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Abstract

Background: Rainfall variability and associated remote sensing indices for vegetation are central to the

development of early warning systems for epidemic malaria in arid regions. The considerable change in land-use

practices resulting from increasing irrigation in recent decades raises important questions on concomitant change

in malaria dynamics and its coupling to climate forcing. Here, the consequences of irrigation level for malaria

epidemics are addressed with extensive time series data for confirmed Plasmodium falciparum monthly cases,

spanning over two decades for five districts in north-west India. The work specifically focuses on the response of

malaria epidemics to rainfall forcing and how this response is affected by increasing irrigation.

Methods and Findings: Remote sensing data for the Normalized Difference Vegetation Index (NDVI) are used as

an integrated measure of rainfall to examine correlation maps within the districts and at regional scales. The

analyses specifically address whether irrigation has decreased the coupling between malaria incidence and climate

variability, and whether this reflects (1) a breakdown of NDVI as a useful indicator of risk, (2) a weakening of rainfall

forcing and a concomitant decrease in epidemic risk, or (3) an increase in the control of malaria transmission. The

predictive power of NDVI is compared against that of rainfall, using simple linear models and wavelet analysis to

study the association of NDVI and malaria variability in the time and in the frequency domain respectively.

Conclusions: The results show that irrigation dampens the influence of climate forcing on the magnitude and

frequency of malaria epidemics and, therefore, reduces their predictability. At low irrigation levels, this decoupling

reflects a breakdown of local but not regional NDVI as an indicator of rainfall forcing. At higher levels of irrigation,

the weakened role of climate variability may be compounded by increased levels of control; nevertheless this leads

to no significant decrease in the actual risk of disease. This implies that irrigation can lead to more endemic

conditions for malaria, creating the potential for unexpectedly large epidemics in response to excess rainfall if

these climatic events coincide with a relaxation of control over time. The implications of our findings for control

policies of epidemic malaria in arid regions are discussed.

Background

The response of epidemic malaria to large-scale change

in land-use practices related to irrigation and agriculture

in arid regions remains poorly understood [1]. In the

last three decades, for example, the expansion of a large

network of irrigation canals has supplied an important

source of freshwater for agriculture in many arid regions

of India; in so doing, it has also contributed to the eco-

nomic development of these regions. More generally,

change in irrigation schemes, and associated agricultural

practices, are considered among the potential drivers

underlying malaria’s increasing global burden [2], but

their consequences remain poorly understood given the

complexity of their effects on transmission via human

wealth and vector ecology. In particular, it is not clear

how irrigation is modifying the coupling of epidemic

malaria to rainfall variability in arid regions.

The population dynamics of malaria at the edge of its

distribution, in either deserts or highlands, where rain-

fall and temperature respectively limit transmission, are

characterized by strong seasonality and significant varia-

tion in the size of outbreaks from year to year [e.g. 3-5].
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In these regions the role of climate forcing is potentially

central to the prediction of inter-annual variability of

epidemics. The high variability in the number of cases

between years challenges public health efforts, as severe

intermittent epidemics can strain medical facilities.

In the north-west of India, there has been a long-

standing interest in the development of early-warning

systems based on rainfall [6,7] and economic conditions

[8]; this has regained significance in the last decades fol-

lowing the failed eradication attempts in the 1960’s and

70’s. Epidemics have re-emerged in the desert states of

Rajasthan and Gujarat, and have once again motivated

interest in climate forcing [9,10] and its interplay with

socio-economic factors. An increment in burden has

been attributed to the extension of the canal network

that provides water for regional agriculture [11].

