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Text S1 6 

River profile analysis 7 

For graded, steady-state river profiles, where the rock uplift rate, 𝑈𝑈, is balanced by the long term 8 

erosion rate, 𝐸𝐸, the relationship between local channel slope, 𝑆𝑆, and the upstream drainage area, 𝐴𝐴, can 9 

be described by a power function (Flint, 1974): 10 

𝑆𝑆 = 𝑘𝑘𝑠𝑠𝐴𝐴−𝜃𝜃   (S1), 

where 𝑘𝑘𝑠𝑠 is the channel steepness index, 𝜃𝜃 is the channel concavity index (Kirby and Whipple, 2012). The 11 

covariation of 𝑘𝑘𝑠𝑠 and 𝜃𝜃 requires normalization that is typically done by fixing 𝜃𝜃 to a reference value (i.e., 12 

reference concavity index, 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟) that is ~0.3-0.7 globally to calculate the normalized channel steepness 13 

index 𝑘𝑘𝑠𝑠𝑠𝑠 (Kirby and Whipple, 2012; Lague, 2014; Harel et al., 2016). Equation S1 can be used to derive 𝑘𝑘𝑠𝑠 14 

or 𝑘𝑘𝑠𝑠𝑠𝑠 empirically from regression through 𝑆𝑆 and 𝐴𝐴 data. However, such calculation introduces noise and 15 

requires a large amount of smoothing (Snyder et al., 2000; Wobus et al., 2006). Thus, it is preferable to 16 

use 𝜒𝜒, a path-dependent integral parameter of the inverse of 𝐴𝐴 raised to 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 (Royden and Perron, 2013): 17 
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where 𝑥𝑥𝑏𝑏 is the referenced distance at the drainage network outlet, and 𝐴𝐴0 is the referenced upstream 18 

drainage area, usually chosen as unity (𝐴𝐴0 = 1). Equation S1, where 𝑆𝑆 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑥𝑥, can be integrated with 19 

respect to distance to generate a 𝜒𝜒-elevation plot (typically referred to as a 𝜒𝜒-plot): 20 

𝑑𝑑(𝑥𝑥) = 𝑑𝑑(𝑥𝑥𝑏𝑏) + 𝑘𝑘𝑠𝑠𝑠𝑠𝜒𝜒 (S3), 

where the slope of a linear regression of 𝜒𝜒 – 𝑑𝑑 is 𝑘𝑘𝑠𝑠𝑠𝑠. We calculate 𝜒𝜒 by integrating 𝐴𝐴 or drainage area 21 

weighted by the spatial distribution of mean annual precipitation, 𝑀𝑀𝐴𝐴𝑀𝑀 × 𝐴𝐴, in equation S2, using 22 

ChiProfiler (Gallen and Wegmann, 2017). We use 𝜒𝜒 and the precipitation-weighted 𝜒𝜒 to calculate 𝑘𝑘𝑠𝑠𝑠𝑠 and 23 

Marder, E., and Gallen, S.F., 2023, Climate control on the relationship between erosion rate and fluvial 
topography: Geology, https://doi.org/10.1130/G50832.1



𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 (cf. Adams et al., 2020), respectively, via linear regressions through basin-wide 𝜒𝜒-z data (Equation 24 

S3; Fig. 1, inset in the main text). We calculate the 𝑅𝑅2 for each of these linear regressions to determine 25 

the basin morphological steady state, where higher 𝑅𝑅2 values reflect basins that appear to be 26 

morphologically in steady state (i.e., roughly linear 𝜒𝜒-z plots; e.g., Fig. 1, inset in the main text), and low 27 

𝑅𝑅2 values reflect basins that are in a transient state of adjustment. We seek to avoid these transient basins 28 

because many bedrock rivers in them adjust their width in addition to slope during channel adjustment 29 

and affect assumed scaling relationships in the calculations above to bias the relationship between 𝐸𝐸 and 30 

𝑘𝑘𝑠𝑠𝑠𝑠 in equation 1 in the main text (e.g., Whittaker et al., 2007). We conduct this analysis for all basins with 31 

published 10Be cosmogenic nuclide basin averaged erosion rates in detrital quartz from the Octopus 32 

archive (Codilean et al., 2018, 2022). 33 

Binning, regressions, and sensitivity analyses 34 

We use existing global climate data of mean annual precipitation (MAP), mean annual 35 

temperature (MAT) (Fick and Hijmans, 2017), aridity index (AI=MAP/Mean annual evapotranspiration) 36 

