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Abstract

The panel data approach with fixed effects has emerged as the preferred
method to uncover the effects of climate change on economically relevant out-
comes using historical weather data. While the panel method has been criticized
for its purported inability to account for long-run adaptation, it has been ar-
gued that including nonlinearities in explanatory weather variables makes cross-
sectional variation in climate enter coefficient identification, suggesting that the
estimates obtained from a nonlinear, fixed-effects panel model at least partially
reflect long-run adaptation. We formalize this argument in the context of the pop-
ular quadratic specification and show that (i) skewness in the historical weather
data conditional on location is an essential driver of the bias in the panel estimates
relative to the underlying long-run values, and can result in bias in either direction,
(ii) in the absence of such skewness, the panel estimates are a convex combination
of the short-run and long-run coefficients, and (iii) the panel estimates reflect the
long-run valueswhenever the cross-sectional variation in climate “dominates” the
location-specificweather fluctuations, in a sense thatwemake explicit. We use our
framework to revisit impact estimates from nonlinear panel approaches published
in the last decade. We find that for large countrywide or global panels, estimates
of the effect of temperature primarily represent the long-run response, due to the
large cross-sectional variation within these panels. In contrast, our calculations
suggest that estimates of the effect of precipitation on outcomes reflect a more
even combination of long- and short-run responses.

† Agricultural and Resource Economics, University of California, Davis, 1 Shields
Ave, Davis, CA 95616. Email: merel@primal.ucdavis.edu. The authors thank Ariel
Ortiz-Bobea for providing data on French weather at the department level.
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1 Introduction

The panel data approach with fixed effects has emerged as the preferred method
to uncover the effects of climate change on economically relevant outcomes using
historical weather data, mainly due to its ability to control for time-invariant omitted
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variables that may confound the effect of climate in pure cross-sectional studies (Burke
et al., 2015; Blanc and Schlenker, 2017).

Despite its growing popularity, the panel method has been criticized for its pur-
ported inability to account for long-run adaptation to climate due to its reliance on
weather fluctuations rather than climate differences (Auffhammer et al., 2013; Burke
andEmerick, 2016;MendelsohnandMassetti, 2017). Deschênes andGreenstone (2007),
who first introduced the panel approach to climate change impact assessment, write
that “it is impossible to estimate the effect of the long-run climate averages in a model
with county fixed effects, because there is no temporal variation in [climate variables].”
To the extent that warming causes negative effects on the outcome of interest that can
be mitigated through climate adaptation, the bias on the panel estimate of the ef-
fect of warming (relative to the underlying long-run value) would be away from zero
(Deschênes and Greenstone, 2011).1

Other studies have argued that including nonlinearities in explanatory weather
variables makes cross-sectional variation re-enter coefficient identification, suggesting
that the estimates obtained from a nonlinear, fixed effects panel model at least partially
reflect long-run adaptation (McIntosh and Schlenker, 2006; Lobell et al., 2011; Burke
et al., 2015; Schlenker, 2017; Blanc and Schlenker, 2017). Yet the extent to which
such estimates should be thought of as inclusive of such adaptation remains unclear.2
Whether and howmuch damage estimates obtained from nonlinear panel data reflect
the underlying long-run adaptation potential is critical to their relevance for climate
policy. One legitimate fear is that overly pessimistic short-run estimates in a context
where significant adaptation potential exists might steer policy makers into making
suboptimal policy choices or misdirecting public funding aimed at addressing the
impacts of climate change. For instance, unduly pessimistic economic impact estimates
could encourage policy makers to engage in costly mitigation efforts with uncertain
and distant payoffs.

In this paper, we address the long-run nature of nonlinear panel estimates for a
commonly used quadratic specification in weather variables. Although our formal
results are derived for this particular specification, the insights they provide are more
general. First, we show that in addition to the actual extent of long-run adaptation

1This is true even in the case where the outcome variable is the value of an optimization problem, in
which case the short- and long-run responses are identical to the first-, but not necessarily the second-
order (Hsiang, 2016).

2For instance, Burke et al. (2015) write that “using both [...] sources of variation implicitly allows
for more historical adaptation to longer-run climate, although the short-run changes in temperature that
affect output remain unanticipated.”



undertakenby agents, skewness in thehistoricalweather data conditional on location is
an essential driver of the bias in the estimates obtained from the panel model relative
to the underlying long-run values. This skewness can actually cause bias in either
direction.

We then show that in the absence of skewness, the panel coefficient estimates of the
quadratic relationship can be written as a convex combination of the underlying short-
run and long-run coefficients. The decomposition reveals that the panel estimates
reflect long-run values whenever the cross-sectional variation in climate “dominates”
the location-specific weather fluctuations, in a sense we make analytically explicit.
Said differently, panel estimates of the weather-outcome quadratic relationship can be
thought of as a weighted average of short- and long-run responses, with the weight
on the long-run parameters increasing with the share of the overall weather variation
attributable to cross-sectional differences. In large countries like theUSwherevariation
in climate across space dominates location-specificweather fluctuations, existing panel
estimates should thus be considered as already reflecting a significant share of the
historical climate adaptation. For instance, calculations based on our derivations
for quadratic models indicate that panel coefficient estimates obtained from county-
level weather data across the years 1950–2015 are heavily weighted towards long-run
parameter values, namely 98% for average spring-summer temperature and 67% for
precipitation.