Despite the potential of remote sensing for the genera-

tion of early-warning systems [12], efforts have been lar-

gely focused on defining malaria’s spatial niche and

seasonal timing [13,14] rather than on predicting the

seasonal burden in areas of unstable malaria (but see

[15] for dry regions of Eritrea). Because vegetation can

be used as a proxy for the amount of water in the

ground and, therefore, for the humidity of the environ-

ment, the Normalized Difference Vegetation Index

(NDVI) provides a spatially-explicit link between rainfall

and malaria from local to regional scales. Thus NDVI

patterns are especially relevant for investigating the rela-

tionship between epidemic events and regional climatic

drivers in desert regions [16,17]. However, any vegeta-

tion index will be susceptible to landscape changes due

to irrigation and agricultural practices. The extensive

time series of malaria cases in desert and semi-desert

districts of Rajasthan and Gujarat provide an opportu-

nity to examine how NDVI-malaria associations change

across regions that represent a gradient in levels of

irrigation.

This paper addresses how the level of irrigation modi-

fies the dynamics of malaria across such a gradient and

how irrigation affects the predictability of epidemics

based on climatic variables. It further investigates

whether a decoupling of rainfall forcing and malaria epi-

demics with increased levels of irrigation reflects (1) a

real reduction in the risk of transmission, (2) more

effective control efforts but no reduction in disease risk,

or (3) a breakdown of NDVI as a sensitive indicator of

rainfall’s inter-annual variability. These different

mechanisms have very different implications not just for

prediction but for the possibility of unexpected epi-

demics when control efforts fail. Statistical analyses are

used to address these different hypotheses, and the find-

ings are discussed in light of a simple dynamical model

of mosquito abundance and irrigation. The data provide

additional empirical evidence for the possibility of

surprises in years when intervention and monsoon rains

vary simultaneously but in opposite directions. This sug-

gests that control policies based on residual insecticide

spraying, whose planning is “reactive” to disease levels

in the previous season, need to be modified given the

known consequences of past failures and relaxation of

control in irrigated areas. The implications of these find-

ings for forecasting and control policies in other arid

regions with epidemic malaria are also discussed.

Methods

Malaria and remote sensing data

Epidemiological data

The epidemiological data consists of time series of

monthly confirmed cases of Plasmodium falciparum

from five districts in north-west India (Figure 1): Bika-

ner and Barmer in Rajasthan, and Kutch, Kheda, and

the combined area of Banaskantha, Mehsana, and Patan

(hereafter, BMP) in Gujarat state. The data from BMP

was combined into one dataset to circumvent problems

Figure 1 Study area in north-west India and the level of

irrigation of each district. Each line represents a time series of the

percentage of agricultural land under some source of irrigation

(source: district statistical books, Gujarat and Rajasthan).
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related to modifications of boundaries over the time of

this study, and the resulting separation into different

districts of what was originally a single administrative

unit at the beginning of the data collection (1976). For

Bikaner, BMP and Kheda, the data represent 30 years of

observations (1976-2009), and for Barmer, 24 years

(1985-2009 with a gap between 2004 and 2006). For

each time series the monthly cases were divided by the

total yearly human population of the respective district,

and all analyses relied on this normalized incidence data

(See Additional file 1, Figure S1). The blood samples

were collected by passive surveillance of patients that

visited their local health facility, and by active surveil-

lance of patients with fevers in house-to-house visits.

These data were obtained from the offices of the Joint

Director, Vector Borne Diseases, Commissionaire of

Health Rajasthan and Gujarat.

Information on the level of irrigation was extracted

from statistical abstract books from the states of Gujarat

and Rajasthan between 1979 and 2006. For each district

the percentage of agriculture under some type of irriga-

tion was computed by dividing the number hectares of

agriculture by the number of hectares of land under irri-

gation (Figure 1). These quantities were then ranked by

district based on these irrigation levels. The resulting

ranking remains unchanged for the whole time period

covered by this study.