(Trabucco and Zomer, 2009), and SRTM 3-arc second digital elevation model (DEM) tiles (ME) 37 

(OpenTopography) to calculate mean climate proxy values for each basin (Figs. 1 in the main text, S1; 38 

Table S1). We convert all global data to rasters, project them to WGS 84 geographic coordinate system, 39 

and crop them to basin geometries using Arc Pro 2.0.8. We project the basin rasters to UTM coordinate 40 

system, resample them to 90 m cell size, calculate their mean MAP, MAT, AI, and ME values using Matlab 41 

and TopoToolbox (Schwanghart and Scherler, 2014), and compile this data with 𝐸𝐸, 𝑘𝑘𝑠𝑠𝑠𝑠, and 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 data for 42 

each basin (Table S1). To control for bedrock variability, we restrict our analysis to bedrock rivers that 43 

drain ≥ 90% crystalline rocks (plutonic and metamorphic units) based on a global composite geological 44 

map (Fig. S2A; 'GLiM'; Hartmann and Moosdorf, 2012). We calculate the distribution and dominance of 45 

plutonic and metamorphic units and compare them to MAP, MAT, AI, and ME in each basin to ensure that 46 

there is no global relationship between rock type and climate variability (Fig. S2B; Table S1).  47 

We bin the 𝐸𝐸 − 𝑘𝑘𝑠𝑠𝑠𝑠 and 𝐸𝐸 − 𝑘𝑘𝑠𝑠𝑠𝑠𝑄𝑄 datasets based on increments of MAP, MAT, AI, and ME (Fig. 48 

S3). We select the bins to have an equal number of data points, with at least 15 data points in each bin. 49 

For each climate bin, we conduct a linear regression through log-transformed 𝐸𝐸 − 𝑘𝑘𝑠𝑠𝑠𝑠 and 𝐸𝐸 − 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 data 50 

using total least squares to determine the power-law exponent, 𝑝𝑝, and its constant, 𝐶𝐶, in equation 1 (main 51 

text) (Fig. S4). We assess the relationships between these parameters and the climate proxy data to 52 

evaluate if systematic patterns exist (Fig. S4). We attempt to account for the general nonlinearity (i.e., 𝑝𝑝) 53 

in the global dataset by conducting normalized regressions through the data under a fixed 𝑝𝑝 ~2.1 (i.e., the 54 



global value of our dataset; cf. Harel et al., 2016; Adams et al., 2020) to determine the normalized y-55 

intercept, 𝐶𝐶𝑠𝑠𝑟𝑟 and 𝐶𝐶𝑠𝑠𝑟𝑟𝑠𝑠, for the 𝐸𝐸 − 𝑘𝑘𝑠𝑠𝑠𝑠 and 𝐸𝐸 − 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 data sets, respectively (Fig. S5; Table S2). For all 56 

modeled regressions, we calculate the statistical goodness-of-fit metrics of r-square, chi-square, and 57 

Kolmogorov-Smirnov two-sided p-value at the 90% significance level to evaluate the significance of 𝑝𝑝 and 58 

𝐶𝐶𝑠𝑠𝑟𝑟 in our analysis (Table S2). We calculate the uncertainties for 𝑝𝑝 and 𝐶𝐶 in each regression by conducting 59 

105 Monte Carlo simulations, where each simulation is for a set of random realizations from 𝐸𝐸 and 𝑘𝑘𝑠𝑠𝑠𝑠 or 60 

𝐸𝐸 and 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 and their standard error using a truncated normal distribution based for each data point (Figs. 61 

S3, S5; Table S2). 62 

We conduct several sensitivity analyses to evaluate the robustness of 𝑝𝑝 in our modeled 63 

regressions, namely testing the impact of the number of bins with an equal number of data points per bin 64 

(e.g., for the dataset in Table S1, 4 bins with 107 points per bin, 6 bins with 71 points per bin, 8 bins with 65 

53 points per bin, etc.; Fig. S6A); testing for the impact of transience in our basin analysis by changing the 66 

minimum 𝑅𝑅2 morphological threshold value from 𝑅𝑅2 = 0.75 to 𝑅𝑅2 = 0.95 (Figs. 1, inset in main text, S6B; 67 

Table S2); and testing for the impact of the chosen reference concavity index, by calculating 𝑘𝑘𝑠𝑠𝑠𝑠 under 68 

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 0.3, 0.4, and 0.5 (equation S2, S3; Fig. S6C). Generally, we find that 𝑝𝑝 is robust to the number of 69 

bins and changes in 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 and that the increase of 𝑅𝑅2 improve the overall fit for the modeled regressions 70 