2 A simple model of long-run adaptation to climate

Our model of long-run adaptation to climate links an outcome variable y (e.g., the
logarithm of farm profits) to weather x and climate µ. There are I locations (e.g.,
counties) indexed by i andT periods (e.g., years) indexed by t fromwhich observations
are drawn. We assume the following regarding the data-generating process (DGP).

First, weather is defined as a random variable centered around climate, that is,

Assumption 1
E[xit |µi] � µi .

As in McIntosh and Schlenker (2006), we assume that the outcome depends
quadratically on both climate andweather.3 This choice of a quadratic functional form

3This specification is also used in Ihlanfeldt and Willardsen (2017).



in weather allows to capture non-monotonicities and non-linearities in the weather-
outcome relationship.4

Assumption 2 The DGP takes the following form:

yit � αi + β1xit + β2x2
it + β3

(
xit − µi

)2
+ εit . (1)

Finally, we make the usual strong exogeneity assumption that allows consistent
estimation of β �

(
β1 , β2 , β3

)
using the fixed-effects estimator for the correctly specified

model.
In model (1), climate is fixed over time, that is, the weather realizations xit are

realizations of a random variable with time-invariant mean µi . Climate µi enters
through the penalty term β3

(
xit − µi

)2, where it is expected that β3 ≤ 0. The inter-
pretation is that economic agents respond both to weather shocks and climate signals,
but that, consistent with the classic definition of short-run and long-run production
functions, the set of adaptation channels is larger in the long run than in the short
run. For instance, as pointed out by Auffhammer and Schlenker (2014) in the context
of agriculture, a one-year drought might not warrant the construction of an irrigation
channel, yet it may be worth doing so in an arid climate. Similarly, an exceptional heat
wave might not warrant installation of an air conditioning system, but it may trigger
the purchase of a powerful ceiling fan. These examples parallel the idea that a firm’s
capital may be fixed in the short run yet variable in the long run. Here, the underlying
assumption is that long-run inputs respond to climate while short-run inputs respond
to both weather and climate.

Besides the presence of long-run investments, an element that may underlie dif-
ferent short-run and long-run responses is that it may take time and experience to
successfully adapt to a particular situation. The basic idea behind the specification
with quadratic penalty term is that conditional on weather, locations that are used to
(have experienced) this weather because their climate is closer to it will fare better,
other things being equal, than locations for which that particular weather realization
happens to be an outlier—because they have hadmore opportunities to adapt to it. For
instance, it is a generally accepted view that locations in hotter climates have adapted
to heat better than locations in cooler climates. Similarly, countries exposed to seawa-
ter penetration, like the Netherlands, are likely better adapted to sea-level rise than
land-locked countries. Note that this specification is admittedly restrictive in the sense

4For an example of a different nonlinear model structure that still allows for an interaction between
weather and climate, see Schlenker et al. (2013).



that it is the absolute distance between climate and current weather that determines
the extent of the penalty, but not the sign of the difference. That is, if a location in a
hot climate and another one in a cold climate are both exposed to the mean of their
climates, the short-run penalty will be the same for both locations.

[Figure 1 about here.]

The specification in Equation (1) also has a structural behavioral interpretation. It is
a special case of the behavioral framework proposed by Schlenker (2017) in the context
of crop yields, whereby the coefficient β3 is allowed to depend on an endogenous
index γi , interpreted as a crop variety chosen by farmers based on the mean weather
µi and its variance σ2

i , and the index γi replaces µi in the penalty term. In this
setting, the penalty might not be minimized where climate equals the current weather
occurrence, as expected-yield-maximizing farmers may choose varieties that are not
the best-performing ones under their mean weather (γi , µi) if the chosen varieties
are also less sensitive to weather fluctuations. If β3 does not depend on γi however,
the richer model reduces to specification (1) (γi � µi) as farmers would get no benefit
from choosing a variety less suitable for their mean weather. Schlenker (2017) shows
that the model flexibility afforded by letting β3 vary with γi does not translate into
meaningful differences in long-run coefficient estimates for US corn yields.

The simple specification in equation (1) leads to clearly defined short-run and
long-run responses to weather/climate. In the long run, weather shocks are perceived
as climate shocks and the whole suite of adaptations is taken by economic agents,
resulting in a zero penalty term:

E[yLR
i |αi , µi , xi] � αi + β1xi + β2x2

i . (2)

In the short run, agents have adapted to their idiosyncratic climate µi and therefore

E[ySR
i |αi , µi , xi] � αi + β1xi + β2x2

i + β3
(
xi − µi

)2
. (3)

Figure 1 depicts the resulting responses toweather/climate for a collection of locations
with different climates in the instancewhere β2 < 0 (dome-shaped long-run response).
Response curves are scaled vertically so that αi is the same across locations. If not,
individual short-run and long-run curves are obtained from the depicted ones by
vertical translations, with theproperty that for given location there is tangencybetween
the long-run and short-run responses precisely at the weather realization xi � µi .



With this simple framework in mind, we now explore the consequences of using a
“naive” quadratic panel approach that ignores the penalty term for the identification
of long-run impacts. This type of model remains a staple of climate change impact
analysis (Deschênes and Greenstone, 2007; Lobell et al., 2011; Lobell and Field, 2011;
Gourdji et al., 2013; Annan and Schlenker, 2015; Burke et al., 2015; Kawasaki and
Uchida, 2016; Cooper et al., 2017; Hsiang et al., 2017),5 as it is a convenient way of
allowing for non-monotonicities and non-linearities in the weather-outcome relation-
ship. Such non-monotonicities in weather or climate are an essential feature of many
real-world phenomena, as has been argued extensively in recent literature (Burke et al.,
2015; Carleton andHsiang, 2016). Quadratic specifications have also remained popular
in the cross-sectional Ricardian literature (Schlenker et al., 2006; Fezzi and Bateman,
2015) as well as in pure time-series approaches (Lobell et al., 2007).