The Normalized Difference Vegetation Index

NDVI is defined as the difference in radiation reflected

by any surface in two bands of the energy spectrum -

the infrared and the red band. From this index, which

ranges from -1 to 1, it is possible to discriminate

between radiation reflected by vegetation and other sur-

faces. Values greater than 0.2 quantify vegetation green-

ness from different sources and/or from different

seasons. The NDVI data utilized in this analysis was

obtained from two sources that cover respectively two

different time periods. The first one is the Global Inven-

tory Modeling and Mapping Studies (GIMMS) [18]. The

original source of this product is a combination of

observations made by different NOAA missions carrying

the Advanced Very High Resolution Radiometer

(AVHRR). This dataset has a temporal extension ran-

ging from 1982 to 2006 on a bi-monthly basis, and a

spatial extension covering the entire globe at a resolu-

tion of 8 km. The data have been corrected to avoid dis-

tortions and to show only positive values [18]. A

window area that includes the five districts from which

we extracted the vegetation information (19.18°N -

29.15°N and 66.98°E - 78.55°E; Figure 1) was defined for

the years with epidemiological information up to 2006.

The second source corresponds to the NDVI product

from the Moderate Imaging Spectroradiometer

(MODIS) in the TERRA satellite. The data are

distributed by the Land Processes Distributed Active

Archive Center [19] located at the U.S. Geological Sur-

vey (USGS) Earth Resources Observation and Science

(EROS) Center. Specifically, all the analyses with

MODIS rely on the monthly average product at 1 km

resolution for the month of September from 2000 to

2009.

The statistical analyses focused on the longer NDVI

dataset from NOAA (referred to hereafter as NDVI) and

corroborated that similar results for the spatial correla-

tion maps (see below) were obtained with the shorter

but more recent MODIS NDVI.

Rainfall data

Monthly accumulated rainfall records were acquired to

compare predictability based on rainfall to that based on

NDVI. The data, which span 20 years, were obtained

from one local station within each district and supplied

by the Indian Meteorological Department in Pune

(India).

Statistical and numerical analysis

The signature of NDVI

Irrigation increases water available for agriculture, mak-

ing yearly multi-crop rotations possible. The differences

in water supply and multi-crop rotations, therefore,

should be reflected in the amount of vegetation and in

the signature of the NDVI time series. In highly irri-

gated areas we should observe less inter-annual variabil-

ity than in non-irrigated areas. At the same time, the

seasonality of NDVI should also vary across districts as

different peak times can result from different crop sea-

sons supported by irrigation. Here, both the coefficient

of variation of NDVI for each grid-point (pixel) in the

study area and the month at which NDVI shows the lar-

gest average value (peak) were calculated as a way to

quantify the regularity and seasonality over time for

each location in the study area. The coefficient of varia-

tion (CV) is a dimensionless measure of the variability

of a quantity with respect to its mean value. Therefore,

CV allows us to compare different districts indepen-

dently from their mean value.

Correlation maps

Since malaria time series exhibit strong seasonality with

a peak of cases between October and December (See

Additional file 2: Figure S2), the association between

malaria and NDVI was examined for the monthly cases

of each of the months of the epidemic season (October,

November and December) and NDVI at a given preced-

ing month for each year. Spearman rank correlation was

used as a non-parametric measure of association

between incidence in a given month (say October) and

NDVI (say in September). A map of the NDVI/malaria

correlation was obtained by computing this correlation

repeatedly for each 8 × 8 km grid point in the study
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area. These maps provide one way to discern the

hypothesis that rainfall, as a regional phenomena, no

longer acts as a driver from the alternative that it con-

tinues to do so, but it is poorly reflected in the local

NDVI. For this purpose, a large regional box overlap-

ping the Thar desert and the area within the boundaries

of a given district are relevant. The former provides

information on NDVI at a large regional level (and,

therefore, climate), and the latter corresponds to a more

local level under the influence of district land-use and

irrigation practices. The resulting correlation map shows

the correlation coefficient only for those grid points in

which its value is statistically significant (p < 0.05 for

NOAA and p < 0.1 for MODIS). These maps were

obtained for both NDVI products.

In addition, time series were constructed for each dis-

trict for the average NDVI over an area of approxi-

mately 576 km2, selected because it exhibited the

highest rank correlation within the given district. These

time series were then used to fit parametric linear

regression models of malaria cases for a given epidemic

month as a function of NDVI in the preceding months.

