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Abstract 

Background: The present study reports results from the large-scale integrated EU project “Climate for Culture”. The 
full name, or title, of the project is Climate for Culture: damage risk assessment, economic impact and mitigation strategies 

for sustainable preservation of cultural heritage in times of climate change. This paper focusses on implementing high 
resolution regional climate models together with new building simulation tools in order to predict future outdoor 
and indoor climate conditions. The potential impact of gradual climate change on historic buildings and on the vast 
collections they contain has been assessed. Two moderate IPCC emission scenarios A1B and RCP 4.5 were used to 
predict indoor climates in historic buildings from the recent past until the year 2100. Risks to the building and to the 
interiors with valuable artifacts were assessed using damage functions. A set of generic building types based on data 
from existing buildings were used to transfer outdoor climate conditions to indoor conditions using high resolution 
climate projections for Europe and the Mediterranean.

Results: The high resolution climate change simulations have been performed with the regional climate model 
REMO over the whole of Europe including the Mediterranean region. Whole building simulation tools and a simplified 
building model were developed for historic buildings; they were forced with high resolution climate simulations. This 
has allowed maps of future climate-induced risks for historic buildings and their interiors to be produced. With this 
procedure future energy demands for building control can also be calculated.

Conclusion: With the newly developed method described here not only can outdoor risks for cultural heritage assets 
resulting from climate change be assessed, but also risks for indoor collections. This can be done for individual build-
ings as well as on a larger scale in the form of European risk maps. By using different standardized and exemplary arti-
ficial buildings in modelling climate change impact, a comparison between different regions in Europe has become 
possible for the first time. The methodology will serve heritage owners and managers as a decision tool, helping them 
to plan more effectively mitigation and adaption measures at various levels.
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Background
Climate change as well as the worldwide energy and 

resource deficiency problems are two very serious threats 

of our time. In order to manage sustainably our cultural 

heritage, it is important to know how future changes in 

climate will influence the outdoor and indoor climates 

in buildings. As a non-renewable resource of intrinsic 

importance to our identity, there is a need to develop 

more effective and efficient sustainable adaptation and 

mitigation strategies in order to preserve such cultural 

assets for the long-term future. More reliable assessments 

lead to better prediction models, which in turn enable 

preventive measures to be taken in a timely way, thus 

reducing the use of energy and resources. For this pur-

pose the EU project “Climate for Culture” [1, 2] has imple-

mented new high resolution climate change evolution 

scenarios with whole building simulation tools in order 

to identify the most urgent risks in Europe arising from 

climate change until the year 2100. �us, not only can the 

impact of climate change on historic buildings and future 

energy demands be estimated, but also the possible effects 

on the related indoor climates, in which valuable works 

of art are kept, can be evaluated [2]. Only a summary of 

the methodology (Fig.  1) and a selection of the results 

from the project, mainly in the areas of climate model-

ling, whole building simulation and damage and risks are 

included in this article. �e reader is also referred to the 

so-called deliverables on the project website [3], as well to 

coming publications in appropriate journals.

Climate change modelling and simulations
�e most of the observed increase in global average tem-

peratures since the mid-20th century is very likely due 

to the observed increase in anthropogenic greenhouse 

gas (GHG) concentrations. �e time-dependent (over 

centuries) climate response to changing concentration 

of GHGs can be studied using global circulation models 

(GCM). GCMs have been developed as a mathematical 

representation of the Earth system, which are not only 

coupled atmosphere–ocean general circulation mod-

els, but also take into account different biogeochemical 

feedbacks. Global climate models are forced with differ-

ent future emission scenarios. �ese scenarios are devel-

oped by the Intergovernmental Panel on Climate Change 

(IPCC) and described for example how the future popu-

lation will grow or which technologies will be applied 

to reduce CO2 emissions. Despite further development, 

current GCMs provide information only at a relative 

coarse spatial scale which is not sufficient for evaluating 

the impact of climate change on historic buildings. �us 

high resolution regional climate models were needed. 

