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Abstract

Global climate change alters the dynamic of natural ecosystems and directly affects species

distributions, persistence and diversity. The impacts of climate change may lead to dramatic

changes in biotic interactions, such as pollination and seed dispersal. Life history traits are

extremely important to consider the vulnerability of a species to climate change, producing

more robust models than those based primarily on species distributions. Here, we hypothe-

sized that rising temperatures and aridity will reduce suitable habitats for the endemic flora

of the Caatinga, the most diverse dry tropical forest on Earth. Specifically, species with spe-

cialized reproductive traits (e.g. vertebrate pollination, biotic dispersal, obligatory cross-polli-

nation) should be more affected by climate change than those with generalist traits. We

performed two ecological niche models (current and future) to simulate the effects of climate

change on the distribution area of endemic species in relation to life-history traits. We used

the MIROC-ESM and CCSM4 models for both intermediate (RCP4.5) and highest predicted

(RCP8.5) GHG emission scenarios, with a resolution of 30’ (~1 km2). Habitat with high

occurrence probability (>80%) of endemic species will be reduced (up to ~10% for trees,

~13% for non-arboreous, 10–28% for species with any pollination/reproductive system),

with the greatest reductions for species with specialized reproductive traits. In addition, the

likely concentration of endemic plants in the extreme northeastern portion of the Caatinga,

in more mesic areas, coincides with the currently most human-modified areas of the ecosys-

tem, which combined with climate change will further contract suitable habitats of endemic

species. In conclusion, plant species endemic to the Caatinga are highly vulnerable to even

conservative scenarios of future climate change and may lose much of their climatic enve-

lopes. New protected areas should be located in the northeastern portion of the Caatinga,

which hosts a more favorable climate, but is currently exposed to escalating agricultural

intensification.
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Introduction

At a global scale, climate change is mainly represented by increases in temperature and diver-

gent changes in precipitation regimes, which will likely become more variable and extreme [1,

2]. Several tropical biomes are predicted to experience extreme climatic changes, which may

result mainly in increased aridity [3, 4]. The degree to which an ecosystem changes and its abil-

ity to recover to original conditions depends on the intensity of exposure, with different terres-

trial regions exhibiting varying vulnerability to climate change [5]. In South America, novel

climate-vegetation equilibrium conditions are predicted, in which savannas may replace some

tropical rainforest areas and semi-desert areas may replace much of the drought polygon of

northeastern Brazil (geographic polygon bound by the annual 800-mm isohyet) [6]. In

response to these emergent climatic conditions, species may persist within their original distri-

bution range due to acclimatization and phenotypic plasticity, migrate to new areas of suitable

climatic conditions, or may undergo local extinctions (e.g. [7, 8]). Indeed, changes in climate

regimes may act as an important historical driver of natural selection [9]. By affecting organ-

isms from single populations to entire biomes, climate change may exhibit a broad footprint in

divergent levels of biological organization across different regions on Earth [5, 10].

One of the fastest responses observed for distinct groups of organisms is a shift in their dis-

tributions to track the emergent distribution of suitable habitat conditions (e.g. [11]). In this

context, species may undergo shifts in their latitudinal and altitudinal ranges resulting in

expansion, contraction or fragmentation of their original distributions [10]. These distribu-

tional changes may be also followed by (1) changes in ecological interactions, such as pollina-

tion [12–14], seed dispersal [15], and herbivory [16, 17], (2) spatial and temporal mismatches

in soil nutrient dynamics [18, 19], (3) changes in niche space [20], (4) species invasions [21–

24] and (5) evolutionary changes, such as adaptation or local extinction [25, 26]. In addition,

other changes in morphology, such as reductions in body mass and alterations in shape, colour

and brightness (e.g. [10]), and reproductive phenology, such as earlier flowering in plants (e.g.

[27]), are expected in many climate change scenarios. Therefore, by interfering with ecological

interactions, climate change can detrimentally affect global biodiversity and the flow of ecosys-

tem functions and services [28].

Life history traits are closely related to species performance in communities and ecosystems

[29–32]. In this sense, they can be used as predictors of species responses to environmental

changes, including changes in land use (e.g. habitat loss and fragmentation) [33, 34], livestock

grazing [35], fire [36]), and climate [37, 38]. These traits are extremely important to consider

the differential vulnerability of species to climate change since they ensure more robust (trait-

based) models than studies based primarily on species distribution (correlative models) (see

[37, 39] for a review). The combination of trait-based models with correlative models may

offer a good opportunity for a better understanding of species vulnerability to climate change

(see [39] and references therein for a review). Traits such as reduced dispersal capacity, slow

reproductive rate (trees), pollination and dispersal by bats, specialized diet or habitat, narrow

physiological tolerance range, low adaptive potential, restricted distribution, and population

rarity, among others, can all render a species more vulnerable to climate change (e.g. [37–40]).

In general, species with specialist life history traits (i.e. traits with some degree of ecological

specificity/restriction sensu [41]), such as those cited above, play a key role in ecosystem pro-

cesses [42]. Many studies have shown that these traits/strategies are mainly observed in

endemic species or species showing some level of vulnerability (e.g. [43–49]). The vast majority

of these studies (~70%) were developed in North America, Europe or Australia. Neotropical

regions, which hold most of the global biodiversity, including endemic species, have been

therefore neglected [40]. Angiosperms, birds and mammals are the most studied taxonomic
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groups [40] and forecasts suggest severe species losses in these taxa globally [43], particularly

in biodiversity hotspots [44], and mainly specialist species [50].

