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Abstract

There is a growing capability to project the impacts and economic effects of climate change across
multiple sectors. This information is needed to inform decisions regarding the diversity and
magnitude of future climate impacts and explore how mitigation and adaptation actions might
affect these risks. Here, we summarize results from sectoral impact models applied within a
consistent modelling framework to project how climate change will affect 22 impact sectors of the
United States, including effects on human health, infrastructure and agriculture. The results show
complex patterns of projected changes across the country, with damages in some sectors (for
example, labour, extreme temperature mortality and coastal property) estimated to range in the
hundreds of billions of US dollars annually by the end of the century under high emissions.
Inclusion of a large number of sectors shows that there are no regions that escape some mix of
adverse impacts. Lower emissions, and adaptation in relevant sectors, would result in substantial
economic benefits.

Earth’s climate is now changing faster than at any point in human history, and the resulting
impacts to society and the environment are increasingly visible across the United States. As
warming accelerates, options exist for reducing the risks Americans face, and decisions
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made in the near-term will determine the rate, magnitude and impact of future changes®. To
help inform these decisions, estimates are needed regarding the physical and economic
implications of climate change across a range of sectors, along with spatially explicit
projections of how mitigation and adaptation actions can avoid or reduce these impacts?.
While the estimation of mitigation costs3# and the adequacy of current mitigation actions®®
have been well described elsewhere in the literature, multi-sector studies projecting the
effects of mitigation and adaptation on the United States have been limited until recently.

In the past five years, the science and economics of estimating future climate change impacts
have advanced considerably. These advances have enabled several frontier research
initiatives to improve the understanding and quantification of climate impacts in the United
States’~9. A more recent study1? constructs spatially explicit, probabilistic estimates of
economic damages in the United States from climate change across six sectors. Primarily
using empirically grounded econometric approaches applied at a county level across the
contiguous United States (CONUS), the authors derive damage functions linking global
mean temperature change to both market and non-market impacts. At a global scale, several
modelling frameworks!113 have quantified potential damages across multiple sectors,
particularly with regards to agriculture, coastal flooding and water resources. Altogether,
these coordinated frameworks, each of which involves many collaborators and models, have
substantially advanced the characterization of physical and economic risks. However,
important uncertainties and gaps remain.

Here, we quantify potential physical and economic damages of climate change to 22 sectors
(for example, air quality, labour and roads) in the United States using a consistent set of
climate and socioeconomic scenarios and assumptions (Table 1). This coordinated modelling
project, involving a large number of teams under the second modelling phase of the Climate
Change Impacts and Risk Analysis (CIRA) project!4, was developed to provide technical
input to the Fourth National Climate Assessment (NCA4) of the United States Global
Change Research Program (usccre). Using scenarios, projections and assumptions consistent
with those developed for NCA4 and reflecting one of the newest statistical downscaling
techniques, a large number of sector-specific impact models are used to simulate future
changes in climate impacts across the CONUS, with several analyses also covering Alaska,
Hawaii and Puerto Rico (Supplementary Table 3).

The predominant use of process-based modelling in this framework offers several
advantages, including the ability to dynamically simulate responses to climatic and
environmental conditions that are outside, or rarely observed in, the historic period. This is
an important factor when modelling across long time frames and for impacts that have
empirical data constraints or no known historical analogue (for example, agricultural
productivity under high temperatures and atmospheric carbon dioxide concentrations) ,16. In
addition, process-based models are capable of simulating impacts with high levels of local-
scale complexity and nonlinear interactions, such as air chemistry and hydrologic modelling,
which are difficult to adequately represent through econometric analysis. Finally, process-
based models offer the capability to simulate the effects of biophysical, behavioural or
technological adaptations on reducing climate damages, as is done for a number of sectors in
this framework (Table 1). However, process-based models come with their own challenges,
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including the need for extensive parameterization, calibration and validation (see the
underlying literature referenced in Table 1 and Supplementary Table 3 for discussions of
individual sectoral model calibration and validation, including the uncertainty involved with
these processes), which can be constrained by the availability of temporally and spatially
resolved historic datasets. Furthermore, some process-based models have large
computational demands, which often limit the extent to which multiple uncertainty sources
can be explored. These parameterization and computational demands can also constrain
resources to analyse structural uncertainty through the use of multiple sectoral models,
which has been shown to be important for impacts analysis®’.