�e regional climate model REMO [4] provided regional 

climate change projections for entire Europe at 12.5 km 

spatial resolution. Two moderate emission scenarios, the 

A1B scenario [5] and the very recent RCP4.5 scenario of 

the IPCC assessment report 5 (AR5) [6] were applied. For 

the mid-line A1B scenario, a CO2 emission increase is 

assumed until 2050 and a decrease afterwards. �e sec-

ond scenario—the RCP 4.5—stands for Representative 

Fig. 1 The Climate for Culture method for risk assessment from climate change projections to individual risk assessment and risk maps
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Concentration Pathway (RCP) and is a scenario of long-

term, global emissions of greenhouse gases, short-lived 

species, and land-use-land-cover which stabilizes radia-

tive forcing at 4.5 Watts per meter squared (W/m2), 

approximately 650 ppm CO2 equivalent) in the year 2100 

without ever exceeding that value.

Regional modeling allows more precise forecasts to 

be made in both time and space for the cultural herit-

age buildings. Besides temperature a whole set of climate 

parameters needed to be defined as input to whole build-

ing simulation tools (Table  1). �is set of climate indi-

ces was calculated from the REMO simulations for two 

time periods 2021–2050 (near future) and 2071–2100 

(far future). �e period of 1961–1990 (recent past) was 

used as a reference period. Data with a hourly resolution 

has been made available for more than 900 locations. 

Selected locations were equally distributed over entire 

Europe and were placed in the center of each 12th grid 

box of the REMO model. Additionally all case study loca-

tions, and more than 300 locations (Fig. 2) where obser-

vational data was available for verification have been 

taken into account. �e modelled climate data sets were 

extensively verified with observational data sets to check 

their applicability for hygrothermal whole building simu-

lation. Systematic deviations and other issues related to 

the use of modelled climate data were identified.

Building simulations
�e future indoor climate of buildings can be predicted 

using the data set of climate indices from the global cli-

mate simulations. For this purpose, tools were developed 

to model and simulate indoor climates of historic build-

ings through analysing the buildings, introducing various 

modelling steps and validating the model by real meas-

urement data. Two approaches were followed: develop-

ment of a full-scale multizone dynamic hygrothermal 

whole building simulation and a simplified hygrothermal 

building model. Moreover, computational fluid dynamics 

modelling tools have been applied to study the airflows in 

two case study rooms: the bed chamber in Linderhof Pal-

ace with the objective of validating the concept of forced 

ventilation based indoor-climate control and the Chapel 

of the Holy Cross in Karlštejn Castle with the purpose 

of detecting the most critical zones in the interior (see 

Fig.  3). For Linderhof Palace, a detailed hygrothermal 

simulation model of the bedchamber, was developed and 

validated with measurements of the indoor climate and 

air flow. With this hygrothermal model it was possible 

to study the impact of different ventilation concepts on 

indoor climate and energy consumption [7] and develop 

a multistage ventilation concept [8].

Whole building simulation models combine thermal 

building simulation with the hygrothermal component 

simulation. �ese models take into account the type of 

use (e.g. visitors, events) and HVAC (heating, ventilation 

and air conditioning) climatisation to assess the indoor 

environment. Different software tools have been system-

atically evaluated and the most useful ones for historic 

buildings were Hambase [9, 10] and WUFIplus [8, 11, 

12]. �e results of hygrothermal whole building simula-

tion cover the whole range of hourly energy demand for 

building conditioning for each zone, hourly indoor tem-

perature and relative humidity for comfort and damage 

assessment as well as hygrothermal conditions on and 

Table 1 Climate indices provided by climate modelling

Value Unit

Temperature °C

Relative humidity %

Total precipitation (normal rain) mm

Wind speed m/s

Wind direction Degree

Global radiation W/m2

Diffuse radiation W/m2

Global counter radiation W/m2

Cloud coverage %

Ground temperature °C

Ground reflectance –

Air pressure Pa

Fig. 2 Location of sites for which simulated outdoor climate data are 
provided with hourly resolution
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in the envelope components to assess hygric issues like 

mould growth [8]. �us, the full building simulations give 

a better representation of the hygrothermal performance 

of the building but this is at a high cost of developing the 

model and relatively long times for computing.