The Caatinga Phytogeographic Domain (CPD) is a seasonally dry tropical forest (SDTF)

endemic to Brazil and represents one of the largest semiarid regions in South America, occur-

ring over approximately 800,000 km2 [51]. The Caatinga is located in northeastern Brazil,

abutting the Atlantic forest domain to the east and the Cerrado to the west and south. The sea-

sonality and rainfall distribution, associated with elevated temperatures and highly variable

edaphic conditions, drive a diverse spectrum of Caatinga phytogeographic formations (e.g.

[52–55]). These range from open areas with shrub and herbaceous vegetation, such as the

inselbergs, to areas where tree species predominate in both species’ richness and abundance,

such as arboreal Caatingas (sensu [56]). The Caatinga flora is considered the most diverse

SDTF on Earth, harboring 298 endemic species [57], representing 31 genera of flowering

plants [58]. Future climatic conditions for the Caatinga vegetation cover indicate that some

regions will likely experience high levels of aridity and subsequent desertification [4, 59],

resulting in changes in plant species diversity and distribution [1, 6] and key ecological pro-

cesses such as pollination and associated functions [13]. Due to the characteristics mentioned

above, the Caatinga represents an ideal tropical model for studies on the effects of climate

change on species distributions.

Here, we seek to understand the effects of climate change on the range and distribution of

suitable habitats for flowering plants endemic to the Caatinga, in relation to growth habit

(arboreous and non-arboreous) and reproductive traits (e.g. pollination, reproductive systems,

dispersal mode). Thus, we used what Foden et al. [39] very recently outlined as a trait-correla-

tive approach for assessing the vulnerability of species to climate change. First, we test the

hypothesis that areas with highly suitable climatic conditions for endemic flowering plants will

be reduced under scenarios of climate change represented by increases in temperature and

decreases in precipitation. We also test the hypothesis that elevated temperatures and reduced

precipitation will promote greater reduction in the suitable habitat for endemic plants with

arboreous habits and specialized reproductive strategies (e.g. vertebrate pollination, biotic dis-

persal, obligatory cross-pollination) compared to plants exhibiting other growth habits (i.e.

non-arboreous) or generalist reproductive traits. Our predictions were that (i) areas with a

high occurrence probability (>80%) of flowering plant endemic to the Caatinga will be

reduced under two climate change scenarios: optimistic (moderate predicted–GHG emissions)

and pessimistic (highest predicted GHG emissions), and (ii) the reduction of suitable habitats

would be greatest for arboreous plants and those with specialized pollination systems, obliga-

tory cross-pollination (self-incompatible/dioecious systems) and biotic dispersal modes.

Material andmethods

Survey of Caatinga endemic plant species

A list of endemic Caatinga angiosperm species was initially generated from the Flora do Brasil

website [57] using the following filters: "native of Brazil", "occurs only in the Northeast region",

"occurs only in the phytogeographic domain of the Caatinga", "occurs only in the vegetation

type of the Caatinga (stricto sensu)", thereby excluding rupestrian fields and altitude forest

within the Caatinga, and "only endemic to Brazil". Using these search filters, 298 endemic spe-

cies of angiosperms (now treated as plant species endemic to the Caatinga) were recorded.

In order to test our hypotheses, we required georeferenced data (natural occurrence) of the

plant species endemic to the Caatinga. Since biological collection networks such as SpeciesLink

and GBIF provide georeferenced data without the possibility of filtering which points refer to

individuals sampled in natural populations or cultivated in non-natural urban and rural areas,
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and we needed information exclusively from natural areas, we did not use georeferenced data

from these databases. Alternatively, to assess precise information on the natural occurrence of

plant species endemic to the Caatinga, we, therefore, used the catalogue of vascular plants by

Moro et al. [54], which compiled this information for more than 2000 species from 98 studies.

In addition, we obtained positional data for species from 16 other studies that had not been

included in Moro et al. [54], because they are either more recent or non-floristic studies, but

still contained checklists of Caatinga endemic plant species (S1 Table; Fig 1). The endemic spe-

cies listed in these 114 studies had their synonymia and spelling checked based on the Flora do

Brasil website [57]. In total, we obtained georeferenced data (132 points) for 76 out of the 298

plants species endemic to the Caatinga listed on the Flora do Brasil website [57]. We thus con-

sidered these 76 species in this study. The 132 geographic coordinates are distributed across

the phytogeographic formations of Caatinga forest. The analyses were based on the occurrence

of life history traits. S2 Table summarizes the number of species per georeferenced points and

per life history strategy.