We take the long-run coefficients βLR �
(
β1 , β2

)
as the benchmark against which to

evaluate coefficient estimates because they reflect the long-run relationship that ismost
critical in evaluating the net effects of climate change on economic outcomes (Mendel-
sohn et al., 1994; Burke and Emerick, 2016; Hsiang, 2016). Importantly, we only explore
the impact of ignoring the penalty term and do not investigate the consequences of
other types of model misspecification.

To fix ideas, we begin with the simpler case where β2 � 0, that is, the long-run
impact is linear in xit while the short-run impact is quadratic (and therefore dome-
shaped). As will be clear, this simple model is crucial in understanding the extent to
which the naive panel estimates may be biased away from the underlying long-run
coefficients.

3 Asymptotic bias with a linear long-run effect

In this section we assume that β2 � 0, therefore the DGP is

yit � αi + β1xit + β3
(
xit − µi

)2
+ εit

� αi + β3µ
2
i +

(
β1 − 2β3µi

)
xit + β3x2

it + εit (4)

and the long-run marginal effect of x on y is given by parameter β1. The naive model
is

yit � ai + b1xit + eit (5)

5Annan and Schlenker (2015) use degree-day regressors to model a crop’s exposure to temperature
but still use a quadratic in growing-season precipitation, as did Schlenker and Roberts (2009).



estimated with the fixed-effects (within) estimator.
We adopt the notation of McIntosh and Schlenker (2006). We write the demeaned

variables as Üyit ≡ yit −
∑

t yit
T , Üxit ≡ xit −

∑
t xit
T , and Ûx2

it ≡ x2
it −

∑
t x2

it
T . We consider the

asymptotic case where T →∞.
We are interested in the asymptotic bias asT →∞ of the estimatedmarginal impact

of xit on yit , which in this simple model with linear effect of weather is simply equal
to

Bias � plim b̂1 − β1 ,

where b̂1 is the within estimator in model (5).
Define

M i
Üx2 ≡ plim T−1

∑
t

Üx2
it

and
M i
Üx3 ≡ plim T−1

∑
t

Üx3
it .

We show in Appendix A.2 that the resulting asymptotic bias is equal to

Bias � β3

∑
i M i
Üx3∑

i M i
Üx2

. (6)

Expression (6) first shows that the size of the bias is proportional to the extent of
adaptation being ignored in the estimatedmodel (β3). This is intuitive, as if there were
no long-run adaptation (β3 � 0) then the estimatedmodelwould be correctly specified.
The expression further shows that relying on the panel approach without considering
adaptation can result in bias on the marginal effect (relative to the underlying long-
run coefficient β1) in either direction. In the case where β1 < 0, the panel approach
may either under- or over-estimate the negative effects of an increase in, say, average
temperature. This result contrasts with the common acceptance that panel models
capture short-run effects that overestimate long-rundamages due to lack of adaptation.
Finally, the expression shows that the bias is entirely driven by the skewness in the
weather data conditional on location. If the weather data has a systematic positive
skew (

∑
t Üx3

it > 0), and β1 < 0, then the panel estimate overestimates the damage from
an increase in xit , consistent with the common expectation. But if the weather data
has a negative skew, then the panel estimate underestimates this damage.

What is the intuition behind this finding? Clearly, if the omitted variable
(
xit − µi

)2,
which asymptotically becomes Üx2

it , were uncorrelated with the included regressor xit ,



no bias in b1 would obtain. This is precisely what happens when the weather data
shows no skewness, because then larger values of Üxit are not systematically associated
with larger values of Üx2

it .6 In particular, if the weather distribution is symmetric, for
each positive value of Üxit there is an equally probable negative one that has the same
square. Now assume, for instance, that the weather data shows positive skewness.
Assuming the weather distribution is unimodal, this implies that the distribution
displays a fat or long tail towards values larger than the mean. Since β3 ≤ 0, large,
positive weather shocks Üxit will be correlated with large (in magnitude) penalties, and
the estimate b̂1 will thus be biased towards more negative (or less positive) values.

[Figure 2 about here.]

Figure 2 illustrates the possible consequences of the skewness-induced bias on
climate change impact predictions when the DGP exhibits a linear long-run response
function. Herewe have assumed that theweather distributions conditional on location
are right-skewed, which results in a negative bias on themarginal effect ofweather. Re-
gardless of the point of evaluation, the estimated model will overestimate the negative
effects of increases in the weather variable on the outcome.

How much does the skewness-induced bias matter in practice? Because the bias
depends on the adaptation potential, as captured by β3, it is impossible to answer
that question generally. Whether the bias matters also depends on the magnitude of
the underlying long-run marginal effect β1. Nonetheless, one may look at particular
contexts, for instance crop agriculture. Gammans et al. (2017) find that a 1◦C uniform
warming will result in a 4.1% decrease in wheat yield in France. Assuming that yit

denotes the logarithm of wheat yield in Equation (4), this would translate into a value
β1 � −0.041.7 If one believes that a 1◦Cdifference between climate and currentweather

could cause a 1% yield penalty, then the bias due to skewness would be −0.01×
∑

i M i
Üx3∑

i M i
Üx2
.