A second but simplified approach using state-space-

models as transfer functions between the outdoor and 

indoor conditions was also applied for the prediction of 

indoor temperature and relative humidity [13, 14]. �e 

simplified hygrothermal building model is a simple math-

ematical function that calculates the indoor climate from 

the outdoor climate. �e function is derived from a statis-

tical analysis of measurements. �is method can only be 

applied when all necessary measured values are available 

for parameterization of the model. But the simulation per-

formance of this method is easier to set up and the com-

puting time is so short that simulations can even be made 

online. �is has made it possible to perform simulations for 

different generic building types on a fine grid over Europe 

for different time periods to produce indoor climate and 

indoor climate risk maps. So far, the simplified model is 

limited to buildings without active climate control.

From outdoor climate simulation to future indoor 
climates and risk assessment
Outdoor climate predictions and outdoor risk maps

Climate change is mainly associated with the green-

house gas carbon dioxide. �e concentrations of CO2 

in the atmosphere are increasing at an accelerating rate 

from decade to decade although many endeavours have 

been made to decrease the global emissions. �e latest 

atmospheric CO2 data is consistent with a continuation 

of this long-standing trend and has reached 400.26 ppm 

in February 2015 [15]. �is is causing the planet to warm 

up and the earth`s average temperature has risen by 

0.8  °C over the past century. Climate model projections 

summarized in Assessment Report AR5 of the IPCC [16] 

indicated that during the 21st century the global surface 

temperature is likely to rise a further 0.3–1.7 °C for their 

lowest emission scenario using stringent mitigation and 

2.6–4.8  °C for their highest. Even small changes in the 

average temperature can translate to large and potentially 

dangerous shifts in climate and weather. �e main focus 

of this project was given to the gradual changes of climate 

change and not to extreme events: �is was excluded for 

this study by the European Commission`s 2008 call for 

projects.

�e main predictions from the high resolution regional 

climate modelling concerning the expected temperature 

differences in the near and far future with reference to 

the recent past, are discussed here and are based on two 

moderate emission scenarios. For the A1B emission sce-

nario all these differences are positive (i.e. greater than 

zero, in mathematical terms) for the whole of Europe, 

with maximum changes in Northern Europe, in the 

inland of Northern Africa, centre of Spain, Greece and 

Turkey. Under the RCP4.5 emission scenario, this predic-

tion is similar to A1B for the near future but however it 

simulates a decrease in temperature change for the last 

decades at the end of the century. Figure  4 shows pro-

jected changes of the annual mean of near-surface air 

temperature (TEMP2) for the far future. �e temperature 

Fig. 3 Results from computational fluid dynamic models. Left relative humidity distribution on the wall surface of the Holy Cross Chapel, Karlštejn 
Castle, Czech Republic; Right relative humidity distribution at 0.5 m height and in two vertical planes of the Bed Chamber in Linderhof Palace, 
Germany
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increase is statistically significant, with regional differ-

ences, for entire Europe for all simulations. While the 

temperature increases between 1 and 3  °C for RCP4.5, 

the A1B scenario’s simulations showed projected future 

warming for a range of 2 and 4.5 °C. �e projected spa-

tial patterns are very similar in all scenarios with stronger 

annual mean warming in Southern Europe and towards 

the northeast.

Whereas TEMP2 rises, the REMO model does not 

give a clear signal with regard to precipitation (TPREC) 

for the whole of Europe. �e results presented in Fig.  5 

show that the general tendency is enhanced precipita-

tion for most regions in central and northern Europe and 

decreased precipitation in the Mediterranean realm (up 

to 40  % over Iberian Peninsula for A1B). Hatched areas 

indicate regions with statistically significant changes.