Fig 1. Location and geographic limits of the Caatinga. (A) Geographical location of the Caatinga in South America and (B) Phytogeographic domains in
northeastern Brazil. Source of the shapes of the Brazilian phytogeographic domains: MMA-Ministério do Meio Ambiente, Brazil (public domain) (available for
download at http://mapas.mma.gov.br/i3geo/datadownload.htm and http://mapas.mma.gov.br/mapas/aplic/probio/datadownload.htm?/caatinga/dados/
shape_file/).

https://doi.org/10.1371/journal.pone.0217028.g001
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Habit and reproductive trait characterization for Caatinga endemic species

All plant species were initially classified with respect to habit and reproductive traits. Species

habit was obtained from: Moro et al. [54], the Flora do Brasil website and herbaria websites

listed in The Plant List [60]. For the distribution modelling analysis, we grouped all species in

each sample coordinate into two habit categories: (1) arboreous and (2) non-arboreous species

(including other habits such as shrub, sub-shrub, herbaceous and scandent plants). Arboreous

species were considered as a specialist habit due to growth and slow reproductive rate [39],

being more vulnerable to environmental change.

For the reproductive trait characterization each species was classified into 41 categories of

six major classes of “reproductive traits”: 1) floral biology: including flower type (sensu [33, 34,

61]), flower size (according to [62]) and floral reward (according to [61, 63, 64]), 2) pollination

systems (according to [61, 63, 64] and to [65] for bee body size), 3) sexual systems, (according

to [63, 64, 66]); 4) reproductive systems (according to [63, 64, 66, 67]), 5) fruit type (according

to [68]), and 6) dispersal modes (according to [69]) (see Table 1 for details). For the ecological

niche modeling analysis, from this initial classification into 41 reproductive trait categories, we

regrouped species according to their degree of specialization (i.e., generalist vs specialist) into

three more general biologically meaningful reproductive strategies (following [33]): 1) pollina-

tion system [generalist (e.g. small-sized bees, wasps, diverse small insects, butterflies, flies,

moths, and wind) vs. specialized pollination systems (e.g. bats, medium-large bees, birds, bee-

tles, Sphingids)] (sensu [33, 70]); 2) reproductive system [(generalist (e.g. self-compatible) vs

specialized reproductive system (e.g. self-incompatible + dioecious (obligatory cross-polli-

nated species)]; 3) dispersal mode [generalist or abiotic (e.g. wind-dispersed and ballistic spe-

cies) vs specialized or biotic dispersal mode (e.g. animal dispersed species)]. Reproductive

traits, such as floral size, resource and sexual systems, were used to support the classification of

pollination and reproductive systems, respectively.

Table 1. Classes of reproductive life history traits with their respective categories used in this study.

Traits Trait categories

Floral biology

Flower type1 camera, tube, disc, bell/funnel, gullet, inconspicuous, brush, flag

Flower size2 inconspicuous (�4 mm), small (>4�10 mm), medium (>10�20 mm), large (>20�30
mm), very large (>30 mm)

Floral reward3 nectar, pollen, oil, resin

Pollination systems3 birds, bats, wind, small bees (< 12mm), medium-large bees (> = 12mm), diverse small
insects (DSI), moths, Sphingids (hawkmoths), flies, beetles, butterflies

Sexual systems4 hermaphrodite, monoecious, dioecious

Reproductive
systems4,5

self-compatible, self-incompatible, agamospermy, obligatory cross-pollination (self-
incompatible species + dioecious)

Fruit type6 dry, fleshy

Dispersal mode7 zoochory, autochory, anemochory

1According to [33, 34, 61]
2According to [62]
3According to [61, 63, 64] and to [65] for bee body size
4According to [63, 64, 66]
5Outcrossing (i.e. obligatory cross-pollination) according to [67]
6According to [68]
7According to [69].

https://doi.org/10.1371/journal.pone.0217028.t001
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Our hypotheses were based on this classification of generalization and specialization since

this can elucidate significant diagnostics of species vulnerability to habitat changes mediated

by human disturbances and climate change. Specifically, plant species bearing specialized

reproductive strategies rely on the interactions with few species of pollinators or seed dispers-

ers. Since habitat changes negatively affect populations of pollinators and seed dispersers,

reproduction of plants with specialized reproductive strategies may be disproportionally

affected in comparison to those with generalist strategies. The reproductive characterization of

each species was based on: (1) botanical monographs and floras (e.g. [71–74]), (2) web

searches, including published and referenced data, (3) field observations and a survey of speci-

mens from the UFP Herbarium, and (4) our own personal observations and communications.

Although a few tree species were incompletely assigned to all life-history trait categories, this

unlikely introduced biases to the between-trait comparisons as all scenarios were compared in

terms of the proportion of species within categories.

Models and climatic variables

The current climate was described on the basis of ecological modeling data and the georeferen-

cing system of Worldclim 2.0 for the period 1970–2000. Climatic projections for the future,

between 2070 and 2100, were obtained from the IPCC5 database calibrated according to cur-

rent climate data fromWorldclim 2.0. Initially, we used a package of 19 bioclimatic variables

for each period, which are derived from average monthly temperature and precipitation,

thereby representing greater biological relevance for simulations of species distributions [75].

Climatic variables with fine-scale spatial resolution provide greater congruence for plant spe-

cies with restricted distributions [76]. Estimates of the future distribution of Caatinga endemic

plant species were based on the combination of global models of atmospheric and oceanic cir-

culation, MIROC-ESM [77] and CCSM4 [78].