(Table S2). 71 

Threshold stochastic stream power incision models (STIMs) and discharge variability 72 

Bedrock channel incision rate is often modeled as a function of the magnitude of the shear stress 73 

(or stream power) exerted on a river bed (Howard, 1994). Approximations of this general concept simulate 74 

the instantaneous channel incision rate, 𝐼𝐼∗, as a function of the channel slope, 𝑆𝑆, raised to an exponent 𝑛𝑛, 75 

upstream drainage area, 𝐴𝐴, raised to an exponent 𝑚𝑚, and an erodibility coefficient, 𝐾𝐾, which captures rock 76 

type, climate and changes in channel hydraulic geometry, and a term for threshold for channel incision, 77 

𝜓𝜓 (Lague et al., 2005; Lague, 2014): 78 

𝐼𝐼∗ = 𝐾𝐾𝐴𝐴𝑚𝑚𝑆𝑆𝑠𝑠 − 𝜓𝜓 (S4), 

where 𝜓𝜓 = 𝑘𝑘𝑒𝑒𝜏𝜏𝑐𝑐𝑎𝑎, in which 𝑘𝑘𝑟𝑟 and 𝑎𝑎 are constants that depend on substrate properties and 𝜏𝜏𝑐𝑐 is the 79 

critical shear stress for channel incision. Assuming that 𝜓𝜓 is negligible and that 𝐼𝐼∗ ≅ 𝐸𝐸 in steady-state 80 

basins (i.e., the instantaneous channel incision rate is steady over time and in equilibrium with the long-81 

term basin-averaged erosion rate), equation S4 is reduced to the constant effective discharge stream 82 

power incision model (SPIM) solution (Howard, 1994; Kirby and Whipple, 2012; Lague, 2014): 83 



𝐸𝐸 = 𝐾𝐾𝐴𝐴𝑚𝑚𝑆𝑆𝑠𝑠 (S5). 

However, when the second right hand term in equation S4 is significant, the critical discharge 84 

needed to overcome the threshold shear stress, 𝑄𝑄𝑐𝑐  (which is typically defined by the effective bedload 85 

grain size), and the distribution of floods are important. Stochastic threshold stream power incision 86 

models (i.e., STIM) account for this via the calculation of 𝐸𝐸 as the integral of the product of 𝐼𝐼 (equation 87 

S4) and the probability of threshold-breaching floods (i.e., floods large enough to generate shear stress 88 

capable of exceeding 𝜓𝜓) for specific normalized discharges, 𝑝𝑝𝑑𝑑𝑝𝑝�𝑄𝑄∗�: 89 

𝑄𝑄∗ = 𝑄𝑄/𝑄𝑄� (S6) 

𝐸𝐸 = 𝐼𝐼 ̅ = � 𝐼𝐼∗�𝑄𝑄∗�𝑝𝑝𝑑𝑑𝑝𝑝�𝑄𝑄∗�𝑑𝑑𝑄𝑄
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠𝑐𝑐
 (S7), 

where 𝐼𝐼  ̅is the river erosion rate, and 𝑄𝑄, 𝑄𝑄� , 𝑄𝑄∗, and 𝑄𝑄𝑚𝑚𝑚𝑚𝑥𝑥 are the actual, mean, normalized, and maximum 90 

discharges, respectively (Lague et al., 2005; DiBiase and Whipple, 2011). Lague et al. (2005) present a 91 

model where 𝑝𝑝𝑑𝑑𝑝𝑝�𝑄𝑄∗� is represented by an inverse gamma distribution: 92 

𝑝𝑝𝑑𝑑𝑝𝑝(𝑄𝑄∗) =
𝑘𝑘𝑘𝑘+1

Г(𝑘𝑘 + 1)
𝑒𝑒𝑥𝑥𝑝𝑝 �−

𝑘𝑘
𝑄𝑄∗�𝑄𝑄

∗−(2+𝑘𝑘) (S8), 

where Γ is the inverse gamma function, and 𝑘𝑘 is a shape parameter that describes discharge variability. 93 

In this model, low to high 𝑘𝑘 reflect heavier-tailed, higher-variability flood distributions to lighter-tailed, 94 

lower-variability flood distributions (Lague et al., 2005; Lague, 2014).  95 

This model predicts that in threshold-dominated bedrock river systems, the nonlinearity between 96 