For each sectoral model shown in Table 1, inputs from ten climate projections are used, built
using two forcing scenarios (representative concentration pathways, or RCP8.5 and RCP4.5)
in five general circulation models (GCMs) that are statistically downscaled and bias-
corrected, and chosen to reasonably cover the range of temperature and precipitation
outcomes in the CONUS observed across the entire ensemble from the Coupled Model
Intercomparison Project 5 (CMIP5; see Supplementary Section 2)18. Our modelling
framework evaluates the effects of increasing population and economic growth over time,
while preserving the ability to isolate climate-driven changes under this dynamic
socioeconomic scenario.

Regional distribution of impacts

Synthesis of impacts across sectors reveals highly complex patterns, with each region
projected to experience a unique mix of physical and economic effects. Figure 1 shows 16
sectors with spatially resolved impacts across the CONUS; 6 sectors are not shown due to
the impact area falling outside the CONUS (that is, coral reefs and Alaska infrastructure),
the impacts not being spatially resolved below the NCA4 regional level, as they were
simulated as part of a national market (that is, agriculture and shellfish), or because of other
constraints on spatial display (that is, roads and urban drainage); see Supplementary Tables
4-8 for national and NCA4 regional estimates of all sectors.

The inclusion of 22 sectors in this broader analysis demonstrates the compounding effect of
multiple climate impacts, an important feature not observed in single-sector analyses.
Understanding where multiple risks are projected to occur can also identify areas where
risks in one sector may lead to weakened adaptive capacity in another, which could result in
greater impacts than projected, or even cascading failures. For example, the inclusion of
location-specific water supply in the electricity demand and supply analysis, to account for
constraints on water availability for thermo-electric cooling, results in increased
vulnerability to the electric power system through higher system costs (see Supplementary
Table 9). While the current work includes inter-sectoral connections between the agriculture,
water and electric power system models, the project framework generally fails to capture
other important interactive effects between sectors. While fully interactive modelling of all
sectors in a single integrated assessment framework could provide insight beyond what is
reported here, such platforms are not yet capable of quantifying such a large number of
sectoral impacts at high temporal and spatial resolutions.

Nat Clim Chang. Author manuscript; available in PMC 2019 October 08.



1duosnuel Joyiny vd3 1duosnuep Joyiny vd3

1duosnue Joyiny vd3

Martinich and Crimmins Page 4

Previous research1® suggests that southern states of the CONUS, where large adverse
impacts are projected in labour, extreme temperature mortality, energy and coastal sectors,
will experience the greatest economic damages of climate change, while northern states will
experience lesser damages or even benefits of climate change for these sectors. Our analysis
found similar spatial patterns of high economic damages in southern regions for these four
sectors, as well as for the West Nile virus, inland flooding and urban drainage sectors (see
Supplementary Tables 7 and 8). However, inclusion of additional sectors not considered by
the previous work shows that there are no regions that escape some form of adverse physical
climate impact (see Fig. 1 and Supplementary Table 6). For example, the Northeast,
Northern Plains and Midwest are projected to experience disproportionately larger increases
in 8-h maximum ozone concentrations (air quality) and oak pollen season lengths
(aeroallergens; Fig. 1), resulting in hundreds of future excess annual ozone-related
premature deaths and asthma-related emergency department visits (Supplementary Table 6).
Potentially compounding health impacts of reduced air quality, longer pollen seasons and
extreme heat highlight an important vulnerability in the Midwest and Northeast. The
Northwest and Northern Plains are projected to experience high increases in electricity
demand and the frequency of exposure to 100-year flood events relative to southern regions
(Fig. 1); these northern regions are also projected to incur damages to iconic or culturally
significant resources, such as the loss of recreational opportunities for winter recreation or
freshwater fishing for highly prized coldwater species (Supplementary Table 6). While not
the largest source of economic damages, such recreational impacts can be very important to
local economies that rely on these activities. See Supplementary Section 3.2 for additional
comparisons to sectoral results from previous studies.