�e expected changes in yearly total precipitation 

(mm/year), in percentage terms, have been evaluated 

for the A1B emission scenario for the near and far future 

(Fig. 5, left and right). Both periods predict no or small 

changes from 0 to 20  % in Northern Europe (i.e. Euro-

pean Russia, Poland and Scandinavian Peninsula) and 

Central-Eastern Europe (i.e. Germany, Austria, Switzer-

land, Hungary, Czech Republic, Slovakia, and Ukraine). 

In the region of the European Atlantic Coast (i.e. Island, 

UK, Ireland and France) and Mediterranean regions the 

prediction highlights a mixed situation with both nega-

tive and positive changes up to +50 % in Egypt, Libya and 

Eastern Algeria and −50 % in central Portugal, Morocco 

and Western Algeria.

�e outdoor climate such as wind-driven rain or snow-

fall or high temperatures has a strong influence on cul-

tural heritage structures and surfaces and on the indoor 

environments in buildings. For example, high tempera-

tures may be amplified in cities where most of cultural 

heritage is located because cities absorb more heat dur-

ing the day than suburban and rural areas. Higher tem-

peratures and more extreme events will likely affect 

the rate of degradation and the cost of climatisation 

(HVAC  =  Heating, Ventilation, Air Conditioning) of 

buildings for stable climate conditions of art objects but 

also for human comfort and health in cities. �erefore, 

the future climate predictions were used to create dif-

ferent kinds of outdoor impact/risk maps [17] since they 

Fig. 4 Projected changes of annual mean of near-surface air temperature [K] for the period of 2071–2100 compared to 1961–1990 for different 
emission scenarios A1B (left panel) and RCP4.5 (right panel)
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constitute a powerful tool for preventive conservation 

and policy makers. �e assessment of impact and risk 

potentially caused by climate change has been evaluated 

for following 7 outdoor environmental variables under 

the two IPCC emission scenarios A1B and RCP4.5:

 – Freeze–�aw cycles

  – Salt crystallization cycles

  – Sea level rise

  – Frost days index

  – Dry days index

  – Wet days index

  – Heavy precipitation Index

 – Tropical day index

One example discussed here is the tropical days index, 

i.e. the future change in respect to the recent past in the 

number of days with average T > 20 °C in a year (Fig. 6). 

�is climate variable is useful to evaluate health risks for 

the population or for tourists visiting cultural heritage 

as well as the potential increase in energy consumption 

and enhancement of corrosion rates. �e emission sce-

nario A1B shows important changes in the far future, 

reaching a positive (>0, in mathematical terms) increase 

up to +60  days/year homogeneously distributed over 

the whole Mediterranean region, especially on the coast 

of the Provence (France) and on the Black Sea coast. 

Extreme conditions with an increase up to +110  days/

year are expected on the Egyptian and Libyan coasts.

Future indoor climates and risk assessment

Implementing the climate change projections together 

with building simulations allows the production of future 

values of air temperature, relative humidity and humid-

ity mixing ratio inside buildings. �e simulated indoor 

climate has been evaluated with the newly developed 

automated method which assesses indoor climate vari-

ables as well as indoor damage and risk parameters for 

biological, chemical and mechanical damage [18, 19]. 

�e geographical distribution of each assessed param-

eter for all time-windows is summarized and visualized 

with pan-European maps. Figure  7 shows the complete 

Fig. 5 Relative annual mean differences of total precipitation in %; 2071–2100 compared to 1961–1990 for emission scenarios A1B (left panel) and 
RCP4.5 (right panel)
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map-creation process, from defining a building model 

to plotting the maps. �e various indoor risk maps are 

highlighting the most critical changes that will likely 

occur over Europe on cultural heritage materials for 

the near future period (2021–2050) and the far future 

period (2071–2100) in reference to the recent past period 

(1961–1990).