Climate models selected for the future in this study are projected as two Representative

Concentration Pathways (RCPs) scenarios, which are based on GHG emissions and the trajec-

tory that GHGs will present [1]. These models are inferred from aspects related to the carbon

biogeochemical cycle, atmospheric and oceanic chemistry, vegetation types, emission of pol-

lutants, solar radiation, ozone concentration, hydrology and sea ice [1]. In addition, the MIR-

OC-ESMmodel includes simulations of ecological processes such as vegetation dynamics and

terrestrial carbon cycling [77], while the CCSM4 model presents simulations for El Niño

Southern Oscillation (ENSO) events [78]. For each model, two RCP climate change scenarios

were selected. The RCP4.5 scenario is intermediate (considering the four available RCP sce-

narios: 2.6, 4.5, 6.0 e 8.5, whereby RCP2.6 is the more optimistic and RCP8.5 is the most pessi-

mistic), in relation to predicted GHG emissions, i.e. predicting milder changes in temperature,

such as an average increase of 1.8˚C. We selected the RCP4.5 instead of the RCP2.6 since the

latter is a stringent mitigation scenario, which is rarely considered in other studies (see also

[29]). The second selected scenario (RCP8.5) is the most pessimistic, predicting the highest

GHG emissions, and a mean increase in terrestrial temperatures of 3.7˚C [1].

We selected bioclimatic layers with 30 arc-sec resolution grids (~1 km2) for both contempo-

rary times and the two RCP scenarios. Bioclimatic variable data layers were cut to cover the

entire extent of the Caatinga biome.

Modeling potential life history trait distribution

After slicing bioclimatic layers, we performed correlation tests to exclude bioclimatic variables

(r> 0.9) that were highly correlated either within or between the two climate models used

(MIROC-ESM and CCSM4). Excluding strongly correlated variables ensures bioclimatic
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models with greater biological relevance for a regional set of species during the periods consid-

ered. In total, a set of eight bioclimatic variables were retained here: (1) isothermality (b3), (2)

annual temperature range (b7), (3) mean temperature of warmest quarter (b10), (4) mean temper-

ature of coldest quarter (b11), (5) precipitation seasonality (b15), (6) precipitation of driest quarter

(b17), (7) precipitation of warmest quarter (b18) and (8) precipitation of coldest quarter (b19).

We used an algorithm based on the maximum entropy method to predict the most suitable

habitat areas of plant species endemic to the Caatinga according to the reproductive traits con-

sidered using the Maxent v. 3.3 software [79]. The maximum entropy method implemented in

Maxent is adequate for presence-only data, as in the localities sampled in this study. In addi-

tion, Maxent performs better compared to other software modeling species distributions,

when it considers presence-only species distribution data [80].

The distribution data for each generalist or specialized life history strategy was divided into

a training group (75% of the 132 sampled occurrence points) and a test or validation group

(25% of the 132 sampled occurrence points) to calibrate, optimize and evaluate the quality of

models generated. We used the AUC, area under the operator characteristic curve (ROC), as a

measure of model ability to discriminate sites based on species presence and absence to esti-

mate model quality. AUC values ranged from 0 to 1. In this sense, models best adjusted to the

data have AUC values closer to 1. In addition, we used the gain values to estimate the proxim-

ity between models generated and the species incidence points for each reproductive trait sam-

pled. Higher gain values indicate greater proximity between models and sampled points [79].

Modeling was performed 30 times for each generalist and specialized life history strategy

under the current RCP4.5 and RCP8.5 scenarios and mean AUC and gain values were calcu-

lated (Table 2). We also considered the TSS (True Skill Statistics) value of the models

(Table 2), which is a more realistic and practical method compared to AUC [(e.g. [81, 82]).

TSS values range from -1 to 1, where 1 indicates perfect agreement and values of zero or nega-

tive indicate a performance no better than random [81].

Based on the generated models, we constructed maps of the areas with different habitat

probability of the species of each functional group. For analytical purposes, we defined suitable

habitat areas those with a high probability of occurrence (>80%) for groups of endemic plant

species with generalist or specialized reproductive strategies at each sample coordinate. The

extent of suitable habitats was calculated separately for each trait. All modeling results were

checked and edited using ArcGIS 10.0 software [83].

Statistical analysis

To test whether suitable habitat areas for endemic species will be reduced by climate change,

we compared the raw data among the current period and the two climate change scenarios

using the one-way ANOVA and Kruskal-Wallis tests. Our second hypothesis—that reproduc-

tive trait specialization leads to greater vulnerability to climate-induced range contraction—

was also tested using a two-way ANOVA and Kruskal-Wallis tests. Since the extent of suitable

habitats under the RCP scenarios is related to the current extent for most traits considered (S3

Table), raw data were converted into percentage values to allow comparisons of suitable habi-

tats between generalist and specialist traits among the current and future RCP scenarios. Spe-

cifically, we compared the extent of suitable habitats, based on percentage values, for trees and

non-arboreous species, with either generalist or specialized pollination systems, abiotic or

biotic dispersal modes, and self-compatible or obligatory cross-pollination (dioecious and self-

incompatible reproductive systems). Tukey or Dunn posteriori tests were used to identify dif-

ferences in the extent of suitable habitats for endemic species and their respective traits for all

comparisons. We used Shapiro-Wilk and Bartlett tests, respectively, to check for normality of
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Table 2. Adjustments between the sampled points of the endemic plant species in the Caatinga and climatic models for the current period (1970–2000) and two
future scenarios (2070–2099), an optimist (RCP4.5) and a more pessimist (RCP8.5).

