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Abstract

Model-based estimations of historical fluxes and pools of the terrestrial biosphere differ
substantially. These differences arise not only from differences between models but also from
differences in the environmental and climatic data used as input to the models. Here we
investigate the role of uncertainties in historical climate data by performing simulations of
terrestrial gross primary productivity (GPP) using a process-based dynamic vegetation model
(LPJ-GUESS) forced by six different climate datasets. We find that the climate induced
uncertainty, defined as the range among historical simulations in GPP when forcing the model
with the different climate datasets, can be as high as 11 Pg C yr�1 globally (9% of mean GPP).
We also assessed a hypothetical maximum climate data induced uncertainty by combining climate
variables from different datasets, which resulted in significantly larger uncertainties of 41 Pg C yr�1

globally or 32% of mean GPP. The uncertainty is partitioned into components associated to the
three main climatic drivers, temperature, precipitation, and shortwave radiation. Additionally, we
illustrate how the uncertainty due to a given climate driver depends both on the magnitude of
the forcing data uncertainty (climate data range) and the apparent sensitivity of the modeled
GPP to the driver (apparent model sensitivity). We find that LPJ-GUESS overestimates GPP
compared to empirically based GPP data product in all land cover classes except for tropical
forests. Tropical forests emerge as a disproportionate source of uncertainty in GPP estimation
both in the simulations and empirical data products. The tropical forest uncertainty is most
strongly associated with shortwave radiation and precipitation forcing, of which climate data
range contributes higher to overall uncertainty than apparent model sensitivity to forcing.
Globally, precipitation dominates the climate induced uncertainty over nearly half of the
vegetated land area, which is mainly due to climate data range and less so due to the apparent
model sensitivity. Overall, climate data ranges are found to contribute more to the climate
induced uncertainty than apparent model sensitivity to forcing. Our study highlights the need to
better constrain tropical climate, and demonstrates that uncertainty caused by climatic forcing
data must be considered when comparing and evaluating carbon cycle model results and
empirical datasets.
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1. Introduction

The climate affects a multitude of vegetation processes,
resulting in complex and variable interactions (Luo
2007, Luo et al 2008, Zhou et al 2008). Dynamic
Global Vegetation Models (DGVMs) attempt to
describe such complexity using globally-applicable
representation of vegetation structure and composi-
tion, ecosystem biogeochemistry and the responses of
underlying physiological and ecological processes to
variations in climate, atmospheric CO2 and other
drivers (Prentice et al 2007, Scheiter et al 2013).
DGVMs integrate available knowledge of ecological
processes by combining theoretical process under-
standing with data from laboratory studies, field
measurements and satellite-based estimations, and
apply this knowledge to simulate ecosystem functions,
such as carbon uptake and cycling, normally across a
grid spanning the global land area. DGVMs comple-
ment observation-based methods such as remote
sensing and field measurements by explicitly account-
ing for the process interactions and feedbacks linking
climate and other forcings to ecosystem dynamics.
They are widely used in global change impact and
process studies, for characterisation of the terrestrial
carbon cycle and its responses to greenhouse gas
emissions and climate change, and as a component in
Earth system models, accounting for biogeochemical
and biophysical biosphere-atmosphere feedbacks
(Scholze et al 2006, Hickler et al 2008, Sitch et al

2008, Sitch et al 2015). Gross Primary Production
(GPP), the total amount of carbon assimilated by
plants via photosynthesis, is a fundamental driver of
vegetation processes, playing an important role in the
global carbon cycle (Cox and Jones 1993, Battin et al

2009). It is a fundamental process simulated by all
DGVMs. Many models adopt one of the available
variants of the Farquhar et al (1980) biochemical
photosynthesis model. In DGVMs, GPP represents the
origin of carbon within the simulated ecosystem,
controlling many other downstream processes. If GPP
is simulated incorrectly, errors propagate to other
processes and affect all carbon pools and fluxes of the
simulated ecosystem (Luo et al 2003).