Using department-level weather data over the period 1950-2016, we calculate that∑
i M i
Üx3∑

i M i
Üx2
� 0.13. Therefore, we expect the bias to be -0.0013 for a marginal effect of -0.041,

which is negligible.

6Formally, the covariance between the included regressor xit , and the omitted variable Üx2
it , is equal

to E[ Üx3
it].

7Of course, the predicted effect might not be reflecting the underlying long-run parameter, but it
provides an order of magnitude.



4 Asymptotic bias with a non-linear long-run effect

In this setting, the naive model is

yit � ai + b1xit + b2x2
it + eit (7)

while the DGP is still given by equation (1).

4.1 General bias

Here we derive a general expression for the bias of the estimated marginal effect of
climate. Because of the nonlinearity in both the DGP (1) and the estimated model (7),
this marginal effect now depends on the point of evaluation, which we will denote as
µ. In the naive model, the estimated marginal effect is b̂1 + 2b̂2µ, whereas the true
long-run marginal effect is β1 + 2β2µ. Therefore, the bias evaluated at climate µ is

Bias(µ) � plim b̂1 − β1 + 2µ
(
plim b̂2 − β2

)
. (8)

Let us further define

M i
( Üx2−Üx2)2 ≡ plim T−2

∑
s ,t

(
Üx2

is − Üx
2
it

)2
.

We show in Appendix A.3 that the asymptotic bias resulting from the use of the naive
model (7) can be written as

Bias(µ) � −
2β3N

D
(9)

with

N � −
∑

i

M i
Üx3

[∑
i

(
µi − µ

)
M i
Üx3 + 2

∑
i

µi
(
µi − µ

)
M i
Üx2

]
+

∑
i

(
µi − µ

)
M i
Üx2

[
2
∑

i

µi M i
Üx3 +

∑
i

M i
( Üx2−Üx2)2

]
(10)



and

D � −
(∑

i

M i
Üx3

)2

+ 4
∑

i

M i
Üx2

∑
i

µi M i
Üx3 − 4

∑
i

M i
Üx3

∑
i

µi M i
Üx2

+

∑
i

M i
Üx2

∑
i

M i
( Üx2−Üx2)2 + 4

∑
i , j

(
µi − µ j

)2 M i
Üx2 M j

Üx2 (11)

where the summation
∑

i , j in Expression (11) is taken over all un-ordered bundles of
indices i and j. Because of the terms involving M i

Üx3 , as in the linear case the sign of the
bias is generally ambiguous. However, the bias is not purely driven by the skewness
of the weather data any more. In order to investigate the other source of bias, in the
next section we specialize the analysis to the case M i

Üx3 � 0. In that case, we show that
a bias still arises that results from the conflation of long-run and short-run responses.
Specifically, when M i

Üx3 � 0 the panel estimates of β1 and β2 can be conveniently written
as the same convex combination of the long-run and short-run underlying parameters,
where the short-run parameters are evaluated at a composite climate µ that we make
explicit. As a result, the estimated quadratic curve in the naive model is directly
interpretable as a weighted average of long-run and short-run responses, that is, it
captures some, but not all, of the long-run response.

4.2 Bias when the weather distribution is not skewed

When M i
Üx3 � 0 ∀i, the asymptotic bias as T →∞, evaluated at climate µ, simplifies to:

Bias(µ) � −2β3

∑
i
(
µi − µ

)
M i
Üx2

∑
i M i
( Üx2−Üx2)2∑

i M i
Üx2

∑
i M i
( Üx2−Üx2)2 + 4

∑
i , j

(
µi − µ j

)2 M i
Üx2 M j

Üx2

. (12)

Furthermore, we show in Appendix A.4 that the fixed-effects estimator b̂ �

(
b̂1

b̂2

)
from the naive model (7) converges in probability towards a convex combination of

the underlying long-run coefficients βLR �

(
β1

β2

)
and the location-specific short-run

coefficients βSRi �

(
β1 − 2β3µi

β2 + β3

)
:

plim b̂ �
(
1 − θ̄

)
βLR + θ̄

∑
i

λiβ
SR
i (13)



where

θ̄ �

∑
i M i
Üx2

∑
i M i
( Üx2−Üx2)2∑

i M i
Üx2

∑
i M i
( Üx2−Üx2)2 + 4

∑
i , j

(
µi − µ j

)2 M i
Üx2 M j

Üx2

(14)

and

λi �
M i
Üx2∑

j M j
Üx2

. (15)

[Figure 3 about here.]

Importantly, the contribution of each location’s short-run parameters in decomposition
(13) canbe replacedby the short-runparameters of a “composite” location,with climate
equal to the weighted average

∑
i λiµi , that is,

plim b̂ �
(
1 − θ̄

)
βLR + θ̄βSR∑

i λiµi
(16)

where βSR∑
i λiµi

�

(
β1 − 2β3

∑
i λiµi

β2 + β3

)
.

