation, a significant increase in WA is observed. Such is the
case with high AE regions in wet season. This increase can thus be
attributed to a larger increase in precipitation than in evapora-
tion. In addition, regions with higher AE exhibit a greater
increase in WA, which imply the potential for increased flood risk
in regions such as Western Europe35, North America36, and
South Eastern Asia that show less-seasonal variation16. In the case
of the dry season, an increase in WA is found in RCP 8.5 scenarios
for regimes LPMAE, MPMAE, and HPHAE but it is not statistically
significant. The results in these cases are inconclusive owing to
the large spread among models. This finding further highlights
the interdependent role of evaporation and precipitation in
changing seasonal WA. Previous studies based on spatially
explicit analyses have shown that the dry seasons are becoming
drier in some locations around the globe9. Our spatial analysis in
case of RCP 8.5 scenario also indicates a decrease in P–E in
Europe and northern part of North America (Supplementary
Fig. 2) in agreement with Kumar et al.10,37.

Discussion
Coupled changes in seasonal variation (as measured by AE) and
annual mean precipitation and evaporation significantly impact
the spatio-temporal distribution of WA. By using appropriate
thresholds applied to seasonal variations and annual means of
historical precipitation data, nine land regions were identified that
are characterized by different water supply regimes.

Spatially aggregated future trends over these regimes as applied
to the CMIP5 future projections indicate an increase in pre-
cipitation annual means in all land regimes across the globe, with
higher increases in RCP 8.5 as reported in previous studies6–8,38.
Most strikingly, annual mean evaporation is found to be
increasing in all regimes, indicating a pattern of intensified
response to increased water demand across all regions. Further-
more, an increase in seasonal precipitation variation is observed,
especially in regions that already exhibit greater seasonal variation
in precipitation. This indicates a pattern of seasonally variable
regimes becoming more variable regarding precipitation. This
pattern is consistent with previously reported observations of the
wet season becoming more wet and the dry season becoming
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more dry39,40. In the case of wet seasons becoming wet, vertical
moisture advection and evaporation play a key role40,41. There-
fore, we anticipate that the observed pattern may be owing to
regional changes in moisture advection and evaporation. How-
ever, we do not observe such a pattern in the seasonal variability
of evaporation. We found a decrease in seasonal evaporation
variation in various regimes of the global land area. This would
imply that regions that already have inconsistent water supply
owing to high seasonal variation in precipitation might experi-
ence even more inconsistent WA.

Similar to what is observed with precipitation, an increase in
the annual mean evaporation (TOTE) is observed in all regimes
with the smallest increase observed in regime LPLAE, as found in
previous studies41. Increases in annual mean evaporation over the
land surface can be attributed to the increase in temperature in
the CMIP5 future projections42 and also to increase in pre-
cipitation. The seasonal changes in evaporation, however, are tied
to corresponding seasonal changes in surface relative humidity
contrast42,43. Also, the increase in TOTE is smaller than in TOTP,
a finding that is consistent with previous studies31,42. We also

examined the projected monthly distribution of WA as measured
by precipitation minus evaporation (P–E) across the classified
nine precipitation regimes. Our results highlight a clear signal of
increased WA in the wet season especially in regimes of less-
seasonal variation in precipitation.

We assessed the role of precipitation and evaporation char-
acteristics in the changing monthly distributions of WA. Our
results indicate that the increases in WA in wet seasons is con-
trolled by changes in both precipitation and evaporation. The
combination of changes in precipitation and evaporation might
result in an overall increase in WA, which is more pronounced
during the wet season and is expected to yield spatially variable
annual WA consistent with previous studies37,44,45. However, we
show that these changes may also be dependent upon the specific
regime as determined by both seasonal variation and mean pre-
cipitation changes. Even though our results indicate changes in
long-term WA, it is unclear what implications our findings might
hold for hydrologic extremes, owing to limitations in the ability of
current generation coupled climate models to capture the key
drivers of persistent weather extremes46,47.
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Overall, these changes in precipitation characteristics impact
not only annual WA but also its spatio-temporal distribution.
Concomitant changes in the mean and seasonal variation in
precipitation may imply significant and varied shifts in phe-
nology48,49, reservoir management3, and ecosystem function
depending upon the water supply regimes. The framework
provided by our study complements traditional approaches
used to study seasonal variability in different hydroclimatic
regimes50,51. Future efforts will use this framework to quanti-
tatively assess the implications of projected changes in seasonal
and annual mean precipitation on streamflow regimes, pro-
viding further relevance to issues involving societal water use
and demand.