Although GPP is a fundamental flux of the carbon
cycle, observation-based estimates of global GPP differ
significantly between products based on remote
sensing (Earth-Observation, EO-based), flux towers
or a combination thereof. GPP estimates also differ
between DGVMs and between DGVMs and observa-
tion-based datasets (Jung et al 2007, Jung et al 2011,
Piao et al 2013, Anav et al 2015, Sitch et al 2015). Some
of the discrepancies between GPP estimates of
different DGVMs originate from model structural
uncertainty arising from different representations of
the same ecological processes, the scaling of these
processes, their interactions and linkages to drivers
and descriptors of ecosystem state, as well as the
inclusion of certain processes, e.g. wildfires or nutrient

interactions, in some models but not others (Cramer
et al 2001, Gurney et al 2004, Tebaldi and Knutti 2007,
Sitch et al 2008, De Kauwe et al 2014, Zaehle et al

2014). Additional uncertainty stems from parameter
uncertainty due to different model calibration strate-
gies (Knorr and Heimann 2001, Zaehle et al 2005,
Wramneby et al 2008). In both DGVMs as well as
models based on empirical data further uncertainty
propagates from the environmental driver data,
particularly data on climate variables such as
temperature, precipitation, solar insolation, wind
speed and atmospheric humidity, used to force or
extrapolate the models (McGuire et al 2001, Zhao et al
2006, Jung et al 2007, Poulter et al 2011, Ahlström et al

2012b, Ahlström et al 2013). The climate inputs used
in DGVMs are derived from either quasi-point-based
measurements or model-based reanalyses. These
variables need to be interpolated across areas of
unmeasured territory to supply a model with values at
each grid cell for the simulation, which inevitably
introduces uncertainty propagating through the
ecosystem model (Zhao et al 2006). A thorough
and strict quantification of climate induced uncer-
tainties is required to provide a robust interpretation
and quantification of output from DGVM simula-
tions. At present, little is known about how much each
climate variable contributes to total climate induced
uncertainty in GPP, and no studies have to our
knowledge partitioned the uncertainty into compo-
nents associated with climate data range (the
magnitude of the forcing data uncertainty) and
apparent sensitivity of the model to each individual
driver of GPP.

Here we employ an individual-based DGVM (LPJ-
GUESS) previously applied in a wide range of carbon
cycle and climate impact studies to assess and quantify
the potential uncertainty of estimated terrestrial GPP
caused by climate driver uncertainty. We apply six
historical climate datasets as input to simulations of
the global terrestrial carbon cycle, and partition the
revealed uncertainty into components propagating
from different climatic drivers, in terms of forcing data
range and the apparent sensitivity of the simulated
ecosystem response to forcing, globally and among
major bioclimatic regions.

2. Methodology

2.1. DGVM

We employ the Lund-Potsdam-Jena General Ecosys-
tem Simulator (LPJ-GUESS; Smith et al 2001, Smith
et al 2014) to estimate GPP. LPJ-GUESS is a DGVM
which uniquely combines an individual-based repre-
sentation of woody plant growth, demography and
interspecific competition with process-based physiol-
ogy and biogeochemistry. It employs gridded time
series of climate data (air temperature, precipitation
and incoming shortwave radiation) as forcing and
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simulates the effects of climate on vegetation structure
and composition in terms of plant functional types
(PFTs), soil hydrology and biogeochemistry. Atmo-
spheric carbon dioxide (CO2) concentrations, nitro-
gen (N) deposition rates and soil physical properties
(fixed) provide additional inputs. The 11 PFTs
adopted for the present study and their prescribed
parameters are given in tables S1 and S2 available at
stacks.iop.org/ERL/12/064013/mmedia. We employ
LPJ-GUESS version 3.0 which incorporates ecosystem
nitrogen cycling, and the CENTURY soil biogeo-
chemistry scheme (Parton et al 1993). A full
description of the LPJ-GUESS is given in Smith
et al (2014) and references therein.