Since rainfall has been of interest as a predictor variable

in early-warning systems for desert malaria, the propor-

tion of the variance explained by NDVI was compared

here to that explained by accumulated rainfall, for every

month preceding the epidemic season. This allowed a

comparison of the predictive skill of NDVI to that of

rainfall, and an examination of the respective delays

between NDVI, rainfall, and epidemics. Rainfall was

accumulated over the monsoon months based on pre-

vious results indicating the usefulness of the resulting

quantity in malaria transmission models for this region

[20].

Wavelet analysis

In order to further investigate the relationship between

NDVI time series and malaria, the spectral signature of

both times series was obtained using wavelet analysis.

Wavelet analysis is particularly well suited for studying

the dominant periodicities of epidemiological time series

because of the non-stationary nature of disease

dynamics [21-23]. By contrast to the standard Fourier

power spectrum, which provides a global analysis (over

time) of the dominant frequencies of a time series, the

wavelet spectrum is local in time, providing the addi-

tional information of when a specific frequency is pre-

sent (for a detailed explanation of the method and the

interpretation of the results see [21,22] and [23] for an

epidemiological application). Here the implementation

developed by Cazelles and collaborators [21] was used

which includes the assessment of statistical significance

based on bootstraps methods. For each district the

wavelet power spectrum was calculated for both the

NDVI and the malaria time series.

Model and simulations

In order to interpret and discuss the results of the sta-

tistical analyses, a simple model of malaria risk was also

developed that encapsulates basic elements of the rela-

tionship between rainfall, irrigated agriculture and mos-

quito population abundance (See Additional file 3: A

simple model of mosquito population dynamics, rainfall

and irrigation). The model consists of a set of differen-

tial equations describing how rainfall water is allocated

to different compartments of the landscape (See Addi-

tional file 4; Figure S4). Simulations of the model are

used to examine the consequences of increasing irri-

gated area for (1) the seasonal and inter-annual correla-

tion between rainfall and mosquito abundance and (2)

disease risk measured in terms of mosquito abundance.

Results

The analyses of the variability and seasonality of the

spatially explicit NDVI time series show that NDVI

inside BMP and Kheda have a very low coefficient of

variation (CV) for a large fraction of grid points, and

that the average peak of NDVI occurred more often in

the months of January and February (reflecting irrigation

for the winter crops). By contrast Barmer and Bikaner

both show a higher CV for most locations, and the peak

vegetation months fall after the monsoon rains and pre-

ceding the epidemic season (in September and October).

Thus, the temporal dynamics of NDVI differ across the

districts and are altered in the presence of irrigation and

associated agriculture (See Additional file 5: Figures S5).

Spatial correlation maps (Figure 2) show that the pre-

valence of malaria in Barmer and Bikaner, the two dis-

tricts with the lowest irrigation values, has a strong and

significant positive association with September’s NDVI

for a large region including parts of the Thar Desert.

Thus, high values of NDVI in the arid zone precede the

observation of an important portion of cases in the con-

secutive months. In the adjacent region with higher

levels of irrigation, BMP, only a small part of the district

shows a positive and significant correlation with NDVI;

although an association can still be observed with regio-

nal NDVI from areas outside the district. This suggests

that NDVI has weakened as an indicator of rainfall

variability but that this variability continues to act to

some extent as a driver of malaria at inter-annual time

scales. At the highest level of irrigation, Kheda showed a

different pattern: no significant correlation with NDVI is

present for any location of the study area, inside or out-

side the district. In this district, rainfall variability

appears to no longer act as a driver of epidemic size.

Similar results are obtained with the more recent NDVI

product, MODIS (See Additional file 6: Figure S6). The

parametric linear models show similar results. Barmer,

Bikaner and Kutch have a high and significant
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correlation with a coefficient of determination R2 >0.7,

whereas for Kheda and BMP, this association weakens

considerably (Figure 3).