Expressions (12) and (15) imply that if the marginal impact of climate is evaluated
at the weighted climate µ̄ �

∑
i λiµi , then the naive estimate has no bias, that is, it

reflects the underlying long-run slope. Said differently, at the margin, the estimated
relationship is correctwhen evaluated at the particular climate value µ̄. While previous
research has already argued that short-run and long-run responses should be identical
at the margin whenever the outcome variable is being optimized (e.g., Hsiang (2016)),
our result is both different and more specific. First, we have shown that the estimated
relationship is not the short-run response, but instead a weighted average of the short-
run and long-run responses. Second, our analysis makes explicit at what particular
point one should expect tangency between the estimated response and the underlying
long-run response: it is aweighted average of the locational climates, where theweight
for location i is that location’s contribution to the overall time-series variation

∑
i M i
Üx2 .

Because locations may contribute differently to time-series variation, the tangency will
generally not occur at the mean climate.

The quadratic relationship obtained from the naive model departs globally from
the true, underlying long-run relationship. This departure is illustrated in Figure 3.
Because the inferred marginal impact is correct at µ̄, the “true” and “estimated” re-
lationships are tangent at µ̄ (the curves have been vertically scaled so that the value
of y is the same at µ̄). However, at any other evaluation point, inference based on
first-order effects will be biased. For µ < µ̄, the slope of the estimated relationship is



less negative, implying positive bias (less negative or more positive marginal effect), as
illustrated with the evaluation point µ1 in the figure. In contrast, for µ > µ̄ there is
negative bias (more negative or less positive marginal effect). Studies that compute net
impacts by aggregating panel-specific impacts are therefore summing positively and
negatively biased effects. Depending on the underlying structure of weather fluctu-
ations across panels (as captured by the λi parameters), the magnitude of predicted
climate changes for each panel, and the weighting scheme used in aggregation, the net
impact may be biased in either direction. For instance, if the outcome variable is crop
yield, theweather variable is temperature, and planted areas are used asweights in the
aggregation, the net bias may be positive if panels with relatively large areas and/or
subject to the largest increase in temperature are also those with a cooler climate (a
lower value of µi).

Importantly, due to the relative positions of the two curves, there is generally bias
if one goes beyond first-order effects and uses the globally estimated relationship for
counterfactual estimation, evenwhen starting from the climate average µ̄. For instance,
moving from µ̄ to the new climate µ2 > µ̄, there is a negative bias on the global effect
when using the estimated relationship. This gives credence to, while formalizing it,
the idea that panel models would tend to overestimate the negative effects of warming
due to their (partial) reliance on weather variation.

Expressions (13) and (14) further imply that the estimated response will be close to
the underlying long-run response whenever∑

i

M i
Üx2

∑
i

M i
( Üx2−Üx2)2 <<

∑
i , j

(
µi − µ j

)2 M i
Üx2 M j

Üx2 . (17)

This condition has a nice interpretation. First, note that the naive model can only be
identified if there is time-series variation conditional on location, that is,

∑
i M i
Üx2 > 0.8

Also note that M i
Üx2 � 0 ⇒ M i

( Üx2−Üx2)2 � 0, so that if a location displays no time-series
variation in weather, its index can be removed from all summations in condition (17).
We can therefore limit ourselves to locations for which M i

Üx2 > 0. Condition (17)
essentially implies that in order for b̂ to be close to the long-run parameter values,
the time-series variation in weather, as captured by the terms M i

( Üx2−Üx2)2 , must be small

relative to the cross-sectional variation in climate, captured by the terms
(
µi − µ j

)2.
Note that if M i

( Üx2−Üx2)2 � 0 ∀i, then the identified parameter vector b̂ is consistent

8Otherwise, both xit and x2
it are constant conditional on location in Equation (7), and therefore vector

b cannot be identified due to the inclusion of the fixed effects αi .



for the vector of long-run parameter values. Given the definition of M i
( Üx2−Üx2)2 , this

condition is equivalent to saying that, in a given location, weather takes on only
two equiprobable values.9 In that case, the penalty term β3

(
xit − µi

)2 is constant
conditional on location and is thus collinear to the fixed-effects vector. Therefore, this
penalty term is no longer present in the error term eit of the naive fixed-effects model
(7) and the bias naturally disappears. Therefore, if the time-series variation in the
weather data is purely binary (say either hot or cold weather), then this simple source
of variationwill allowparameter identificationwithout causing bias.10 Said differently,
it is not the existence of time-series variation per se ( Üxit > 0) that contaminates the naive
estimates (in fact, such variation is essential for parameter identification), but rather the
existence of variation in the absolute departures from climate in the time series ( Üx2

is , Üx
2
it).11

In summary, when estimating a naive model that omits the penalty term capturing
adaptation, one should expect to estimate a response that is a weighted average of the
underlying long-run response and the locational short-run responses, at least if the
weather data is not skewed. Whether the estimated relationship leads to an under-
or over-estimate of the impact of a change in climate will depend on the point of
evaluation and the size of the change considered. If the initial climate is chosen at
the tangency point between the estimated and underlying responses, the estimated
relationship will produce impact estimates that are overly pessimistic.

4.3 Decomposition in the general case

Going back to the general case where M i
Üx3 , 0, Equation (10) implies the existence of a

point (climate) where there is no bias on the marginal effect. This climate is given by

µ̃ �

∑
i µi M i

Üx2

[
2
∑

i µi M i
Üx3 +

∑
i M i
( Üx2−Üx2)2

]
−∑

i M i
Üx3

[∑
i µi M i

Üx3 + 2
∑

i µ
2
i M i
Üx2

]
∑

i M i
Üx2

[
2
∑

i µi M i
Üx3 +

∑
i M i
( Üx2−Üx2)2

]
−∑

i M i
Üx3

[∑
i M i
Üx3 + 2

∑
i µi M i

Üx2

] . (18)

In addition, a simple calculation shows that the naive parameter estimate b̂ can be
decomposed into

plim b̂ �

(
1 − θ̃

)
βLR + θ̃βSRµ̃ (19)

9Because then all deviations from the mean are equal in magnitude, which implies M i
( Üx2−Üx2)2 � 0. In

all other instances, M i
( Üx2−Üx2)2 > 0.