Traits Current RCP4.5 RCP8.5

AUC Gain TSS AUC Gain TSS AUC Gain TSS

Mean±SD Mean±SD Mean±SD

Habit

Arboreous (N = 24) 0.98
±0.005

2.78±0.01 0.7441 0.98
±0.004

2.43
±0.01

0.698 0.98
±0.004

2.49
±0.021

0.8333

Non-arboreous (N = 52) 0.95
±0.013

2.65±0.18 0.6704 0.96
±0.011

2.7±0.09 0.6158 0.96±0.01 2.68±0.03 0.6297

Pollination systems

Specialized (N = 20) 0.97
±0.009

2418
±0.09

0.6417 0.97
±0.008

2.53±0.2 0.5975 0.98
±0.006

2.74±0.1 0.6842

Generalists (N = 30) 0.97±0.01 2.48±0.1 0.5577 0.97
±0.011

2.7
±0.101

0.660 0.97
±0.009

2.64±0.08 0.6081

Dispersal modes

Abiotic (N = 40) 0.96
±0.009

2.34±0.3 0.5648 0.97
±0.007

2.52
±0.08

0.5203 0.98
±0.005

2.65±0.03 0.6581

Biotic (N = 20) 0.97
±0.009

2.7±0.1 0.7151 0.98
±0.006

3.03
±0.03

0.7185 0.98
±0.005

3.05±0.02 0.7699

Reproductive systems

Self-compatible (N = 9) 0.95±0.03 2.01±0.1 0.6855 0.96
±0.021

2.29±0.1 0.6421 0.96
±0.018

2.24±0.07 0.6023

Obligatory cross-pollination (self-incompatible+dioecious)
(N = 12)

0.93
±0.031

2.09±0.02 0.6497 0.96
±0.014

2.46
±0.09

0.6002 0.96
±0.017

2.56±0.01 0.7089

AUC (area under operator curve) and gain for habit are represented by mean and standard deviation (SD) for each analyzed reproductive trait.

https://doi.org/10.1371/journal.pone.0217028.t002

Table 3. Reductions in suitable habitats (i.e. areas with probability of occurrence> 80%) of endemic plant species in the Caatinga in two scenarios of climate
change: An optimistic (RCP4.5) and a more pessimistic (RCP8.5).

Suitable habitats (km2)

Current RCP4.5 RCP8.5 Test P

Mean±SD Mean±SD % of loss or gain� Mean±SD % of loss or gain��

Endemic plant species 122581.7±4877.9a 110788.1±4308.6b #9.62 110440.5±4583.7b #9.90 F2,87 = 67.85 0.001

Habit

Arboreous 119288.3±7234.5a 106473.5±4773.1b #11.74 110094.3±7401.0b #7.71 F2,87 = 30.24 0.001

Non arboreous 112983.3±4530.0a 103499.3±3483.5b #8.39 98567.6±3571.8c #12.76 F2,87 = 106.4 0.001

Pollination systems

Generalist 111537.6±6329.7a 107711.7±5013.4b #3.43 100276.9±4255.0c #10.09 F2,87 = 35.4 0.001

Specialized 107994.4±5434.7a 93500.4±2736.3b #13.42 94776.7±3025.6b #12.24 F2,87 = 125.5 0.001

Dispersal modes

Abiotic 119282.0±5458.4a 99896.4±3716.0c #16.25 10338.3±3404.8b #8.67 F2,87 = 174.1 0.001

Biotic 84314.2±19416.0a 90201.4 ±17068.8a "6.98 93551.2±3677.1a "10.95 F2,87 = 2.89 0.07

Reproductive systems

Self-compatible 168065.1±15429.1a 136967.9±17730.4b #18.50 133532.9±10519.9b #20.54 H = 47.955 0.001

Self-incompatible/
Dioecious

166369.3±7255.8a 127526.6±7038.0b #23.35 118489.1±4619.0c #28.78 F2,87 = 471.6 0.001

Significant differences in post-hoc comparisons among scenarios are indicated by different letters in the same row. Percentage of loss (#) or gain (") of suitable habitat

area comparing the current scenario with RCP4.5� and the current with RCP8.5��.

https://doi.org/10.1371/journal.pone.0217028.t003
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residuals and homogeneity of variances based on raw and percentage data in all cases. All anal-

yses were performed within the R 3.3.1 environment [84].