2.1.1. Simulations

LPJ-GUESS is forced with six alternative climate
datasets (each including temperature, precipitation
and shortwave radiation (table 1)) in separate
simulations. To ensure comparability, all climate
datasets are regridded to a 0.5 � 0.5 degrees spatial
resolution, aggregated to a monthly temporal resolu-
tion. These monthly datasets are interpolated to daily
values uniformly within LPJ-GUESS according to
Gerten et al (2004). The CRU dataset is derived from
climate station records and constructed using the
Climate AnomalyMethod, CAM (Peterson et al 1998).
CRU and CRUNCEP differ mainly in shortwave
radiation where CRUNCEP calculate radiation trans-
fer differently (Wei et al 2013) from the method
applied within LPJ-GUESS to data on cloud cover.
NCEP and ECMWF are reanalysis data, which are
generated by combining observations with a meteo-
rological forecast model. The other two datasets
(WFDEI and PRINCETON) are hybrid datasets
combining observations and reanalysis data.

Simulations are initialized with a 500 year spin-up
where the model is forced by re-cycled de-trended
1979–2010 climate data, to achieve vegetation and soil
carbon pools in equilibrium with the forcing climate.
500 years is sufficient to establish vegetation and litter
inputs to the soil which in conjunction with
respiration rates are used to solve the slower soil
carbon pools steady state conditions. Atmospheric
CO2 concentration is derived from Keeling and Whorf
(2005) and N deposition data is taken from Lamarque
et al (2011). Land use is taken into account with
cropland and pastures being treated as natural
grasslands, which is a standard simplified representa-

tion of managed land-use without additional processes
such as harvest or grazing (Pugh et al 2015). The
fractional cover of land use is obtained fromHurtt et al
(2011).

2.2. Empirical datasets

We compare simulated GPP to the flux tower-based
global estimation of GPP from Jung et al (2011) and
Jung et al (2017) (herein after, FLUXCOM) and the
EO-based MODIS (Moderate-resolution Imaging
Spectroradiometer) GPP product (MOD17 v55) from
(NTSG 2015), at global scale during 2000–2009. These
10 years mark the temporal common time period of
the datasets used in table 1. The FLUXCOM here
includes four GPP products derived from different
machine learning methods: model trees ensemble
(MTE, Jung et al 2009), Artificial Neural Networks
(ANN, Papale and Valentini 2003), Multivariate
Adaptive Regression Splines (MARS, Friedman
1991) and Random Forests (RF, Breiman 2001).

2.3. Land cover classes

The land cover classification (figure 1) is used to
aggregate the global land area into six land cover
categories: tropical forest, extra-tropical forest (boreal
and temperate), semi-arid ecosystems, tundra and
arctic shrub land, grasslands and land under agricul-
ture (crops, here combined), and areas classified as
barren (sparsely vegetated). This classification is based
on the MODIS land cover classification, MCD12C1
type3 (Friedl et al 2002) and the Köppen-Geiger
climate classification system (Kottek et al 2006)
following Ahlström et al (2015).

2.4. Partitioning of climate induced uncertainty

We partition climate induced uncertainty in simulat-
ed GPP into temperature, precipitation and short-
wave radiation. Six climate datasets are available in
this study, which limits our ability to partition
uncertainties to specific climatic drivers. Therefore,
we combine climate variables of the different datasets
in such a way that a given simulation can be forced by
the temperature from one dataset, the precipitation
from another and the radiation from a third dataset.
This approach also allows us to investigate the
potential maximum GPP uncertainty stemming from
climate variables from different climate datasets. The
maximum potential climate induced uncertainty is
found by first calculating the apparent model

Table 1. Description and source of climate datasets used in the analysis.

Dataset Spatial resolution Time period References

CRU TS 3.21 0.5 degree 1901–2012 Jones and Harris (2013)

CRUNCEP v5 0.5 degree 1901–2013 Wei et al (2013)

ECMWF/ERA Interim 0.5 degree 1979–2014 Dee et al (2011)

NCEP-DOE II 2.5 degree 1979–2014 Kanamitsu et al (2002)

PRINCETON_V2 0.5 degree 1901–2012 Sheffield et al (2006)

WFDEI_GPCC 0.5 degree 1979–2010 Weedon et al (2011)
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sensitivities to each of the three climate drivers using
multiple linear regressions on an ensemble of
simulations where climate variables are combined
from a subset (n¼ 3) of the six climate datasets. The
maximum potential GPP uncertainty is then found
by multiplying the apparent model sensitivities to the
climate drivers with the range (maximum minus
minimum) of each of the climate drivers at each
location (grid cells).