Many impacts are projected to be greater in the eastern half of the United States than in the
western half (for example, rail and coastal property; Fig. 1). For water quality, both sector
models used project larger impacts to eastern states (see Supplementary Fig. 9). This
geographic pattern is in part due to larger population densities and urban areas in these
regions. However, the lack of duplicate infrastructure may also make rail, road and bridge
delays or closures for repair more significant to residents in some western states, as there are
fewer alternative transportation routes. Vulnerability associated with this lack of
infrastructure redundancy is particularly meaningful in Alaska, where road flooding
associated with increased precipitation is projected to be the largest source of reactive repair
costs. By including a large number of sectors, a complex geographic pattern of damages
emerges, with each region projected to experience a different mix of physical and economic
impacts of climate change.

Effect of mitigation in reducing damages

Substantial reductions in global greenhouse gas (GHG) emissions would reduce climate
change impacts in the United States (Fig. 2). Projected physical and economic damages are
larger under RCP8.5 than under RCP4.5 across all 22 sectors and both time periods, with
only 1 exception (urban drainage adaptation costs in 2050; see Supplementary Table 5).
Damages associated with extreme weather, such as extreme temperature, heavy
precipitation, drought and storm surge events, are substantially reduced under RCP4.5. For
example, more than twice as many 100-year riverine inland flooding events are projected
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across the CONUS under RCP8.5 compared to RCP4.5 by the end of the century (see
Supplementary Fig. 10), resulting in avoided costs of approximately US$4 billion per year

(Fig. 2).

Avoided damages (RCP8.5 minus RCP4.5) under each sector range across several orders of
magnitude, from millions to tens of billions of US dollars in annual benefits by the end of
the century (see Supplementary Table 5). These avoided damages are projected to increase
over time, and the range of potential damages is generally narrowed under RCP4.5
compared to RCP8.5 (Fig. 2). Extreme temperature mortality, labour, coastal property and
roads are the sectors projected to have the largest avoided damages under RCP4.5, in the
range of US$12 billion to US$82 hillion each year; air quality and electricity demand and
supply are each projected to see savings under RCP4.5 of more than US$5 billion each year
(see Supplementary Table 5 and Supplementary Fig. 11 for projected changes in electricity
demand from two electric power sector models and time periods). Importantly, projected
impacts are only partially quantified or valued in many sectors. For example, the air quality
analysis did not include changes to fine particulates and other non-ozone air pollutants.
Therefore, the damages reported in Fig. 2 and Supplementary Table 5 are probably
underestimates of the actual climate impacts that would occur under any given scenario.

The sum of projected regional, annual per capita effects of global GHG mitigation for 20
sectors is large (Fig. 3), particularly in 2090. Despite each region experiencing a complex
mix of different sectoral impacts with varying associated economic damages, the benefits of
mitigation are relatively similar across regions on a per capita basis. Smaller estimated
benefits in the Northwest and Northern Plains compared to the eastern regions are explained
by small to no projected regional damages in some of the sectors with the highest national
economic impacts (for example, labour and coastal property), and artefacts of
methodological limitations. For example, none of the 49 cities in the extreme temperature
mortality analysis is located in the Northern Plains, and the 3 cities located in the Northwest
were too cool in the historic baseline to derive heat mortality response functions, leading to
underestimates of the change in future mortality in those cities under a warming climate.

Risk reduction through adaptation

The explicit evaluation of adaptation impacts in multi-sector climate impact modelling
frameworks has been limited!®, with the concurrent effects of adaptation and mitigation
being considered only in select sectors, such as agriculture20. Adaptation options can vary
depending on the sector, the timing of implementation and other factors. Importantly,
adaptation is not as relevant in many sectors (for example, harmful algal blooms).