A similar picture emerges from the analysis in the fre-

quency domain. Figure 4 shows the power spectrum for

both the malaria and NDVI time series for the two dis-

tricts corresponding to the extremes of the irrigation

spectrum. Results show that for Barmer, malaria and

NDVI both show strong and significant power in the 2

and 4-year periods. On the other extreme of the irriga-

tion intensity, the spectrum for Kheda shows that most

of the variance is concentrated in the one year period,

as expected for seasonal malaria (epidemics), and in the

five year period with this multiyear cycle absent in

NDVI. NDVI shows some power for period 4, but for a

small window of time (between 1992 and 1998). A

Figure 2 Correlation maps. Spearman rank correlation (r) between malaria incidence from October to December and September NDVI, for

each location (8 × 8 km grid point) of the study area. Each location (pixel) then represents the correlation in time between NDVI at this location

and malaria incidence from a specific district. This boundary of this district is indicated inside each map. A high spatial correlation is observed

over a large regional area (including the Thar desert), especially for the driest and weakly irrigated districts.

Figure 3 Linear regression plots. September NDVI is the predictor of malaria incidence in October, November and December.

Baeza et al. Malaria Journal 2011, 10:190

http://www.malariajournal.com/content/10/1/190

Page 5 of 10



general pattern observed in the power spectrum of both

NDVI and malaria for most all the districts is that as

irrigation increases, the time interval during which the

seasonal signal (at period one) predominates increases

with irrigation (see Additional file 7: Figure S7). In Bar-

mer, for example, the annual signal is absent for consid-

erable extents of time, with the exception of a few years

in the early nineties. By contrast, this signal is present in

Kheda almost uniformly over time as the dominant scale

of variability. Concurrently, the times with variance con-

centrated around period 2 decrease as the extent of agri-

cultural land under irrigation expands. This is also true

for NDVI with the exception of Barmer, which shows

less activity than the other districts in this particular fre-

quency. Although the variance of Kheda is concentrated

in the seasonal cycle, the average seasonal pattern of

malaria incidence in this district also shows a less pro-

nounced seasonality, in the sense that the troughs, in

the inter-epidemic months, exhibit higher values than in

less irrigated districts (See Additional file 2: Figures S2).

At the same time, on average, the seasonal incidence

during epidemic months in Kheda is higher (and not

lower). Thus, when epidemics occur, disease burden

tends to be larger than in the less irrigated districts.

This is the case both in earlier and more recent times

(See Additional file 1 and Additional file 8: Table S1 for

the large outbreaks of 2004).

A comparison between NDVI and rainfall predictabil-

ity shows that NDVI is a better explanatory variable at a

lead time of one month (See Additional file 9). In

August, the best predictor month for rainfall, NDVI per-

formed equally well for Barmer, Bikaner, and Kutch.

This comparison also shows that for BMP, rainfall is a

better predictor than NDVI, and that in Kheda neither

rainfall nor NDVI can predict the size of epidemic

events, confirming the decoupling of the malaria system

from the annual effect of rainfall in the number of cases.

Consistent with the above results, a dynamical model

(see Methods and Additional file 3) illustrates that mos-

quito abundance increases as the area of the landscape

under irrigated agriculture increases (See Additional file

10, Figure S10, panel B). However, this increment is only

observed for the months in which irrigation is supplied to

the agriculture (the driest months) and not during the epi-

demic season. This would result in less pronounced

troughs between epidemics and more sustained transmis-

sion. It also follows from this that irrigation cannot modify

the inter-annual correlation between rainfall and mosquito

abundance in the model (See Additional file 11, Figure

S11, panel D). Thus, disease risk remains associated with

excess rainfall, in the absence of additional factors such as

intervention efforts or the increase in levels of population

herd immunity with higher transmission.