Data. Observed precipitation gridded data from GPCC52 at a
resolution of 2.5 × 2.5◦ for the period of 1901–2005 at monthly
scale is used. Conversely, the observed terrestrial evaporation
measurements were obtained from Global Land Evaporation
Amsterdam Model (GLEAM) data set available for the period of

1980–201553 at a daily scale. This data set incorporates the
Priestley and Taylor equation to calculate the potential evapora-
tion based on observations of surface net radiation and near
surface air temperature. A multiplicative evaporative stress factor
estimated from satellite estimates is then used to convert the
calculated potential evaporation values to actual evaporation. A
more-detailed calculation procedure is available in the work of
Martens et al.53.

The future projected data from 21 different general climatic
models under the CMIP5 version for three different RCP
scenarios are used. Each of these scenarios are distinguished by
their radiative forcing increases by the end of the current century
(RCP 2.6, 4.5, and 8.5) relative to pre-industrial values
(Supplementary Table 1). These scenarios correspond roughly
to a 2 °C stabilization, and 3.5 °C and 5 °C global temperature
increase, respectively, by the end of the century. These CMIP5
models are selected based on the common availability of both
precipitation and evaporation variables for historical and
projected scenarios.
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Methods
Annual precipitation and evaporation characteristics. After acquisition of the
data, both the observed and modeled data are interpolated to a common 2.5 × 2.5°
grid from their respective original grids. We assessed the seasonal variation of
monthly precipitation and evaporation using an information theory metric called
as AE. Unlike the parametric coefficient of both variation and standard deviation,
this metric is non-parametric and may even encompass high-order moments3.
Moreover, information theory metrics have been widely used as a measure of
rainfall seasonality in both hydrologic and climatological contexts3,24,26,27.
Therefore, to estimate AE for either precipitation or evaporation over a year k, the
aggregated annual quantities during the 12 months indexed are computed by
summing the monthly values (x) over all the months in a year as

X ¼
X

12

i¼1

xi ð1Þ

where X is the aggregated value of either the precipitation or evaporation. Subse-
quently, the AE is calculated as

AE ¼ �
X

12

i¼1

xi=Xð Þ log2 xi=Xð Þ ð2Þ

By definition, both Eqs. (1) and (2) state that when either the amount of annual
precipitation or evaporation is quite evenly apportioned to each of the 12 months
with the probability of 1/12, Eq. (2) assumes the maximum value of log212.
Conversely, the minimum value of AE= 0 occurs when the apportionment is
extended to only 1 month of the 12 month cycle with a probability of 1, thus
indicating the assumption of a new value by AE within a finite range of 0 and
log212. Therefore, in a year, the less variable the monthly precipitation or eva-
poration, the higher the AE value. Using this definition, the seasonal variability of
precipitation (AEP) and evaporation (AEE) is estimated for the study period. The
aggregation of both the precipitation (TOTP) and evaporation (TOTE) is then used
to calculate the annual precipitation and evaporation during these 12 months.