We select three out of six datasets (CRU, NCEP and
ECMWF) since their corresponding global GPP
represent the minimum, median, and maximum
(997, 1064, and 1089 g Cm�2 yr�1, respectively) within
the 6 datasets. We run the simulations with the full
combination of these 3 dataset (27 simulations), plus 3
original simulations for the other climate datasets.With
these 30 simulation results, we use a multiple linear
regression approach to identify the relative importance
of each climate variable to total climate induced
uncertainty in GPP. The regression is performed
separately for each grid cell, cross climate datasets or
combinations of climate variable among datasets but
not along the time series:

GPP ¼ a � R þ b � P þ g � T þ e ð1Þ

where GPP, R, P and T represent z-scores (number of
standard deviations from the mean) of the annual
mean values of GPP, shortwave radiation, precipita-
tion and temperature, respectively, used to force the
simulation under consideration. The regression
parameters a, b and g represent the apparent model
sensitivities to each of the drivers while e is the residual
error term. We refer to these sensitivities as apparent
model sensitivities because they may be influenced by
co-variation between climate variables (e.g. Piao et al

(2013)). To investigate the potential influence of co-
variation between the predictors we performed
principal components regression (PCR) for analysis

of the relationship between GPP and climate. Both
analyses yield very similar sensitivities (see supplement
2 and figures S1–4) which add confidence that the
sensitivities presented here are good approximations
of the model’s sensitivities and not heavily influenced
by predictor co-variation.

The true sensitivities should ideally also include
interaction terms between the variables, and other
drivers not explicit in (1), for instance atmospheric
CO2 concentration, may also contribute to the
variability of GPP. However, for clarity we choose to
illustrate an isolated effect of a driver on the climate
induced uncertainty. This is motivated by the fact that
interactions only explain a small part (∼5%) of the
response variability in GPP according to ANOVA
analysis (figure S5).

Once the regression coefficients (a, b, g) are
determined, the partial GPP uncertainty caused by the
corresponding variables (shortwave radiation, precip-
itation, temperature) is estimated by:

GPPR_unc ¼ a � R_range ð2Þ

GPPP_unc ¼ b � P_range ð3Þ

GPPT_unc ¼ g � T_range ð4Þ

GPPunc ¼ GPPR_unc þ GPPP_unc þ GPPT_unc ð5Þ

where GPPR_unc is the partial GPP uncertainty caused
by shortwave radiation (2), and a presents an apparent
GPP uncertainty sensitivity to shortwave radiation
range, R_range , which is the difference between the
minimum and maximum shortwave radiation value
across forcing datasets. Equations (3) and (4) are
analogous cases for precipitation and temperature,
and the total GPP uncertainty (GPPunc) is the sum of
the three partial GPP uncertainties.

sparsely veg, 13.1%

semidry shrub & savanna, 20.0%

tundra & cool shrub, 17.2%

grasslands & crops, 29.4%

tropical forest, 8.1%

extra-tropical forest, 12.2%

Figure 1. Land cover for aggregating model output for analysis. The percentage values show the fraction of each land cover class of
terrestrial area (excluding Greenland).
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2.5. Partitioning of uncertainty into model

sensitivity and climate uncertainty

We also assess how the uncertainty in GPP arises from
a combination of climate data uncertainty and
apparent model sensitivity by decomposing the partial
GPP uncertainty into components associated with the
climate data range and simulated apparent sensitivity
of ecosystem GPP to the respective driver. Figure 2
shows an example of two possible outcomes with the
same partial GPP uncertainty caused by shortwave
radiation but with different contributions from
climate data range and apparent model sensitivity.
For Case 1, apparent model sensitivity contributes
more than the climate data range, while the climate
data range has higher influence in Case 2. The
regression slopes provide their relative contributions
to the partial GPP uncertainty (being larger or smaller
than 1). Therefore, the fractions of apparent model
sensitivity (f sen) and climate data range (f range) that
contribute to a climate driver (e.g. shortwave
radiation) induced GPP uncertainty can be estimated
by:

f sen ¼
jaj

jaj þ 1
ð6Þ

f range ¼ 1� f sen ð7Þ

where a is the regression coefficient of multiple
regression for shortwave radiation, jaj stand for the
absolute value of a.