10Note that this is a consequence of our assumption that the penalty depends only on the absolute
distance between weather and climate.

11McIntosh andSchlenker (2006) indicate that the naivemodelwill yield the long-runparameter values
only if β3 � 0. Here we have essentially shown that there is no bias either if β3 , 0 but

∑
i M i
( Üx2−Üx2)2 � 0.



for

θ̃ �

∑
i M i
Üx2

[
2
∑

i µi M i
Üx3 +

∑
i M i
( Üx2−Üx2)2

]
−∑

i M i
Üx3

[∑
i M i
Üx3 + 2

∑
i µi M i

Üx2

]
D

(20)

where D is given by Equation (11) and βSRµ̃ �

(
β1 − 2β3µ̃

β2 + β3

)
is the vector of short-run

parameters evaluated at climate µ̃. However, unlike the case where M i
Üx3 � 0 ∀i, there

is no guarantee that the convexity parameter θ̃ lies between zero and one, or that
the composite climate µ̃ lies within the range of climates µi observed in the sample.
In the empirical application below, we show that for three existing weather datasets
used in the recent climate change literature, skewness only plays a minor role in the
decomposition of the estimated response into its short-run and long-run components.

5 Empirical application

Armed with a better understanding of how climate adaptation is captured by a
quadratic specification, we can now revisit existing panel estimates by looking at
the nature of the weather variation used. We consider three datasets that have been
previously studied in the climate impact assessment literature. First, we consider a
67-year panel of French department-level (I � 88) average temperature and cumulative
precipitation across the wheat and barley growing season of March through July. This
data was previously analyzed in Gammans et al. (2017). Second, we consider a 66-year
US county-level (I � 3, 037) panel of spring-summer average temperature and cumu-
lative precipitation in the contiguous United States. Many studies have used similar
data to investigate how various outcomes respond to weather in the US (Schlenker
and Roberts, 2009; Burke and Emerick, 2016).12 Third, we apply our methodology to
the global panel of country-level (I � 167) annual mean temperature and precipitation
used in Burke et al. (2015).13 Although not every study has used quadratic specifi-
cations (or perhaps not for every weather variable included), we can get a sense of
how close to the long-run response the identified relationships could reasonably be
expected to lie by computing the parameter θ̄ in Equation (14).

Results of these calculations are shown in Table 1. Recall that θ̄ is the weight on the

12Our calculations were performed based on the weather data made available by Wolfram Schlenker
at http://www.columbia.edu/~ws2162/dailyData.html.

13Our calculations rely on data made available by Burke et al. at https://web.stanford.edu/
~mburke/climate/data.html

http://www.columbia.edu/~ws2162/dailyData.html
https://web.stanford.edu/~mburke/climate/data.html
https://web.stanford.edu/~mburke/climate/data.html


short-run parameter values and that µ̄ is the composite climate at which the estimated
marginal response is equal to the long-run response. Calculations of θ̄ and µ̄ assume
that M i

Üx3 � 0, i.e., asymptotically there is no skewness in the weather data. In contrast,
calculations of θ̃ and µ̃ assume that M i

Üx3 � T−1 ∑
t Üx3

it , i.e., the probability limit of
T−1 ∑

t Üx3
it is equal to its sample analog. For the data tested here, we find that allowing

for skewness in the weather data does not meaningfully change the calculated values.
For calculations of µ̄ and µ̃, units for temperature are degrees Celsius and units for
precipitation are millimeters. For each weather dataset, we construct 1,000 simulated
datasets by sampling yearswith replacement. We sample years rather than individuals
in order to preserve the spatial correlation within the data, since weather in highly
correlated across space. For each simulated dataset we calculate the value of interest
and report the standard deviation of these simulated values in parenthesis. These
values represent the uncertainty in our calculated values due to the fact that, for all
calculations, we rely on the sample analogs of asymptotic values.

For temperature data, we find that estimates of the effect of growing season tem-
perature mostly reflect the long-run response. In France, estimates of the effect of
temperature reflect 86% the long-run response and 14% the weighted short-run re-
sponses. For the US and global panels, the weight on the long-run response is 98%
and 1̃00% respectively. Estimates of the effect of precipitation on outcomes contain
more of the short-run response than those for temperature. For the French, US, and
global panels, the weight on the long-run response is 56%, 67%, and 87% respectively.
Allowing for skewness in the weather data alters these values by no more than 2%.
Across all datasets and both weather variables, µ̃ falls within the range of sample
climates, although in some cases it is relatively far from µ̄, i.e. for US temperature and
global precipitation panels.

[Table 1 about here.]

6 Conclusion

This paper has addressed the importance of allowing for climate memory to enter the
direct effect of weather on economic outcomes in panel data analysis, thereby allowing
for implicit long-run adaptation. Past climate matters to current realizations only if
it leads to adaptation by economic agents. Ignoring climate when it matters biases
estimates of long-run impacts, whether to the first or second order, except in very
specific conditions that we have made explicit in the context of the popular quadratic
panel model.