�e automated method model was applied to 16 differ-

ent generic building types which share the same rectan-

gular layout but differ in size, window area, construction 

and moisture buffering capacity, see Fig.  8. �ey have 

been used to simulate the variations in indoor climate 

over the different European climate zones. Figure  9 

reports the future difference in indoor temperature range 

for the building type 1 (i.e. heavyweight, small build-

ing with small window area and no climate control) in 

respect to the recent past.

Figure  9 highlights the geographical distribution of 

indoor temperature changes over the whole of Europe: 

An increase in temperature range can be expected in 

Sweden and Norway, Denmark, Holland, central Roma-

nia, the Alps, Italy, on the coast of the former Yugoslavia 

and Greece. �e rest of Europe will experience a decrease 

in temperature range. In the far future the scenario 

changes a bit, with the identification of two macro-areas: 

the first is Northern Europe, comprising also Germany 

and Poland with a decrease in indoor temperature range 

up to 5  °C and the second area constituting the West-

ern and Southern Europe, with an increase up to 4 °C in 

indoor temperature range.

Furthermore, the automated method is used to pro-

duce risk maps illustrating the risks for different kinds of 

buildings and the collections they contain. �e predicted 

indoor climate is combined with different damage func-

tions [20–29] to assess the risks deriving from climate 

change [30]. Figure  10 shows the procedure of the dif-

ferent steps from outdoor climate data to indoor climate 

data and to the assessment of risks by damage functions. 

�e basis for the risk maps is formed by hygrothermal 

building simulations for three time periods: 1961–1990 

(recent past), 2021–2050 (near future) and 2071–2100 

(far future).

To assess the impact of climate change on the indoor 

climate of historical buildings statistical parameters of 

the three indoor climate variables temperature, relative 

humidity and mixing ratio were evaluated on annual 

and monthly time-scales. For all three variables the 

statistical parameters mean, maximum, minimum and 

Fig. 6 Change in number of days per year with Tmin >20 °C; difference between Recent Past and the Near Future (left) and between Recent Past 
and Far Future (right) for A1B emission scenario. Unit: days/year
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range are calculated for both time-scales. Damages to 

the building interior and objects inside the buildings 

are often related to high levels or fluctuations in indoor 

temperature and relative humidity. Damage functions 

and risk thresholds can be used to describe the dam-

age processes and give advice about possible dangers 

coming from indoor climate conditions. �us, existing 

damage functions and risk thresholds were identified 

and associated to three types of damage: Biological, 

chemical and mechanical damage. For some damage 

functions available risk thresholds could be used for a 

risk categorisation into small, medium and high risks 

[31].

�e above described evaluation methods for indoor 

climate variables and damage functions allow an assess-

ment on an annual, seasonal and monthly time-scale. 

As the simulations of the generic sacred buildings cover 

a time-span of 31 years, a methodology for a long-term 

assessment had to be developed: For every simulated 

year all indoor climate variables, the damage func-

tions and risk categories are assessed independently 

[17]. Subsequently, the assessment results for every 

parameter are averaged, resulting in a characteristic 

value representing the time-span like for example the 

average annual salt-crystallization cycles or the aver-

age indoor temperature for the month August. To allow 

an averaging of the risk categories, these are translated 

into numeric values: Small risk is represented with “0”, 

medium risk with “1” and high risk with “2”. After aver-

aging, the resulting value gives a long-term tendency 

towards a risk category.

�e assessment has been performed for 474 locations 

which are distributed on a regular grid across Europe and 

the Mediterranean area, see Fig.  2. �e assessments for 

the long-term damage risks and the indoor climate are 

applied to every location. �eir results are the basis for 

the pan-European maps, which display the results of the 

risk assessment. Furthermore the changes between the 

Fig. 7 Map-creation process from modelling buildings to risk maps

Fig. 8 Different generic building types (MB moisture buffering capacity)
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time periods are also calculated and visualised as maps. 