Within the CIRA2.0 framework, the sector-by-sector modelling of adaptation takes different
forms (Table 1 and Supplementary Section 3.3). We illustrate specific sector-level
adaptations and their economic implications for three sectors where adaptation is understood
to be an effective response: coastal property, roads and rail. The coastal property analysis
quantifies damages from sea-level rise and storm surge with adaptation (abandonment or
property protection using various strategies) and without adaptation, using a risk-based cost-
benefit framework to estimate optimal responses based on the costs of protection versus
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property and asset values. The roads analysis estimates the costs of climate change impacts
in the form of reactive adaptation (repairs) to maintain current levels of service and evaluates
the ability of proactive adaptation measures (planned rehabilitation) to improve resiliency
and reduce overall costs. The rail analysis quantifies the costs associated with delays from
train speed reductions to reduce the risk of track buckling during high-temperature periods
(reactive adaptation), and the costs of proactive adaptation that include both investments in
track monitoring equipment and the implications of unavoidable residual delays.

Table 2 summarizes the effects of global-scale GHG mitigation and local-scale adaptation in
reducing impacts in these three infrastructure sectors. As shown, proactive adaptation
measures can substantially reduce the estimated damages from climate change, with
projected reductions from adaptation being potentially larger than the effect of mitigation in
these specific sectors. All values shown with adaptation include both the costs of
implementing those adaptations, and any residual damages not prevented by the protection
(but excluding indirect effects). However, implementation of well-timed adaptation measures
to maintain service levels is probably an overly optimistic assumption given that
infrastructure investments are often delayed and underfunded, and because decision-makers
and the public are typically not fully aware of potential risks2L. In addition, prolonged
deferral of maintenance can affect the service level of infrastructure and possibly result in
failure, leading to larger public costs than those reported here. The specific adaptation
scenarios used in these analyses are designed to bound potential outcomes via no-adaptation
(worst case) and well-timed (and for some sectors, economically optimal) actions. In reality,
adaptation responses in the aggregate are likely to lie in between these scenarios and be
heavily influenced by local-level decision-making that is difficult to capture in national-scale
modelling. While the modelled responses for the three exemplary sectors show large
potential benefits of adaptation, these findings are not necessarily generalizable to other
sectors, many of which are unlikely to show such benefits.

Discussion

Here, the findings from multi-sector economic modelling projects were used to inform the
United States Government’s Fourth National Climate Assessment?2, These findings, derived
from internally consistent modelling frameworks, provided new opportunities for assessment
authors to characterize physical and economic impacts of climate change across sectors, and
describe how those risks may be avoided or reduced through global mitigation and
adaptation actions. However, there is a continuing need to expand the science and economics
involved in this modelling to include additional sectors and to improve characterization of
impacts within existing sectors. Given the magnitude and diversity of climate risks that
Americans face, decision-makers will increasingly need access to improved projections of
how, when and where these risks will change in the future under a range of potential GHG
pathways.

This suggests the need for a sustained, and continuously improving, multi-sector modelling
process whose periodic findings can be used to inform climate assessments of the USGCRP
by further quantifying and assessing the diversity of risks posed by climate change. Similar
efforts involving large numbers of modelling groups have successfully been implemented for
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Methods

other climate research topics, including the evaluation of mitigation technologies?3 and
strategies for mitigation through energy efficiency?4.

Technical documentation for the analytic framework of the second modelling phase of the
CIRA project was developed as an input to NCA4°L, Individual sectoral impact models have
been separately documented (see the citations in Table 1 and Supplementary Table 3),
including several special issues®2:23,

Climate projections.