Results

Compared to contemporary climate, suitable habitat areas for endemic plant species across the

Caatinga biome will most likely be reduced in the future under both the optimistic and

Fig 2. Distribution of suitable habitats of plant species endemic to the Caatinga. (A) During both the current
period and two future scenarios, between 2070 and 2099, including a more optimistic (RCP4.5) (B) and a more
pessimistic (RCP8.5) (C) projection. Solid dots in A indicate locations of the sampled species. Source of the shapes of
the Brazilian and Caatinga boundaries, and protected areas: MMA-Ministério do Meio Ambiente, Brazil (public
domain) (available for download, respectively, at http://mapas.mma.gov.br/i3geo/datadownload.htm; http://mapas.
mma.gov.br/mapas/aplic/probio/datadownload.htm?/caatinga/dados/shape_file/); http://www.mma.gov.br/areas-
protegidas/cadastro-nacional-de-ucs/dados-georreferenciados.html.

https://doi.org/10.1371/journal.pone.0217028.g002

Fig 3. Reduction of suitable Caatinga habitat (probability of occurrence> 80%) for endemic flowering plant species in the current period and in two
future scenarios, an optimistic (RCP4.5) and a pessimistic (RCP8.5). (A) Habit (N = 76). (B) Pollination systems (N = 64). (C) Reproductive systems
(N = 25). (D) Dispersal modes (N = 62). Different letters below the boxplots indicate statistical significance of post-hoc comparisons at P< 0.05.

https://doi.org/10.1371/journal.pone.0217028.g003
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pessimistic climate change scenarios (F2,87 = 67.85; P<0.0001; Table 3; Fig 2), thereby corrobo-

rating our first hypothesis.

Compared to current times, the overall extent of suitable habitat will be significantly

reduced for endemic species exhibiting any habit (by up to 12%), pollination system (up to

13%), reproductive system (up to 28%), and abiotic dispersal mode (up to 16%) under both cli-

mate change scenarios (Table 3; Fig 3A–3D). In terms of biotic dispersal modes, high occur-

rence probability areas are not predicted to be significantly altered for endemic plant species

under any of the climate change scenarios considered here (Table 3; Fig 3D).

Comparing the two climate change scenarios separately, divergent responses were observed

for different plant traits. In relation to the current scenario, areas with a high occurrence prob-

ability for tree species (Fig 4D–4F), species with specialized pollination systems (Fig 5D–5F),

and those with self-compatible reproductive systems (Fig 6A–6C) tend to be similarly reduced

under both the best-case and worst-case scenarios. In the case of non-arboreous species (Fig

4A–4C), species with generalist pollination systems (Fig 5A–5C), and obligatory cross-polli-

nated species (Fig 6D–6F), reduced areas of high occurrence probability will be even more

severe under the pessimistic scenario (Table 3; Fig 3). Conversely, suitable habitats for species

with abiotic dispersal modes will be most reduced under the optimistic climate change sce-

nario (Table 3; Fig 7).

Considering plant habits, both tree and non-arboreous species were reduced in their future

extent of occurrence compared to present times. However, reductions in high occurrence

probability areas were most severe for non-arboreous species, compared to tree species, under

both climate change scenarios (Fig 3A). This reduction was greater under the pessimistic sce-

nario of climate change (H = 107.15, df = 5; P = 0.0001; Fig 3A).

Reductions in suitable habitat areas were greater for species with specialized reproductive

traits, compared to generalist species, thereby corroborating our second hypothesis (pollina-

tion systems: F2,174 = 23.89; P< 0.0001; reproductive systems: H = 130.46; P< 0.0001; Fig 3B

and 3C). On the other hand, our second hypothesis was only partly corroborated for species

with distinct dispersal modes. Reduced suitable habitats was observed for only those species

with abiotic dispersal modes. However, when compared to species with biotic dispersal, species

with abiotic dispersal modes retained larger areas of suitable habitats under both the current

and future (RCP4.5 and RCP8.5) scenarios (H = 87.421; df = 5; P< 0.0001; Fig 3D).

Discussion

Our results indicate that, despite drastic predicted changes in climatic conditions, suitable hab-

itats for plant species endemic to the Caatinga semi-arid region will tend to remain within this

phytogeographic domain boundaries. Specifically, regardless of the intensity of climate change

projections examined here, suitable habitat areas for endemic plant species—with any of the

life-history traits we considered—will most likely be reduced and concentrated in the north-

easternmost portion of the Caatinga (Figs 4–7), which is nearest the coast, and therefore least

arid. In addition, suitable habitats for species with specialized reproductive strategies, such as

obligatory cross-pollination, will be generally reduced more intensely (up to 28%) compared

to the analogous areas hosting species with generalist reproductive strategies (Fig 3). Above

Fig 4. Distribution of suitable habitat for arboreous species (A, B and C) and non-arboreous species (D, E and F) endemic to
the Caatinga during both the present and two future scenarios, between 2070 and 2099, including an optimistic (RCP4.5) and a
pessimistic (RCP8.5) scenario. Solid dots in A and D indicate locations of the sampled species. Source of the shapes of the Brazilian
and Caatinga boundaries: MMA-Ministério do Meio Ambiente, Brazil (public domain) (available for download at http://mapas.
mma.gov.br/i3geo/datadownload.htm and http://mapas.mma.gov.br/mapas/aplic/probio/datadownload.htm?/caatinga/dados/
shape_file/).

https://doi.org/10.1371/journal.pone.0217028.g004
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and beyond climatic conditions, the long-term viability of plants endemic to the Caatinga will

also rely on the persistence of suitable habitat remnants. The Caatinga vegetation is currently

reduced to 50% of its original extension due to expansion and intensification of anthropogenic

activities. In addition, the remaining Caatinga vegetation, is now distributed across ca. 41,700

remnants mainly represented by forests patches smaller than 500 ha [85]. These small forest

patches are concentrated in the eastern portion of the Caatinga, which according to our results,

coincides with areas of suitable climatic conditions for endemic plant species, in both the cur-

rent and future scenarios. The synergistic combination of climate change and Caatinga habitat

loss through rapidly escalating land-use can potentially exacerbate the loss of suitable habitat

for endemic plant species, and this is even more intensive for species with specialized repro-

ductive traits. Several key ecological interactions, plant community dynamics, and the mainte-

nance of native biodiversity are therefore particularly threatened in this SDTF, as discussed

below.