�e recent past serves as baseline for each of the two 

future periods.

A number of results are related to the simulation of 

mechanical, biological and chemical risks concerning 

nine selected materials used or kept in the building inte-

riors. Figure 11 highlights the mechanical risk for marble, 

stone and masonry due to future change in the frequency 

of salt crystallization cycles per year. Here, following defi-

nitions of risk were applied:

Fig. 9 Change in yearly average of indoor air temperature range (2 m); generic building 1 from the recent past to the near future (left side) and from 
the recent past for the far future (right side). Simulations made under the A1B emission scenario. Unit: °C

Fig. 10 Climate for Culture procedure for automated risk/damage assessment and risk maps
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Risk  =  (probability of finding a certain number of 

cycles)  ×  (specific damage calculated with the dam-

age function for each particular material)] which is the 

same as [Risk = (calculated frequency of cycles) × (dam-

age for a single cycle calculated with the damage func-

tion for each particular material)]. Climate change will 

only affect the calculated frequency of crystallization. 

For each material, the ratio between the damage that will 

occur in a selected 30 year period (e.g. Near Future, Far 

Future) and the damage occurred in a certain reference 

period (e.g. 1961–1990) equals the ratio of the two cal-

culated frequencies. It is thus possible to establish future 

tendencies, i.e. whether the damage is likely to increase, 

remain unchanged, or decrease, irrespective of the par-

ticular material type.

Figure 11 left shows for the near future under the A1B 

emission scenario, mixed situations in Northern Europe 

and the Mediterranean Area with changes ranging from 

(−) 20 cycles/year, in the Alps and in large part of North-

ern Europe, up to (+) 10 cycles/year respect to the recent 

past in the rest of Northern Europe, Southern Mediterra-

nean and Spanish coast. In the far future (Fig. 11, right), 

the simulation shows larger changes, i.e. in the Northern 

region and on the Alps a decrease up to (−) 40 cycles/

year of salt crystallization cycles and consequently less 

risk for mechanical damages on masonry and stones 

is predicted. In contrast, the salt-crystallization cycles 

increase in frequency at around (+) 10 cycles/year in the 

rest of Europe.

Changing climate conditions also will affect biologi-

cal activity in historic buildings and on cultural heritage 

materials. Fungal growth is a widespread problem with 

implications for or human health and the integrity of 

heritage material. �e effects on heritage items can vary 

from a light powdery dusting to severe staining, weaken-

ing and disintegration of substrate material. Many dete-

rioration processes are accompanied by biochemical 

transformations that occur only at certain temperatures, 

in the growing phase as well as in the development phase 

of the organism.

�e most important factors are thus temperature, 

humidity and the nature of the substrate. It is assumed 

that mould spores are ubiquitous. At temperatures above 

0  °C and humidity levels above 70  % RH mould spores 

can germinate. �e time to germination decreases as 

temperature and humidity rise. Most fungi grow in a 

temperature range from 0 to 50 °C, whereby the tolerance 

to low temperatures is better than to high temperatures 

in this range. Biological activity depends on temperature 

and a certain minimum humidity is required for growth 

at which not the total moisture, but the “free” available 

water is considered. �is part is called water activity and 

is only the part of the water, which is not bound by solu-

ble substances (such as salts, carbohydrates, or proteins). 

�e water content of the substrate depends further on 

the chemical composition, the temperature and the pH-

value of the substrate. Good growth conditions can be 

found not only whenever condensate is found at or on 

the material, but also at high relative humidity. Mould 

growth requires a certain minimum temperature to be 

active. To calculate the risk of mould growth the Sedl-

bauer isopleths system [32] has been used to generate the 

Fig. 11 Changes of yearly frequency of salt crystallization cycles: recent past to near future (left) and to far future (right)
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maps that show simulated risks in the recent past, near 

future and far future.