Selection of scenarios and projections was made consistent, to the greatest extent possible,
with inputs being used in the Fourth National Climate Assessment of the USGCRP22. Due
to the reliance on detailed process-based models for most sectors, computational and
resource constraints required the use of a subset of GCMs available in the locally
constructed analogues statistically downscaled dataset for the CONUS®# and the SNAP
dataset for Alaska®. The locally constructed analogue method was developed to address a
variety of shortcomings of earlier approaches, including: increased ability to preserve the
daily sequence of weather events simulated in the underlying GCMs, which is important for
accurately representing changes in extremes; the construction of a more realistic depiction of
the spatial coherence of the downscaled field; and improved ability to more realistically
represent the timing and magnitude of regional precipitation®8.

For the CONUS, we chose five GCMs (CCSM4, GISS-E2-R, CanESM2, HadGEM2-ES and
MIROCS) with the intent of ensuring that: the subset captured a large range of variability in
climate outcomes for the CONUS observed across the entire CMIP5 ensemble; and the
models were sufficiently independent and broadly used by the scientific community. The
Alaska analyses used only CCSM4 and GISS-E2-R due to the availability of these GCMs in
the SNAP database. For each GCM, RCP8.5 and RCP4.5 were chosen to provide a range of
plausible emission scenarios. By late century, RCP8.5 is projected to result in mean
temperature increases over the CONUS of about 4.8 °C (3.2-6.6 °C) relative to 1976-20051,
with a global-scale warming of approximately 4.2 °C (2.6-4.7 °C) relative to 1986-2005°’.
Under RCP4.5, mean temperatures are projected to rise by 2.8 °C (1.6-4.1 °C) domestically
relative to 1976-2005, and 1.8 °C (1.1-2.7 °C) globally relative to 1986-2005. See
Supplementary Sections 2.1 and 2.2 for additional information regarding the selection and
characteristics of the climate projections.

We use the United States Government’s most recent projections for eustatic sea-level rise,
which are based on recent empirical research®. These projections of location-specific
differences in relative sea-level change account for land uplift or subsidence, oceanographic
effects, and responses of the geoid and the lithosphere to shrinking land ice. Mean values for
tide gauge locations are used, along with a distance weighting procedure for interpolating
between tide gauge locations.We apply location-specific storm surge modelling for the
Atlantic, Gulf and West coasts of the CONUSS0. See Supplementary Section 2.3 for
additional information regarding these scenarios.
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Socioeconomic projections.

To account for the effects of increasing population and income on impact estimates, the
sectoral analyses use a single trajectory of socioeconomic change under both RCPs. Using a
single projection isolates the differences in climate change impacts between the two RCPs,
and therefore the effects of GHG mitigation, such that the results will not be influenced by
differing pathways of socioeconomic change. The median variant projection of the United
Nation’s 2015 World Population Prospects dataset is used to represent changes in population
for 2015-2100°1. This scenario represents a reasonable, mid-range population projection:
~450 million residents of the United States by 2100, thus similar to Shared Socioeconomic
Pathway 2 (SSP2). We use Census data for historical population changes for the period
1986201462,

As the median variant population projection is available only at a national scale,
disaggregated population projections are produced at the county level using the
Environmental Protection Agency’s Integrated Climate and Land Use Scenarios version 2
(ICLUSV2) model83. Supplementary Fig. 7 shows absolute and percentage change in
county-scale population in 2050 and 2090. The spatial pattern of population change in
ICLUSV2 is dependent on underlying assumptions regarding fertility, migration rate and
international immigration. These assumptions are parameterized using the storyline of SSP2,
which suggests medium levels of fertility, mortality and international immigration. While
global emissions large enough to reach a radiative forcing of 8.5 W m~=2 are not possible
under the SSP2 storyline, the intention of the broader impacts modelling framework was to
capture the effects of changing socioeconomics on impact projections, while still allowing
for the isolation of damages due to climate change. Therefore, a mid-range storyline was
chosen, with the acknowledgement that selection of alternative scenarios would influence
impact estimates across sectors64.65. Finally, the ICLUSv2 model is also used to develop
county-scale demography projections (that is, age, gender and race) and a developed-lands
(municipal and industrial development) map layer.