Finally, we should stress that although our analysis wasmotivated by the measure-
ment of adaptation to climate, it has applications for panel data beyond the climate
impact assessment literature. Our framework should be relevant whenever the out-
come variable is allowed to depend non-monotonically on the regressor of interest and
there is a distinction between within (short-run) and global (long-run) responses.
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Appendices

A Derivation of the asymptotic bias

A.1 Useful expressions

We define x̄i �
∑

t xit
T . We thus have Üxit � xit − x̄i ,

∑
t Üxit � 0, and Ûx2

it � ( Üxit + x̄i)2 −∑
s ( Üxis+x̄i)2

T � Üx2
it + x̄2

i + 2 Üxit x̄i −
∑

s Üx2
is+x̄2

i +2 Üxis x̄i

T � Üx2
it + 2 Üxit x̄i −

∑
s Üx2

is
T . We deduce the

following: ∑
t

Üxit Ûx2
it �

∑
t

Üx3
it + 2x̄i

∑
t

Üx2
it

∑
t

(
Ûx2

it

)2
�

∑
t

Üx4
it + 4x̄i

∑
t

Üx3
it + 4x̄2

i

∑
t

Üx2
it −

1
T

(∑
t

Üx2
it

)2



A.2 Linear model

Define: Üy �

©«

Üy11
...

Üy1T
...

ÜyI1
...

ÜyIT

ª®®®®®®®®®®®®®¬
, Üx �

©«

Üx11
...

Üx1T
...

ÜxI1
...

ÜxIT

ª®®®®®®®®®®®®®¬
, ÜW �

©«

Üx11 0 . . . 0 Ûx2
11

... 0 . . . 0
...

Üx1T 0 . . . 0 Ûx2
1T

0 Üx21 . . . 0 Ûx2
21

0
... . . . 0

...

0 Üx2T . . . 0 Ûx2
2T

...
...

. . . 0
...

0 0 . . . ÜxI1 Ûx2
I1

0 0 . . .
...

...

0 0 . . . ÜxIT Ûx2
IT

ª®®®®®®®®®®®®®®®®®®®®®¬

, Üε �

©«

Üε11
...

Üε1T
...

ÜεI1
...

ÜεIT

ª®®®®®®®®®®®®®¬
,

β− �

©«
β1 − 2β3µ1

...

β1 − 2β3µI

β3

ª®®®®®¬
. The fixed-effects estimator of b1 in model (5) is

b̂1 � (Üx′Üx)−1 Üx′Üy
� (Üx′Üx)−1 Üx′

( ÜWβ− + Üε)
� β1 +

(∑
i

∑
t

Üx2
it

)−1 (
−2β3

∑
i

µi

∑
t

Üx2
it + β3

∑
i

∑
t

Üxit Ûx2
it +

∑
i

∑
t

Üxit Üεit

)
� β1 +

(∑
i

∑
t

Üx2
it

)−1 [
−2β3

∑
i

µi

∑
t

Üx2
it + β3

∑
i

(∑
t

Üx3
it + 2x̄i

∑
t

Üx2
it

)
+

∑
i

∑
t

Üxit Üεit

]
.

Our strong exogeneity assumption implies that plim T−1 ∑
t Üxit Üεit � 0. In addition,

plim x̄i � µi , therefore we have

plim b̂1 � β1 + β3

∑
i M i
Üx3∑

i M i
Üx2

.



A.3 Quadratic model

Define ÜX �

©«

Üx11 Ûx2
11

...
...

Üx1T Ûx2
1T

...
...

ÜxI1 Ûx2
I1

...
...

ÜxIT Ûx2
IT

ª®®®®®®®®®®®®®¬
and β �

©«
β1 − 2β3µ1

...

β1 − 2β3µI

β2 + β3

ª®®®®®¬
. The fixed-effects estimator of b �

(
b1

b2

)
is

b̂ �
( ÜX′ ÜX)−1 ÜX′Üy

�
( ÜX′ ÜX)−1 ÜX′

( ÜWβ + Üε) .
Denote MXX ≡ plim T−1 ÜX′ ÜX. Strong exogeneity implies that plim T−1 ÜX′ Üε � 0. There-
fore, we have

plim b̂ � M−1
XX plim T−1 ÜX′ ÜWβ

� M−1
XX plim T−1

[
ÜX′ ÜX

(
β1

β2 + β3

)
− 2β3

( ∑
i µi

∑
t Üx2

it∑
i µi

∑
t Üxit Ûx2

it

)]
�

(
β1

β2 + β3

)
− 2β3M−1

XX

( ∑
i µi plim T−1 ∑

t Üx2
it∑

i µi plim T−1 ∑
t Üxit Ûx2

it

)
.

We can write MXX �
©«

∑
i plim T−1 ∑

t Üx2
it

∑
i plim T−1 ∑

t Üxit Ûx2
it∑

i plim T−1 ∑
t Üxit Ûx2

it
∑

i plim T−1 ∑
t

(
Ûx2

it

)2
ª®¬, which, defining

M i
Üx2 ≡ plim T−1 ∑

t Üx2
it , implies:

plim b̂ �

(
β1 − 2β3

N1
D

β2 + β3

(
1 − 2 N2

D

) )



with

D �

[∑
i

M i
Üx2

] [∑
i

plim T−1
∑

t

(
Ûx2

it

)2
]
−

[∑
i

plim T−1
∑

t

Üxit Ûx2
it

]2

N1 �

[∑
i

plim T−1
∑

t

(
Ûx2

it

)2
] [∑

i

µi M i
Üx2

]
−

[∑
i

plim T−1
∑

t

Üxit Ûx2
it

] [∑
i

µi plim T−1
∑

t

Üxit Ûx2
it

]
N2 �

[∑
i

M i
Üx2

] [∑
i

µi plim T−1
∑

t

Üxit Ûx2
it

]
−

[∑
i

plim T−1
∑

t

Üxit Ûx2
it

] [∑
i

µi M i
Üx2

]
.