3. Results

3.1. Simulated GPP using six climate datasets

Global GPP simulated by LPJ-GUESS when forced by
the six climate datasets without any mixing of climate
variables between the datasets shows agreement with

FLUXCOM and MODIS GPP (figure 3(a)). However,
when stratified by land cover classes, the simulated
GPP of the tropical forest (figure 3(e)), shows
markedly lower values than both FLUXCOM and
MODIS GPP, while for grasslands, croplands (figure 3
(d)) and extra-tropical forest (figure 3(f )), simulated
GPP is higher than both FLUXCOM and MODIS.
These biome-specific discrepancies tend to cancel out
to produce a simulated global GPP estimate closer to
the remote sensing and flux tower-based estimates
(Piao et al 2013). Aggregated to the global land
surface area, the range among simulations amounts to
11 Pg C yr�1 or 9% of mean GPP.

3.2. Climate induced uncertainty—combining

climate variables among climate datasets

Here we show inferred apparent model sensitivities
(section 3.2.1) and the maximum potential climate
induced GPP uncertainty (section 3.2.2) as inferred by
applying the regression-based partitioning on an
ensemble of (n¼ 30) simulations. The simulations
differ only in forcing climate, where climate variables
from n¼ 3 climate datasets have been mixed to new
and unique combinations. This method allowed us to
better investigate the apparent model sensitivity and to
investigate the maximum potential climate induced
GPP uncertainty. Section 3.2.3 describes the results of
partitioning of GPP uncertainty into apparent model
sensitivity and climate data range.

3.2.1. Local apparent model sensitivities.

Applying the partitioning method (equations (1–5))
to individual terrestrial locations (grid cells), allows us
to generate a global map of the relative importance of
the three climate factors in inducing uncertainty in
GPP (figure 4). The result shows that precipitation
dominates climate induced uncertainty in arid regions
and primarily at lower latitudes and cover approxi-
mately half (∼48%) of the terrestrial vegetated land
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Climate data range
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Figure 2. Graphical explanation of how climate data range and apparent model sensitivity contribute to the partial GPP uncertainty.
Here shortwave radiation is used as an example. The Y axis represents the partial GPP uncertainty, i.e. the uncertainty caused by
shortwave radiation, see equation (2), and the X axis represents the data range of shortwave radiation. The slope of the lines (a1 and
a2) represent the change in partial GPP uncertainty for change in shortwave radiation. Both cases have the same GPP uncertainty,
caused either by high apparent model sensitivity and small climate data range (AB, red line (case 1)) or by low apparent model
sensitivity and large climate data range (AC, blue line (case 2)).
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surface. The areas dominated by temperature and
shortwave radiation are roughly equal in areal extent
and make up the remainder of the terrestrial vegetated
surface, with shortwave radiation dominating in
moderate to densely wooded ecosystems whereas
temperature tends to dominate in high latitude and/or
high altitude areas. A similar pattern is found when
only using n¼ 6 simulations and not combining
climate variables from the different climate datasets,
but due to its lower number of data points the
regression-based partitioning is statistically less
significant (figure S7).