𝐸𝐸 and 𝑘𝑘𝑠𝑠𝑠𝑠 (equation 1 in main text) systematically increases with decreasing discharge variability (i.e., 97 

higher 𝑘𝑘 in equation S8; Figure 4 in main text). This behavior arises because for steeper channels, smaller 98 

magnitude floods are capable of overcoming incision thresholds, while for shallow to moderate grade 99 

channels, small floods are less effective, allowing only larger floods to overcome bedrock incision 100 

thresholds (Lague et al., 2005; DiBiase and Whipple, 2011; Deal et al., 2018). The integral of discharge 101 

events that breach this incision threshold is related to the erosional efficiency in a STIM framework, where 102 

more threshold breaching events increase erosional efficiency (erosion rate at a given slope and drainage 103 

area). Thus, as channel steepness increases, the flood size needed to breach thresholds declines, and more 104 

erosive floods are included in a lighter-tailed, lower-discharge flood distribution relative to a heavier-105 

tailed, higher-discharge flood distribution system.   106 



To empirically determine 𝑘𝑘 from discharge records, it is easier to use the complementary 107 

cumulative distribution function, 𝑐𝑐𝑐𝑐𝑑𝑑𝑝𝑝(𝑄𝑄∗), to avoid binning complexities when comparing actual 108 

discharge data (DiBiase and Whipple, 2011): 109 

𝑐𝑐𝑐𝑐𝑑𝑑𝑝𝑝(𝑄𝑄∗) = Γ(𝑘𝑘/𝑄𝑄∗,𝑘𝑘 + 1) (S9). 

Empirical studies and theory suggest 𝑘𝑘 to systematically increase with increasing MAP and AI 110 

(Lague, 2014; Rossi et al., 2016; Deal et al., 2018). To demonstrate this general pattern at the global scale, 111 

we use equation S9 along with several discharge records near some of our studied basins to empirically 112 

determine the shape parameter 𝑘𝑘 for each of these stations and compare it with MAP and AI patterns. 113 

We gather mean daily discharge records of ~20-50 years from several gauges near some of our analyzed 114 

basins that span a large range of climate conditions to calculate their exceedance probability plots (Fig. 115 

S7A; see locations in Figs. 1 in main text, S1). We calculate similar exceedance probability plots using Lague 116 

et al.’s STIM and equation S9 to verify that STIM predictions generally fit the recorded data (Fig. S7B), and 117 

that predicted 𝑘𝑘 values are consistent with MAP and AI patterns at these gauge stations (Fig. 4 in main 118 

text; Fig. S7C; DiBiase and Whipple, 2011; Lague, 2014; Deal et al., 2018).  119 

Figure and table captions 120 

Figure S1: Global climate rasters used for our analysis. (A) Mean annual precipitation (MAP; 121 

‘WorldClim 2’; Fick and Hijmans, 2017) (B) Mean annual temperature (MAT; ‘WorldClim 2’; Fick and 122 

Hijmans, 2017); (C) Aridity index (AI; ‘CGIAR-CSI’; Trabucco and Zomer, 2009); (D) Elevation (ME; 123 

‘ETOPO1'; Amanter and Eakins, 2009). Marked are locations of analyzed basin regions (red stars). IDH = 124 

Idaho, USA; DEN = Denver, USA; App = Appalachians, USA; SGM = San Gabriel Mountains, USA; GUA = 125 

Guatemala; TRI = Trinidad and Tobago; AND = Chilean/Bolivian Andes; BRA = Florianopolis, Brazil; ALPS = 126 

European Alps; SAF = South Africa; KEN = Kenya; NAM = Namibia; MAD = Madagascar; SIND = Southwest 127 

India; HIM = Himalayas; MYA = Myanmar; CHE = Chengdu, China; TAW = Taiwan; JAP = Japan; AUS = 128 

Australia. 129 

Figure S2: (A) Global rock type data (after 'GLiM'; Hartmann and Moosdorf, 2012) classified by 130 

crystalline, volcanic, and sedimentary rocks, where crystalline rocks consist of plutonic and metamorphic 131 

units. All analyzed basins in this study consist of at least 90% crystalline units. (B) Binned data of the 132 

percentages of plutonic and metamorphic units for 428 basins under a steady state threshold of 𝑅𝑅2> 0.9, 133 

versus MAP, MAT, AI, and ME (Table S1). At the global scale, no relationship is observed between changes 134 

in the percentage of plutonic or metamorphic units and climate. 135 



Figure S3: (A) Modeled regressions for 𝑘𝑘𝑠𝑠𝑠𝑠 versus 𝐸𝐸 (equation 1 in main text) for 428 basins under 136 

a steady state threshold of R2 > 0.9, where each data point represents one basin. Data is classified and 137 

binned by (from top left clockwise) MAP, MAT, AI, and ME (see Table S1). Statistical goodness-of-fit 138 

parameters (R-square, chi-square, KS test p-value) for each climate bin modeled regression are 139 

summarized in Table S2. (B) Same as (A) but for 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠, where MAP across the basin is weighted in drainage 140 

area prior to calculation of 𝜒𝜒 (see text). Regressions with low or negative R-square or KS test p-value < 0.1 141 

are dashed (see also Table S2). Inset figures show log-log plots of the main figures. 142 