Using the median variant population projection for the United States, the Emissions
Predictions and Policy Analysis version 6 (EPPA-6) model®6 is run to generate a projection
of economic growth (that is, gross domestic product (GDP)). The projection of GDP growth
through 2040 was taken from the 2016 Annual Energy Outlook reference case®”: with
post-2040 assumptions for labour productivity growth taken from the EPPA-6 baseline.
EPPA-6 baseline assumptions were used for all other world regions across all time periods
(see Supplementary Fig. 8 for a depiction of the domestic GDP pathway). The impacts of
climate change on economic activity (for example, losses to labour supply or increased
capital expenditures for adaptation) are not accounted for in the macroeconomic input
projections. As such, the economic growth projection may be overestimated when
considering multi-sector damages, and the use of a single national-scale economic growth
projection that omits region-specific socioeconomic changes may lead to different localized
results from those reported.
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Sectoral impact models.

The CIRA2.0 modelling framework contains a large number of partial-equilibrium, process-
based sectoral impact models, each of which develops a unique set of physical and economic
endpoints (Table 1). Each sectoral model was developed to simulate endpoints at temporal
and spatial scales most appropriate to that particular impact, while also considering
constraints imposed by data availability and computational efficiency. Modelling results can
be reported at the native resolution of each sectoral impact model, varying from different
administrative scales (for example, cities and counties) to watershed-based boundaries (for
example, four-digit HUCs), and then spatially aggregated to NCA4 regions and the national
level. To account for climate variability, impact modelling results presented in this paper
generally represent annual averages across 20-year periods centred on the target years of
2050 and 2090. All economic values represent annual averages for those target years in
undiscounted 2015 US dollars. Many of the sectoral models directly simulate how adaptive
actions, including region-specific changes in behaviour and technology, may reduce adverse
impacts and exposure.

Interpretation of results.

In this paper, we do not focus on the sum of economic damages at national scales or discuss
the social or economic implications of redistributive effects for two main reasons. First,
while this project includes extensive coverage of sectoral impacts, the full extent of physical
and/or economic impacts is not captured in many of the sectoral impact analyses. For
example, the wildfire analysis captures only suppression costs, and does not estimate health
impacts from degraded air or water quality, property damage or timber loss. Furthermore,
our framework would be improved by including other important sector estimates, such as
impacts on national security, mass migration, crop yields due to changes in pests/ozone,
forest products, other air pollutants (for example, fine and coarse dust) and other
infrastructure (for example, ports, telecommunications and electricity distribution). While
the magnitude of reported estimates for many sectors is quite large, the omitted impacts lead
to an incomplete estimate of total economic risk. Second, aggregating sectoral damages at
national scales, which often become the focus of science communication, can conceal
important risks and potentially introduce uncertainty. As this paper has shown, the regional
patterns of climate change impacts for each sector can show complex patterns of positive or
negative individual effects.

Several additional limitations are important to note for proper interpretation of our results.
First, the predominant use of computationally intensive process-based models limited the
number of scenarios that could reasonably be employed in this project’s framework. The set
of GCMs used in this framework, along with the broader CMIP5 ensemble, do not
collectively represent a complete probability distribution of potential future outcomes
because they systematically underestimate tail risks®8. Evaluation of impacts under a broader
set of global climate models and socioeconomic scenarios would provide a more complete
characterization of potential impacts in the future. Second, with the exception of several
sectors (for example, electricity demand and supply and water quality), the impact estimates
presented were developed using a single-sectoral impact model. These models are complex
analytical tools, and choices regarding the structure and parameter values of the model affect
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estimation of impacts. Ongoing studies are finding that the influence of these structural
assumptions can be substantial across impact models!’. Third, while the current work
included inter-sectoral connections between the agriculture, water and electric power system
models, the project framework generally fails to capture other important interactive effects
between sectors, such as compounding health effects of extreme heat and high ozone.
Fourth, while our approach generally uses dynamic, internally consistent assumptions about
socioeconomic change over time, we do not investigate uncertainties regarding this
projection; the importance of which has been highlighted in recent research’. Despite these
important uncertainties, this project produced estimates of future impacts using best
available data and methods, and developed a framework that can be revisited and updated
over time as science and modelling capabilities continue to advance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Geographic distribution of select projected climate impacts.
a-p, Annual impacts projected under RCP8.5 in 2090 (5-GCM average unless otherwise