3.2.2. Potential maximum climate induced GPP

uncertainty

The potential maximum climate induced uncertainty
revealed by the analysis of simulations forced by
temperature, precipitation and shortwave radiation
data combined from different datasets is shown in
figure 5. This result is generated by area weighted
average of local GPP uncertainty globally and for each
land cover class, and represents the local relative
importance of climate drivers (figure 4) averaged over
land cover classes. Large differences are apparent
among land cover classes in terms of the relative

tair

swrad prec
No data or Not significant

Figure 4. Relative importance of climate factors (red: temperature; blue: precipitation; green: shortwave radiation) to ensemble
uncertainty in GPP. Non-vegetative regions and areas with no significant relationship between GPP change and climate change are
masked as grey. Precipitation dominates the climate uncertainty over the largest area among the three drivers.
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Figure 3. Annual mean GPP during 2000–2009 estimated by LPJ-GUESS forced by the six climate datasets (without combining
climate variables), MODIS and FLUXCOM as global totals and stratified by land cover classes (figure 1). FLUXCOMGPP presents the
average of the four products (MET, ANN, MARS and RF), and the error bars show the range among these four products (figure S6
shows GPPof individual products). LPJ-GUESS GPP (mean value among simulations, 1048 g Cm�2 yr�1) is very close toMODIS and
FLUXCOM data, while they diverge at regional scale.
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contributions ofdifferent drivers to the total uncertainty.
Aggregated to the global scale, the potential maximum
uncertainty is 41 Pg C yr�1 (32% of mean GPP), or
nearly four times the uncertainty of 11 Pg C yr�1

emerging from simulations based on a single driving
dataset (i.e. when not combining climate variables,
section 3.1). Error bars show the confidence interval of
95%. Negative values from error bars indicate that we
cannot infer that the variable contributes to GPP
uncertainties at all at 95%confidence level. The relatively
low confidence as indicated by the error bars can partly
be explained by small sample size (fewer simulations),
inevitable co-variationbetweenclimate variables and the
stochastic behaviour of LPJ-GUESS. The PCR analysis
gives the same result with narrow confidence bands
(figureS2).The influenceof the stochastic behaviourcan
also be reduced when using more replicate patches
(n¼ 20 here), which reduces the influence of stochastic
disturbances (like windstorms or wildfires) on the
averageofGPPwithinagridcell.Anothereffectof spatial
averaging before applying the climate uncertainty
partitioning is a decrease of the total uncertainty
(16% of mean GPP), which is a result of spatial
cancelation of local variation in GPP and climate
variables (figures S8 and S9). The climate induced
uncertainty is highest for tropical forest and is mainly
due to shortwave radiation andprecipitationuncertainty
followed by air temperature.

3.2.3. Partitioning of GPP uncertainty into apparent

model sensitivity and climate data range

The climate induced uncertainty is further partitioned
into apparent model sensitivity and climate data range
to give an estimate of their relative importance, i.e. do
large GPP uncertainties stem from a large sensitivity in
the model response to small difference in the drivers,
or do the GPP uncertainty arise from low sensitivity in
the model response but large difference between the

drivers?. Climate data range contributes more to the
climate induced uncertainty than apparent model
sensitivity to forcing (figure 6). Forested ecosystems
show high apparent model sensitivity to shortwave
radiation, whereas arid, high latitude and high altitude
regions show high apparent model sensitivities to
temperature and precipitation. In general, precipita-
tion induced uncertainty has a relatively strong
association to apparent model sensitivity in both
magnitude and spatial extent, comparing to tempera-
ture and shortwave radiation induced uncertainty.
Figure 7 shows aggregation of the fractional contri-
butions of apparent model sensitivity and climate data
range for each climate variable globally and for each
land cover class, via averaging the local fractional
contributions (figure 6). Apparent model sensitivity
for shortwave radiation causes a slightly higher
uncertainty in forested areas compared to other land
cover classes. Although precipitation induced uncer-
tainty strongly associated to the precipitation range,
the importance of apparent model sensitivity is
revealed in dry and tropical ecosystem. The uncer-
tainty induced from temperature is mainly caused by
the temperature range among the datasets, while
apparent model sensitivity contribution increased in
boreal ecosystems.