�ere is a widely accepted mould risk index based on 

visual examination with discrete categories from 0 to 6 

[33, 34].

0: no growth

1: some growth detected only with microscopy

2:  moderate growth detected with microscopy (cover-

age more than 10 %)

3: some growth detected visually

4: visually detected coverage more than 10 %

5: visually detected coverage more than 50 %

6: visually detected coverage 100 %

Mathematical modelling allows the mould index to be 

treated as a continuous variable rather than a series of 

discrete steps. �e growth rate output of Sedlbauer’s bio-

hygrothermal model has been correlated with the mould 

index [35]. Risk levels have been arbitrarily set at points 

on this continuum.

A mould index of less than 0.5, equivalent to a growth 

rate of less than 50 mm/year is considered safe (shown 

on the maps as green). If the mould index is between 

0.5 and 2, equivalent to growth rates of between 50 and 

200  mm/year, this indicates possible damage (shown 

as orange). A mould index greater than 2, is an indica-

tion annual growth rates greater than 200  mm which 

are considered likely to cause damage (shown as red) 

[36]. In Fig. 12 the mould growth risk for the near and 

far future are displayed. �e maps highlight that above 

50° latitude the damage potential of mould growth 

will increase, particularly in the last few years of this 

century.

Modelled indoor climates and future energy 
demand of the historic building Amerongen Castle
Historic buildings usually show elevated indoor humid-

ity levels and a high variation of the climatic conditions, 

which can be dangerous to cultural heritage materials. 

�is requires the detailed consideration of all hygrother-

mal interactions between the indoor air, the usage, the 

furnishing and the building envelope. �e hygrothermal 

behaviour of a building component exposed to weather 

is an important aspect of the overall performance of a 

building. �e calculation of the hygrothermal perfor-

mance of a part of the envelope is state-of-the-art and a 

realistic assessment of all relevant effects can be carried 

out, but until now the total behaviour of the actual whole 

building is not accounted for. Questions which were 

addressed within this project:

How much ventilation and additional heat energy is 

required to ensure safe indoor conditions for cultural 

heritage when a historic building is exposed to extreme 

climate conditions or up to thousands of visitors per day? 

What will happen to the hygrothermal behaviour of walls 

and ceiling when a historic cellar is changed in its use 

and is turned for example into a restaurant? How do the 

indoor air conditions and the envelope of buildings with 

temporary use react to different heating and ventilation 

Fig. 12 Risk maps for mould growth in the near future (left) and in the far future (right) for A1B scenario
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strategies? Can sorptive finish materials improve and sta-

bilise the microclimate in historic buildings?

Case study: Amerongen Castle

Amerongen Castle, a Dutch state monument, was built 

in the 17th century. �e building currently functions as 

a museum and accommodates a collection of valuable 

furniture and paintings. �e building is characterised by 

high masonry walls with a thickness varying between 0.7 

and 1.5 m and single glazed windows and exterior shut-

ters. In recent years the indoor environment in the exhi-

bition rooms has been hygrostatically controlled by a 

floor heating system. In the past, the building remained 

mainly unheated. �e multi-zone hygrothermal building 

simulation model HAMBase [6] was used to calculate the 

indoor temperature and RH inside the castle as a result 

of the outdoor climate conditions, the building proper-

ties, the climate control system and the building use. 

HAMBase characterizes the indoor climate by uniform 

values for radiant temperature, air temperature and RH 

per zone. �is study focused on the indoor climate condi-

tions in one of the main exhibition rooms within the cas-

tle: the Grand Salon. Constant values for the set points 

and capacity of the conservation heating system were 

used in the HAMBase model (Table  2). �e HAMBase 

model was validated with on-site measurements from 

1 January until 31 December 2012 (Fig.  13). It should 

be kept in mind that the capacity of the current heating 

system is not sufficient to maintain a minimum tempera-

ture of 15 °C during the whole year. Also, the minimum 

temperature set point in the room seems to have slightly 

been lowered during the winter months. Excluding this 

period, the model shows an adequate agreement with the 

measurements: the simulated indoor temperature is gen-

erally within a range of 2 °C from the measurements, the 

difference between simulated and measured RH is about 

±10 % and the humidity ratio is predicted within a range 

of ±1 g/kg from the measurements.