Our findings support the hypothesis that plant species endemic to the Caatinga, especially

those with specialized reproductive traits, are vulnerable to the effects of climate change,

because their suitable habitat area will be reduced in both scenarios of climate projections.

Geographic range contraction for endemic flowering plant species in seasonally-dry tropical

forests have been predicted or observed previously (e.g. [6, 86–88]), which is further reinforced

by our results considering growth habits and reproductive functional traits. However, suitable

habitat fidelity for Caatinga endemic plants is consistent with predictions for plants and birds

endemics to tropical dry forests of Mexico and/or Mesoamerica, which indicate their future

persistence in their current domains [89].

The concentration of habitats with suitable climatic conditions for endemic plant species

in the northeastern most and least arid portion of this biome may be explained by abiotic

factors, such as rainfall and water sources. Indeed, the plant species composition in the Caa-

tinga may be strongly associated with rainfall (e.g. [54, 55]). In addition to increased precipita-

tion in the peripheral regions compared to the core of Caatinga, the large concentration of

rivers in the northern portion of this biome [86] may be positively associated with the distribu-

tion of habitats with suitable climatic conditions for endemic plants. This likely maintenance

of suitable habitats for endemic plant species suggests habitat probable under climatic condi-

tions reversing increased aridity. Coastal areas ensure higher humidity from the Atlantic-

Equatorial air masses, which may result in greater water soil availability (see [90]). Notwith-

standing this concentration in the most favorable portion of the Caatinga, suitable climatic

conditions for endemic plant species are unlikely to be displaced to areas outside their present

phytogeographic domain even under severe climate change. All native plant species in the Caa-

tinga, whether or not they are endemic, present a set of morphological, anatomical and

ecophysiological adaptations to arid conditions, which ensures their permanence in this

domain even under conditions of elevated temperatures and lower rainfall [91]. Among these

traits, we highlight leaf abscission during the dry season, xylem that tolerates high negative

pressures, high water storage, and high accumulation of epicuticular wax ([91] and references

therein).

Fig 5. Distribution of suitable habitat for plant species endemic to the Caatinga with either generalist (A, B and C) or
specialized (D, E and F) pollination systems in both the present and two futures scenarios, between 2070 and 2099, including an
optimistic (RCP4.5) and a pessimistic (RCP8.5) scenario. Solid dots in A and D indicate locations of the sampled species. Source of
the shapes of the Brazilian and Caatinga boundaries: MMA-Ministério do Meio Ambiente, Brazil (public domain) (available for
download at http://mapas.mma.gov.br/i3geo/datadownload.htm and http://mapas.mma.gov.br/mapas/aplic/probio/datadownload.
htm?/caatinga/dados/shape_file/).

https://doi.org/10.1371/journal.pone.0217028.g005
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As a consequence of shifts in the distribution of suitable climatic conditions for endemic

plant species with the reproductive strategies considered here, negative cascade effects on

plant-animal interactions, including pollinators and seed dispersers, are expected. With hotter

and drier conditions, plant-pollinator interactions may be disrupted by advances or delays in

flowering and fruiting phenology [12, 13, 92, 93]. In parallel, some groups of pollinators and

seed dispersers may face reduced suitable habitat and changes in pupation and emergence

times (e.g. [38, 94–97]). The combination of these changes may lead to a reciprocal phenologi-

cal asynchrony, which would affect reproductive events of both plants and their animal mutu-

alists [98, 99]. For instance, interactions between specific pollinators and their respective

mutualistic plant species can be disrupted and even extirpated at local scales [12].

Endemic species are usually associated with restricted ranges, small populations, and spe-

cialized habitat requirements (with narrow spectrum of conditions and adequate environmen-

tal resources) [43]. In a global study on extinction risk in endemic species within biodiversity

hotspots, habitat specificity was, the most influential variable in the potential loss of 56,000

plant species and 3,700 vertebrate species worldwide [44]. In addition to these habitat require-

ments, the disruption of ecological interactions, such as pollination and seed dispersal, may

also be associated with the extinction of endemic plant species, especially those with specialized

reproductive strategies [33]. Indeed, plant species that strictly depend on pollinators [obliga-

tory cross-pollination (self-incompatible + dioecious) like as Apterokarpus gardneri, Anacar-

diaceae], which are pollinated by a single pollination vector or by a reduced group of specific

pollinators such as bats (Calliandra aeschynomenoides, Fabaceae), Sphingid moths, and non-

flying vertebrates are more prone to the disruption of these ecological interactions mainly in

human modified landscapes in tropical regions (e.g. [33, 100]). These negative effects of cli-

mate change on the distribution of endemic plant species may be intensified due to anthropo-

genic disturbances. For example, SDTFs have been the historically most preferred regions for

agricultural development and human settlements in Meso and South America [101–104]. In