4. Discussion

This study reveals that differences between global
climate datasets induce considerable uncertainty in
simulated gross primary productivity in our model.
The data uncertainty stems from differences in the
data sources and methodology used to construct
the climate datasets, and from the sensitivity of the
modeled processes to these differences globally and for
different climatic regions and land cover classes.
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among six climate datasets. This result is derived from averaging local GPP uncertainty globally and for each land cover class. Red, blue
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large contributors to global GPP uncertainties stemming from differences between climate datasets.
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4.1. Suitability of the model for this study

By using only a single model (LPJ-GUESS), our
analysis excludes quantification of uncertainty stem-
ming from differences in the structure and parame-
terization of alternative carbon cycle models.
However, LPJ-GUESS is a well-established DGVM
that has been evaluated and applied in a wide range of
published studies, and has also been found to show
relatively similar predictive skills and response to
climate variations compared to other global ecosystem
models (McGuire et al 2012, Murray-Tortarolo et al

2013, Piao et al 2013, Sitch et al 2015). Most models
simulate similar GPP inter-annual variations at global
scale, and these have been traced to large-scale
variations in climate, particularly linked to global
circulation phenomena such ENSO (Ahlström et al

2015). While our study does not address variation
among models in sensitivity to climate forcing, we
believe that our findings are likely to be representative
for global ecosystem models as a class. LPJ-GUESS
may thus tentatively be considered representative for
how other DGVMs and carbon cycle models behave in
response to uncertainties induced by climate forcing
data. Although FLUXCOM and MODIS are consid-
ered as evaluation data in this study, both datasets
involve considerable components of modeling (addi-
tionally to the measurement uncertainty) and are
therefore also subject to some limitations and
uncertainty (Zhao et al 2006, Jung et al 2011, Lin
et al 2011). Further, both empirical datasets depend on
climate data to extrapolate site measurements to
gridded estimates of GPP. Previous studies have
evaluated sources of uncertainty in the FLUXCOM
(Jung et al 2009, Beer et al 2010, Jung et al 2011), and
MODIS GPP products (Running et al 2004, Zhao et al
2005, Zhao and Running 2010).

4.2. Climate data and climate induced uncertainty

The six climate datasets analysed are derived from
either quasi-point-based measurements or climate
model-based reanalysis. Station networks, however,
vary greatly in density across the globe, with sparse
coverage over certain areas, such as the high latitudes
(Jones and Harris 2013). Hence the data represent a
limited sampling fraction and include an unknown
error. Comparing the three main climatic variables of
these datasets (figures S10–S12) reveals no strong
overall difference in temperature over global and
regional scales while a clear difference can be observed
for precipitation and shortwave radiation, especially
over tropical regions. Our results bring forward that
these differences translate into large differences in
simulated GPP in our model, and likely in other
carbon cycle models.

The potential maximum climate induced uncer-
tainty, if we combine climate variables from different
datasets, is found to be 32% of mean GPP. Although
the potential maximum uncertainty appears large,
Barman et al (2014) found that the climate induced

uncertainty could reach 20%–30% for simulations of
savanna, grassland, and shrubland vegetation types.
However, the way the maximum potential uncertain-
ties are calculated here assumes that the most extreme
values of each climate variable at each location are
compared to create the simulated maximum and
minimumGPP. Thismaximumuncertainty is therefore
rather an illustration of the importance of climate
drivers and to a lesser extent a representation of actual
and realistic uncertainties; in most simulations cancel-
lation effects will reduce the aggregated uncertainties
presented here.

The tropical region shows disproportionate large
climate induced uncertainty (figure 5) and empirical
uncertainty based on observations (figure 3(e)).
Earlier studies have likewise identified the tropics as
a region of high spread in estimated GPP depending
on forcing (Zhao et al 2006, Poulter et al 2011,
Ahlström et al 2012b, Anav et al 2015). Data
limitations are likely to be an important source of a
high model spread in GPP. Meteorological station
networks are generally sparse across the tropics
(Medany et al 2006). Moreover, characterization of
the climate, as based on measurements and modeling,
is challenging for tropical regions due e.g. to the
influence of extreme climate events (Trewin 2014,
Wentz 2015) and the impact of heavy and extended
cloudiness on remote sensing measurement (Fensholt
et al 2007). Furthermore, the results show that the
large uncertainty is mainly due to precipitation and
radiation, which coincides with findings at site level of
Barman et al (2014). Jung et al (2007) suggested that
cloud and aerosol physics (which govern precipitation
and radiation transfer) are most likely the principal
causes of differences in precipitation and radiation
estimates between datasets, since cloud and aerosol
properties are implemented differently in different
meteorological reanalyses. Our finding as to the global
distribution of climate-induced uncertainty in GPP
(figure 4) agrees with a recent empirically based study
of the sensitivity of global terrestrial ecosystem to
climate variables (Seddon et al 2016), who found
ecologically sensitive regions with amplified responses
to climate variability over the world. Moreover, the
relative contributions of drivers show similarities in
spatial patterns compared to the study by Nemani et al
(2003) mapping the primary climate constraints to
plant growth.