Next, the HAMBase model was coupled with future 

outdoor climate data from the weather station near the 

site (distance: approximately 20  km). �e future out-

door climate data were based on the IPCC A1B emission 

scenario. �e predicted indoor temperature, humidity 

ratio and annual energy demand for heating were com-

pared for the years 1960, 1970, 1980, 1990, 2020, 2030, 

2040, 2050, 2070, 2080, 2090 and 2100. Figure 14 shows 

the average indoor temperatures in winter and sum-

mer. �e difference between the average conditions for 

the recent past and far future is clearly more significant 

than the differences between recent past and near future. 

However, the future outdoor climate data of for the far 

future have a higher uncertainty than the near future 

data. It can be seen that the average winter temperature 

may slightly increase from 11  °C in the recent past to 

13 °C in the far future. A similar temperature increase is 

predicted in summer: in the recent past the average sum-

mer temperature was about 20 °C, while in the far future 

an average summer temperature of 22  °C is predicted. 

�e average humidity ratio may slightly increase by 1 g/

kg in winter and 1.5 g/kg in summer (Fig. 15). On aver-

age, the annual energy demand for heating the room may 

slightly decrease in future by approximately 350  kWh 

(Fig. 16).

�e results indicate that indoor temperatures above 

25  °C could occur more frequently in future (Fig.  17). 

Additionally, the hygrostatically controlled heating sys-

tem may not be appropriate in future summer periods 

when both indoor temperature and absolute humidity 

rise. Additional measures should be taken to avoid over-

heating risks and decrease humidity levels.

Conclusions
A new methodology has been developed to assess not 

only outdoor risks to cultural heritage assets, but also 

risks for indoor collections resulting from climate 

change. �is can be done not only for individual build-

ings, but also on a larger scale in the form of risk maps: 

Altogether 55,650 thematic maps have been created. 

�ese address future outdoor and indoor climates until 

the year 2100, risks to cultural heritage objects such as 

mould growth or insect pests, and future energy demand 

for climate control in historic buildings. �e maps can 

be produced using a generic building approach with an 

automated procedure. By using different artificial build-

ings as standard examples in modelling climate change 

impact, a comparison between different regions in 

Europe has become possible for the first time. �e calcu-

lations have been done with two different methods, using 

transfer functions for a state space model or more elabo-

rate whole building simulation models. Additionally, sus-

tainable and energy-efficient mitigation and adaptation 

solutions based on the project methodology were tested 

and further developed. �ey used mathematical models 

of object responses to indoor-climate variations. Many 

of the results obtained are integrated into the decision 

Table 2 Set points and  capacity of  conservation heating 

system

Variable Value

Minimum temperature set point for conservation heating 15 °C

Maximum temperature set point for conservation heating 22 °C

Minimum RH set point for conservation heating 40 %

Maximum RH set point for conservation heating 70 %

Maximum heating capacity 1000 W
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support systems DMSS and ExDSS [37], offering use-

ful information for heritage owners and the interested 

public. Although the final level of uncertainty in the risk 

maps will be high regardless of whether a determinis-

tic or a probabilistic approach is used, risk maps based 

on state-of-the-art scientific knowledge are valuable as 

Fig. 13 Validation of the HAMBase model for the year 2012

Fig. 14 Predicted average indoor temperature in winter (left) and summer (right)
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indicators of future risks to cultural heritage. �ey can 

play an important role as a decision tool helping to plan 

more effective mitigation and adaption measures at vari-

ous levels.
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