Using the expressions in Section A.1, defining M i
Üx3 ≡ plim T−1 ∑

t Üx3
it and M i

Üx4 ≡
plim T−1 ∑

t Üx4
it , and using plim x̄i � µi , the denominator D can be written as

D �

[∑
i

M i
Üx2

] [∑
i

M i
Üx4 + 4µi M i

Üx3 + 4µ2
i M i
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(
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)2
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M i
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M i
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where we have also defined M i

( Üx2+2µ Üx)2
≡ plim T−1 ∑

t

(
Üx2

it + 2µi Üxit

)2
� M i

Üx4 +4µi M i
Üx3 +

4µ2
i M i
Üx2 and M i

Üx3+2µ Üx2 � plim T−1 ∑
t Üx3

it +2µi Üx2
it � M i

Üx3 +2µi M i
Üx2 . The numerator terms

can then be written as
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We can then write the bias on the marginal effect of climate at the evaluation point
µ as:

Bias(µ) � plim b̂1 − β1 + 2µ
(
plim b̂2 − β2

)
� −2β3

N1
D

+ 2µβ3

(
1 − 2 N2

D

)
�

2β3

D
[
−N1 + µ (D − 2N2)

]



Simple algebra shows that the term in square brackets can be rewritten as

N �

[∑
i

M i
Üx3

] [∑
i

(
µi − µ

)
M i
Üx3 + 2

∑
i

µi
(
µi − µ

)
M i
Üx2

]
−2

[∑
i

µi M i
Üx3

] [∑
i

(
µi − µ

)
M i
Üx2

]
−

[∑
i

(
µi − µ

)
M i
Üx2

] [∑
i

(
M i
Üx4 −

(
M i
Üx2

)2
)]
.

Let us now show that M i
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where the last equality obtains because each term Üx4
it appears T − 1 times in the

summation (each time index t is paired with one of the T − 1 remaining indices).

Defining M i
( Üx2−Üx2)2 ≡ plim T−2 ∑

s ,t

(
Üx2

is − Üx
2
it

)2
leads to expression (10) in the main text.

Using a similar argument, we can rewrite
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It is straightforward to show that the last two terms in the previous expression simplify
to 4

∑
i , j

(
µi − µ j

)2 M i
Üx2 M j

Üx2 , where the summation is taken over the set of un-ordered
bundles of indices i and j. Expression (11) follows.



A.4 Parameter estimates when M i
Üx3 � 0 ∀i

Assume that M i
Üx3 � 0 ∀i. Recall that plim b̂ �

(
β1 − 2β3

N1
D

β2 + β3

(
1 − 2 N2

D

) )
while βLR �(

β1

β2

)
and βSRi �

(
β1 − 2β3µi

β2 + β3

)
. We seek to write b̂ as a convex combination of the

underlying parameters, that is, b̂ � (1− θ̄)βLR + θ̄∑
i λiβ

SR
i with θ̄ ∈ [0, 1], λi ≥ 0, and∑

i λi � 1. Such decomposition must satisfy θ̄
∑

i λiµi �
N1
D and θ̄ � 1 − 2 N2

D . Using
M i
Üx3 � 0 ∀i, we obtain Equations (14) and (15), which make it clear that θ̄ ∈ [0, 1],

λi ≥ 0, and
∑

i λi � 1.
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Figure 1 Long-run and short-run responses to weather
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Figure 2 Asymptotic bias when weather fluctuations are right-skewed
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Note: Red curve: underlying long-run response. Blue curve: estimated response. Black
curve: underlying short-run responses. Weather distributions are shown on the x-axis for
locations with climates µ1 and µ2.



Figure 3 Asymptotic bias on counterfactual impact of climate change when M i
Üx3 � 0
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Note: Red curve: underlying long-run response. Blue curve: estimated response. Black
curve: underlying short-run response for climate µ̄ �

∑
i λiµi . The blue curve is obtained as a

convex combination of the red and black curves, with the weight on the black curve given by
expression (14).
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Table 1 Bias decomposition

Description I T θ̄ θ̃ µ̄ µ̃
French department growing season temperature 88 67 0.14 0.15 13.76 13.38

(0.03) (0.02) (0.11) (0.58)
French department growing season precipitation 88 67 0.46 0.45 324.00 308.32

(0.04) (0.04) (7.94) (10.18)
US county spring-summer temperature 3037 66 0.02 0.03 17.05 14.02

(0.001) (0.01) (0.19) (2.30)
US county spring-summer precipitation 3037 66 0.33 0.32 708.56 641.73

(0.03) (0.03) (9.07) (12.49)
Country annual temperature 167 51 0.002 0.01 15.32 15.21

(0.0004) (0.01) (0.48) (4.52)
Country annual precipitation 167 51 0.13 0.11 1894.90 1761.40

(0.01) (0.02) (31.32) (109.40)
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