noted) for change in summer-average maximum daily 8-h ozone concentrations (ppb) from
the 1995-2005 reference period under the CCSM4 climate model alone (a), change in oak
pollen season length (days) from the 1994-2010 reference period (b), net premature
mortality rate (deaths per 100,000 people) from extremely hot and cold days in 49 cities
from the 1989-2000 reference period (c), percentage change in hours worked in high-risk
industries from the 2003—-2007 reference period, normalized by the high-risk working
population by county (d), change in West Nile neuroinvasive disease cases by state from the
1986-2005 reference period (e), change in waterbody surface cyanobacteria (thousands of
cells per millilitre) for a low-growth scenario relative to a control (no-climate) scenario
aggregated to 4-digit hydrologic unit codes (HUCs) (f), percentage of bridges identified as
vulnerable (immediate repair needed to maintain level of service) due to incremental effects
of climate change aggregated to 4-digit HUCs (g), change in reactive adaptation costs
(delays due to reduced speed and traffic) to the Class I rail system from the 1950-2013
reference period (h), damages to coastal property from sea-level rise and storm surge for 17
multi-county areas (chosen as examples) assuming no adaptation (i), percentage change in
state-level electricity demand from the Global Change Assessment Model relative to a
control scenario without climate change (j), change in the frequency of the 2010 baseline
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(2001-2020) 1% annual exceedance probability (AEP) (or ‘100-year’) flood event (such that
a value of 2 represents a doubling in the frequency of a 100-year flood event) (k), change in
the water quality index under the HAWQS biophysical model relative to the 1986-2005
reference period aggregated from the 8-digit HUC level to the level-111 ecoregions, weighted
by area (see Supplementary Fig. 9 for US Basins model results) (I), welfare loss from
impacts on municipal and industrial water supply, aggregated to the 4-four-digit HUC scale
(m), percentage change in downhill ski season length from the 1986-2005 reference period
at 247 modelled locations (n), change in freshwater fish habitat (8-digit HUC scale) from the
2011 reference year under only the CCSM4 climate model (0), change in acres burned (all
vegetation types) from the 1986-2005 reference period (agricultural and developed lands
removed) aggregated to degree cell resolution (p). The differences in the reference periods
are due to constraints unique to each sectoral impact model.
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Fig. 2 |. Annual economic damages from climate change under two mitigation scenarios.
a-d, Mean estimates of annual climate change damages in millions of undiscounted 2015 US

dollars for RCP8.5 and RCP4.5 in 2090. The four graphs are on different scales to capture
the range of impacts. Note that d includes negative damages (benefits). Unless noted, the
upper and lower bounds are based on values across the climate models. The data underlying
this graphic can be found in Supplementary Table 5. For coastal property, costs with no
adaptation are shown. The upper/lower bounds are not shown from the probability-based
sea-level projections. For air quality, mean and upper/lower bounds are shown based on
confidence intervals from the BenMAP-CE model. For inland flooding, GCM-specific
results were not derived as part of the analysis. For electricity demand and supply, the results
are from the Global Change Assessment Model power sector model alone. For water quality,
range and mean values based on combined results from US Basins and HAWQS are shown.
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Fig. 3 |. Projected regional economic effects of global climate mitigation.
Estimated annual, per capita economic effects of global GHG mitigation (RCP8.5 minus

RCP4.5 in undiscounted 2015 US$) in 2050 and 2090 for 20 sectors of the United States
(the agriculture and shellfish sectors are excluded because they use national market models;
see Supplementary Table 5 for those values). Positive numbers represent benefits, or avoided
damages, due to climate mitigation. The upper and lower bounds are based on values across
the climate models (see Fig. 2 for exceptions). See Supplementary Tables 7 and 8 for
additional data.
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