Figure S4: (A) Values of 𝑝𝑝 in equation 1 for each modeled regression for 𝑘𝑘𝑠𝑠𝑠𝑠 and 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 under 143 

changes in MAP, MAT, AI, and ME. Note a systematic increase in 𝑝𝑝 with increasing MAP (i.e., wetter) and 144 

AI (i.e., higher humidity). (B) Same as (A) but for 𝐶𝐶 in equation 1. Note a systematic decrease in 𝐶𝐶 with 145 

increasing MAP and AI. For all regressions, 𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 does not significantly change systematic patterns. Most 146 

uncertainties in 𝑝𝑝 and 𝐶𝐶 are small and thus not visible. 147 

Figure S5: (A) Modeled normalized regressions for 𝑘𝑘𝑠𝑠𝑠𝑠 versus 𝐸𝐸 (equation 1 in main text) under a 148 

fixed 𝑝𝑝 = 2.1, which is the global value from best fit regression through the entire 𝐸𝐸 - 𝑘𝑘𝑠𝑠𝑠𝑠 dataset. 149 

Regressions and associated data points with low or negative R-square or p-value < 0.1 are dashed (see 150 

also Table S2). (B) Changes in 𝐶𝐶𝑠𝑠𝑟𝑟 and 𝐶𝐶𝑠𝑠𝑟𝑟𝑠𝑠 under a fixed 𝑝𝑝 = 2.1. Note that 𝐶𝐶𝑠𝑠𝑟𝑟/𝐶𝐶𝑠𝑠𝑟𝑟𝑠𝑠 decreases over a 151 

small range ~1-8 X 10-9yr-1 with all climate proxies. Inset figures show log-log plots of the main figures. 152 

Figure S6: Sensitivity analyses for modeled regressions under (A) changes of the number of bins; 153 

(B) changes of the 𝑅𝑅2 threshold used to define morphological steady state (e.g., Figure 1, inset in main 154 

text); (C) changes in  𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟. 𝑝𝑝 (and hence 𝐶𝐶 that covary with it; Figure S4) is statistically robust to changes 155 

in MAP and AI under different number of bins, 𝑅𝑅2 threshold values, and 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 values. Inset figures in (A) 156 

and (B) show all 𝑝𝑝 values (i.e., also ones that are > 5). 157 

Figure S7: (A) Exceedance probability plots of recorded mean daily discharge (m3/s), 𝑄𝑄 (equation 158 

S6), from six stream gauge stations with records spanning ~20-50 yrs near some of our analyzed basins 159 

(for locations, see Figs. 1 in main text, S1). (B) Exceedance probability plots following equation S9, where 160 

low to high 𝑘𝑘 represents high to low discharge variability (Lague et al., 2005; DiBiase and Whipple, 2011; 161 

Deal et al., 2018). Note a general systematic decrease in discharge variability (higher 𝑘𝑘) with increasing 162 

MAP and AI. (C) Scatter plot of MAP and AI as a function of calculated 𝑘𝑘 in (B).  163 

Table S1: Locations, climate proxy values, erosion rates, 𝑘𝑘𝑠𝑠𝑠𝑠, 𝑘𝑘𝑠𝑠𝑠𝑠𝑄𝑄, basin area, and percentage of 164 

crystalline units for 428 analyzed basins under a morphological steady-state threshold of R2 > 0.9.  165 



Table S2: 𝑝𝑝, 𝐶𝐶, 𝐶𝐶𝑠𝑠𝑟𝑟 and statistical goodness-of-fit metrics of R-square, chi-square, and 166 

Kolmogorov-Smirnov two-sided p-value at the 90% significance level for six climate bins of MAP, MAT, AI, 167 

and ME under different 𝑅𝑅2 morphological steady-state thresholds from 0.75 to 0.95. Marked in red are 168 

low or negative r-square values or Kolmogorov-Smirnov p-value < 0.1 of poorly fit regressions. 169 
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