Definition of global classification of precipitation regimes. The existing
atmospheric climate classifications are based on broad precipitation, temperature,
evapotranspiration, and biosphere characteristics21–23. However, even though the
seasonal variability significantly changes across the global land regions26,27, it is
often not considered for classification from a non-parametric standpoint. For
instance, the occurrence of substantial precipitation with an even monthly dis-
tribution will indicate a consistent and adequate supply of atmospheric water
throughout the year. Similarly, an occurrence of substantial precipitation with an
uneven monthly distribution will indicate surplus water supply during a particular
period of a given year and deficit water supply during another period in a given
year. Therefore, a failure to consider the seasonal variability of precipitation
magnitude may well lead to a misrepresentation of the actual water supply con-
ditions. Therefore, in this study, in addition to the precipitation magnitude, the
seasonal variability was also included for purposes of classifying the global land
regions into distinct water supply regimes. Here, the global land was divided into
nine regimes of varying magnitudes of observed annual precipitation and seasonal
variability based on the period between the years 1971 and 2000. These regimes are
derived based on a combination of seasonal variabilities (i.e., AE) and magnitude
using the threshold concept: with high (>Pr70), moderate (between Pr30 and Pr70)
and low (<Pr30), in which Pri represents the ith percentile of either the annual
magnitude or the seasonal variability. The use of the 30th and 70th percentiles is
based upon the wet and dry region definitions adopted by Allan et al.54 and
subsequently implemented in Liu and Allan55. A similar threshold based classifi-
cation of various dry and wet global regions has been used elsewhere with suc-
cess56–58. In using this approach, we have coupled the characteristics of both
annual magnitude and seasonal variability into distinct regimes based on global
percentile thresholds. As a result, this definition can capture the precipitation
characteristics that might have been previously omitted in those definitions based
on absolute thresholds, separate precipitation magnitude and seasonal variability
considerations and regional definitions59. The classification of these regimes also
do not explicitly consider the natural landscape (e.g., rainforest, deserts) or the
human-experienced climate events (e.g., monsoons) as suggested by Trewartha54.
As we base our analysis on both precipitation and evaporation, this scheme pro-
vides a necessary and rather simple configuration for the relative assessment of
spatially aggregated changes in both precipitation and evaporation characteristics
for this study. All the derived precipitation and evaporation characteristics for
CMIP5 as well as the observed data over these regimes are spatially aggregated.

Bayesian model averaging. As the CMIP5 models exhibit varying levels of
accuracy regarding simulating historical hydrologic cycles, the BMA methodol-
ogy52 is utilized to assign higher weights to better performing models. For this
purpose, we computed the yearly precipitation and evaporation totals and AE,
from the CMIP5 models and observed data sets, i.e., precipitation from GPCC and
evaporation dataset from GLEAM over each precipitation regime. Then the BMA
approach is utilized to determine the optimal weights for each CMIP5 model on
their ability to replicate the spatial patterns of TOTP, TOTE, AEP, and AEE. The
BMA approach calculates ensemble of the considered CMIP5 models by assigning

weights based on the performance of models in comparison with the observa-
tions52,60. In this approach, the probability density function (g) of our interest
variable, Y 2 P; E;AEP ;AEEf g from the observed data, which is conditioned upon
the 21 CMIP5 simulations is expressed as:

g Y jY1; :::;Y21ð Þ ¼
X

21

i¼1

wif YjYið Þ ð3Þ

where wi is the optimal weight for the ith CMIP5 model, f(Y|Yi) is a PDF of the
gamma distribution of Yi. The general selection of the BMA mixture probability
distribution is normal with the gamma distributions based on the suggestion of
Vrugt et al.60 and Raftery et al.52. Therefore, in this study, a separate analysis is
undertaken for both of the prior distributions. The BMA ensemble weighted mean
and standard deviation is thus expressed as:

En ¼
X

21

i¼1

wi � Yi ð4Þ

RMSD ¼
X

21

i¼1

wi Yi � ENð Þ

" #1=2

ð5Þ

Estimation of BMA weights. The optimal weights wi, i= 1, …, 21 are estimated
with a maximum log-likelihood function, which is expressed as:

l w1; ¼ ;w21ð Þ ¼
X

N

j¼1

log
X

21

i¼1

wig Yj Yi;j

�

�

�

� �

 !