4.3. Apparent model sensitivity and climate data

range

Overall, climate data range contributes more uncer-
tainty to simulated global GPP than the sensitivity of
the simulated ecosystem processes to climate forcing.
This implies that errors in climate datasets play an
important role in model-based carbon cycle estima-
tions, and may exceed the importance of shortcomings
in ecosystem model structure or parameterisation. We
found that GPP uncertainties in simulations by our
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model are associated strongly to precipitation in large
spatial extent (figure 4). In contrast to the general case
described above, precipitation induced uncertainty in
dry and tropical ecosystem is also relatively strong
associated to apparent model sensitivity to the climate
forcing (figures 6(c) and (7)). In other words, LPJ-
GUESS simulated GPP has a strong sensitivity to
precipitation at the global scale, though a model
intercomparison study suggests DGVMs in general
may be even more sensitive to precipitation than LPJ-
GUESS (Piao et al 2013). Recent studies emphasize the
importance of precipitation variation in controlling
vegetation growth, driving inter-annual variability and
dominating uncertainty in predictions of future plant
production (Beer et al 2010, Ahlström et al 2012a,
Ahlström et al 2015).

4.4. Limitations

Aside from limitations, discussed in section 4.1, to the
generality of our findings due to the choice of a single
(though arguably representative) carbon cycle model,
this study is limited by the availability of independent
climate datasets. The six climate datasets used here are
relatively few to accurately estimate ensemble sum-
mary statistics, therefore we decide to combine climate
variables of the different datasets to assess the potential
maximum climate induced uncertainty. Current
(Model Intercomparison Projects) MIPs do use
climate forcing that are combinations of other datasets
(e.g. Séférian et al (2015)), which is valuable to
investigate the influence of differences between climate
datasets. We apply the multiple linear regression
methodmainly because the different datasets vary only
to a limited extent and therefore the assumption of a
linear response of GPP is reasonable. If larger
differences between the datasets would have been
found in the screening of the data, a non-linear
parameterization of the relationship between GPP and
the climate variables would have been required (e.g.
GPP is positively related to temperature over a certain
part of the temperature gradient but too high
temperature can cause drought stress). The partition-
ing between uncertainty stemming from apparent
model sensitivity and data uncertainty should
therefore be considered indicative and exact numbers
are not reported here. Moreover, previous studies
(Piao et al 2013, Seddon et al 2016) have addressed
empirically linear relationship between vegetation
productivity and climate.

We acknowledge that dependencies between the
three climate variables exist, but since we are interested
in the response of the model to differences in the
climate data we consider these potential inter-
dependences as less important for our purpose.
Two-way or three-way interactions among climate
variables can be substantial for both carbon and water
processes. These multiple forcing interactions are not
included in this study due to a small contribution to
GPP variability (figure S5). It will be a future research

challenge to adequately quantify interactive climatic
uncertainty and corresponding apparent model
sensitivity and interactive climatic data range.

5. Conclusion

We have shown that climate data uncertainties have a
large influence on simulated GPP, globally and
regionally, and that this uncertainty arises from a
combination of differences among driver datasets and
the sensitivity of simulated ecosystem processes to
climate forcing. Based on our findings, we argue in
favour for increased research efforts in constructing
historical climate datasets in tropical areas which are
found here to be of disproportionate importance for
climate uncertainty with potentially large implications
for assessments of global carbon cycling and
sequestration. Globally and regionally, the choice of
climate dataset will continue to affect both empirical
data products and model results on the terrestrial
carbon cycle.
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