Brazil, the Caatinga domain is mainly inhabited by the rural poor who continue to intensively

extract forest resources to meet their basic livelihoods [85, 105]. Considering forage potential,

Libidibia ferrea (jucá) and fruits of Spondias tuberosa (umbuzeiro) are used as feed for goats,

sheep and cattle [88]. Some species such as Ziziphus joazeiro (Juazeiro), Poincianella micro-

phylla and Poincianella pyramidalis are exploited by the population to produce firewood, char-

coal and / or cuttings without any cultivation technique [106]. Poincianella pyramidalis is

commonly used in folk medicine [107]. Moreover, less than 2% of the Caatinga biome is

strictly protected [108]. Alarmingly, when we overlapped our suitable habitat projections for

endemic plant species with the distribution of all protected areas in the Caatinga, we observed

few conservation units covering future potential distribution areas, further aggravating the vul-

nerability of these species (Fig 2). This in turn may be particularly relevant to the productivity

and resilience of the Caatinga [109]. Anthropogenic activities create barriers that hinder or

preclude species movements [110]. Therefore, the synergistic interaction between climate

change and acute or chronic anthropogenic habitat disturbance threatens the persistence,

dynamics and functioning of dry tropical forest ecosystems, and their biodiversity (e.g. [102,

111–113]).

Fig 6. Distribution of suitable habitat for plants species endemic to the Caatinga with either self-compatible (A, B and C) or
self-incompatible/dioecious (i.e. obligatory cross-pollination) (D, E and F) reproductive systems in the present and two future
scenarios, between 2070 and 2099, including an optimistic (RCP4.5) and a pessimistic (RCP8.5). Solid dots in A and D indicate
locations of the sampled species. Source of the shapes of the Brazilian and Caatinga boundaries: MMA-Ministério do Meio
Ambiente, Brazil (public domain) (available for download at http://mapas.mma.gov.br/i3geo/datadownload.htm and http://mapas.
mma.gov.br/mapas/aplic/probio/datadownload.htm?/caatinga/dados/shape_file/).

https://doi.org/10.1371/journal.pone.0217028.g006
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Conclusion

In conclusion, plant species endemic to the Caatinga are highly vulnerable to even conservative

scenarios of future climate change and may lose much of their climatic envelopes. These

threats are even greater for endemic species with specialized reproductive traits. Consequently,

by reducing areas of suitable climatic conditions, climate change may disrupt key ecological

interactions, such as pollination and seed dispersal, and compromise species maintenance and

dynamics of communities of plants and animals in the Caatinga. The Caatinga has been histor-

ically threatened by chronic anthropogenic disturbances and the effects of climate change will

further aggravate the impacts of these disturbances on biodiversity, particularly endemic

plants. Studies investigating biodiversity and functional trait responses to the synergistic effects

of both climate and land-use change are extremely important to guide management plans, and

the conservation of natural resources in the Caatinga. Furthermore, since the Caatinga

remains the least protected of all major biomes in Brazil, we suggest the creation of new pro-

tected areas that consider both the present and future species occurrence. New protected areas

should, therefore, be located in the northeasternmost portion of the Caatinga, which has a

more favorable climate, but is currently exposed to escalating agricultural intensification.
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7. Bussotti F, Pollastrini M, Holland V, BrüggemannW. 2015. Functional traits and adaptive capacity of
European forests to climate change. Environ. Exp. Bot. 2015; 111: 91–113. https://doi.org/10.1016/j.
envexpbot.2014.11.006

8. Dyderski M. K., Paz S., Frlich L. E., & Jagodzinski A. M. Howmuch does climate change threaten Euro-
pean forest tree species distribution? Glob. Chang. Biol. 2017; 24(3): https://doi.org/10.1111/gcb.
13925

9. Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, SutherlandWJ, Svenning JC. The influence of
Late Quaternary climate-change velocity on species endemism. Science. 2011; 334: 660–664.
https://doi.org/10.1126/science.1210173 PMID: 21979937

10. Scheffers BR, Meester LD, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, et al. The broad foot-
print of climate change from genes to biomes to people. Science 2016; 354 (6313). https://doi.org/10.
1126/science.aaf7671

11. Tayleur C, Caplat P, Massimino D, Johnston A, Jonzén N, Smith HG, Lindström A. Swedish birds are
tracking temperature but not rainfall: evidence from a decade of abundance changes. Glob. Ecol. Bio-
geog. 2015; 24 (7): 850–872. https://doi.org/10.1111/geb.12308

12. Memmott J, Craze PG,Waser NM, Price MV. Global warming and the disruption of plant-pollinator
interactions. Ecol. Lett. 2007; 10: 710–717. https://doi.org/10.1111/j.1461-0248.2007.01061.x PMID:
17594426

13. Hegland SJ, Nielsen A, Lázaro A, Bjernes AL, Totland O. How does climate warming affect plant-polli-
nator interactions? Ecol. Lett. 2009; 12: 184–195. https://doi.org/10.1111/j.1461-0248.2008.01269.x
PMID: 19049509
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