ð6Þ

where j= {1, … N} are observations of the considered variable. Regarding pre-
cipitation, we use the mean annual estimates from 1971 to 2000 for estimating the
optimal weights. Regarding evaporation, we only use the annual characteristics
from 1980 to 2005. A Markov Chain Monte Carlo algorithm60, which maximizes
the log-likelihood function is used for estimating the weights. This algorithm in
turn generates N different Markov Chains, placed separately as rows with each
chain represented as a 22-dimensional vector θ= {w1, w2,…, w21, σ2}. The candi-
date maximum likelihood point is then sampled from a prescribed distribution,
depending on the precipitation regime. Next, in accordance with the Metropolis
acceptance probability, the candidate maximum likelihood point is either accepted
or rejected. If accepted, the chain moves to the next candidate model; otherwise the
chain repeats the process until the optimal weight for the candidate model is
estimated. Clearly, the BMA weights obtained through maximum likelihood using
this procedure is comparatively more accurate than the weights obtained using the
Expectation–Maximization (EM) algorithm recommended by Raftery et al.52. A
thorough description of this algorithm is presented in Vrugt et al.60. The estimated
BMA weights are listed in Supplementary Table 2.

Performance and evaluation of BMA multimodel ensembles over precipitation

regimes. The performance of the BMA multimodel ensemble was assessed in
terms in replicating the spatial pattern across the land regions. After obtaining the
optimal weights (shown in Supplementary Table 2), we computed the multimodel
ensemble using Eq. (4) and evaluated the performance by the metrics of the
Pearson correlation. The results indicate that in terms of the TOTP, TOTE, an R2

values of 0.94 and 0.92, respectively, is obtained. Whereas in case of AEP and AEE
an R2 of 0.91 and 0.85 are obtained. These values further indicate that ensemble
mean of the 21 GCMs, which are studied could adequately replicate the spatial
patterns.

Assessment of projected changes. The projected changes of TOTP, TOTE, AEP,
and AEE were determined using the non-parametric Theil-Sen estimator61. We first
estimated the linear trends using Theil-Sen estimator (ΔY) and the BMA ensemble
trend with an uncertainty is expressed as

ΔYBMA ¼
X

21

i¼1

wi � ΔYi ð7Þ

ΔYRMSD ¼
X

21

i¼1

wi ΔYi � ΔYBMAð Þ

" #1=2

ð8Þ

thus, permitting the estimates of the upper and lower confidence limits as:

ΔYUC ¼ ΔYBMA þ 2 � ΔYRMSD ð9Þ

ΔYLC ¼ ΔYBMA � 2 � ΔYRMSD ð10Þ

If the changes are distributed as a Gaussian density function, then these bounds
imply a ~95% confidence interval.

Available water. The difference between monthly precipitation and evaporation
variables is deemed reliable for approximating the potential available water for
human and ecological consumption. Here, we estimate the average net available
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water in 1 month for the historical period of 1971–2000 and for the future scenario
of 2070–2099, which is expressed as:

WAm
hist ¼

P2000
y¼1970 rm;y � em;y

� �

30
ð11Þ

WAm
rcp ¼

P2100
y¼2070 rm;y � em;y

� �

30
ð12Þ

where rm,y and em,y represent the precipitation and evaporation in month m and
year y. We then compare the monthly net available water of historical and future
scenarios (RCP 2.6, 4.5, and 8.5) from each GCM model through a spatial aver-
aging over respective regimes. The denominator 30 represents the total number of
years taken into consideration. In case of WA, we used the averaged BMA weights
for each model and estimated the monthly distribution of WA.

To explore the role of seasonal components in terms of altering the monthly
climatology of available water seasonal variability within a hydrologic year, we first
extracted wet and dry precipitation and evaporation components. We assumed a 3-
month period in which the maximum (minimum) of available water occurs as wet
(dry) seasons40 using the same base period of 1971–2000. We estimated the
changes in both the wet and dry seasons as the difference between the future
scenarios (2070–2099) and the mean historical (1971–2000) spatially aggregation
over each regime. The BMA weights were applied and the uncertainty was
calculated using Eqs. (7–10).

Data availability
The data sets analyzed during the current study are available at Earth System Grid
Federation (ESGF) Peer-to-Peer (P2P) enterprise system [https://esgf-node.llnl.gov/projects/
esgf-llnl/]. The Observed monthly GPCC precipitation is available at https://opendata.dwd.
de/climate_environment/GPCC/html/fulldata-monthly_v2018_doi_download.html. The
evaporation data set is available at https://www.gleam.eu/.

Code availability
The accompanying MATLAB source code for Bayesian model averaging utilized in this
study is available at (http://faculty.sites.uci.edu/jasper/software).
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