Discussion

The resurgence of malaria in desert and semi-desert

areas of Rajasthan and Gujarat over the last three dec-

ades once again underscore the potential relevance of an

early-warning system based on climate variability. Any

new predictive tool must now also consider the

Figure 4 Wavelet power spectrum for malaria incidence and NDVI. The wavelet power spectra of the cases (panel A) and NDVI (panel B)

are shown for Barmer and Kheda, the two districts at the extremes of the irrigation gradient (for the rest of the districts see Additional file 6,

Figure S6). The wavelet spectrum shows the variance (technically the power) for different periods (y-axis) and for different years (x-axis). The scale

ranges from blue to red, with red indicating high power at a particular year and period. As irrigation increases, the 1-year period becomes

stronger and the 2 and 4-year periods become weaker.
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considerable changes in land-use patterns that arise

from irrigation and agriculture. More generally, the

long-term surveillance programmes in India provided an

opportunity to address climate forcing in the context of

changing irrigation patterns, a problem of relevance to

desert malaria in other continents. The results suggest

an increasing decoupling of malaria with local and then

regional rainfall variability that possibly reflect more

effective control measures, rather than a real reduction

in potential risk. This has clear implications for control

policies as discussed below.

This work specifically examined the relationship

between a remote sensing index of vegetation (NDVI)

and malaria in districts that differ considerably in levels

of irrigation. September NDVI was shown to provide a

reliable predictor of malaria prevalence during the epi-

demic period (October, November and December) both

within the district and in the larger region; however,

this prediction is strongest in districts where irrigation

is low or completely absent. These results provide a

bridge between predictions at a somewhat longer lead

time, in July and August, based on rainfall and the

actual peak of cases in October, November and Decem-

ber. For the non-irrigated districts, September NDVI

explained the inter-annual variation in the size of

malaria epidemics better than the accumulated rainfall

of August and September. The coherence of malaria and

NDVI in the frequency domain, with 2 and 4-year

cycles, further confirms the importance of the monsoon

rains as a driver of malaria’s inter-annual cycles in these

arid and un-irrigated regions.

In contrast, in the highly irrigated districts, Kheda and

in the combined Banaskantha, Mehsana, and Patan

(BMP), the association between NDVI and malaria

weakens and NDVI provides a poor predictor of the

magnitude of an outbreak. For BMP this is only the case

for NDVI within the district and not at larger regional

scales. This suggests a persistent role of rainfall forcing

on malaria transmission, with irrigation and agriculture

mainly compromising how well NDVI reflects this varia-

bility within the district. For Kheda, the more extreme

breakdown of the association with NDVI both inside

and outside the district indicates that rainfall no longer

determines the size of epidemics from year to year.

Two hypotheses arise as possible explanations of this

breakdown: 1) an increase in wealth with irrigation would

underlie more effective intervention measures based on

residual insecticide spraying, which in turn would prevent

epidemics under anomalous and large monsoons. More

irrigated, wealthier districts would therefore experience a

greater decoupling than poorly or non-irrigated ones. Or

2) the importance of rainfall has diminished due to

changes in either the entomological and ecological condi-

tions underlying the vectors’ dynamics, or climatic

conditions. In particular, multi-crop systems supported by

irrigation and rainfall can continually provide the water

necessary for a suitable mosquito environment. For exam-

ple, a study in Pakistan’s Punjab region [24], where malaria

used to exhibit pronounced monsoon driven epidemics,

described how irrigation now provides perennial sites for

mosquito breeding, with different vector species breeding

at different seasons during the year. On longer time scales,

both mechanisms might be at play, with the development

of irrigation ultimately resulting in more extensive ecologi-

cal and socio-economic change and a more permanent

reduction of malaria risk [9]. This implies that similar

effects may occur in Kheda, which currently exhibits simi-

lar epidemic timing, but with a higher disease incidence

(when epidemics occur) than in other districts, suggesting

that disease risk following anomalous monsoons has not

decreased with irrigation, but that intervention measures

have prevented its manifestation. Indoor Residual Spray

(IRS) in these districts is planned at the village level based

on the incidence of malaria in the previous year. All the

dwellings in villages whose annual parasite incidence

exceeds 2 per thousand population are targeted for spray

in the next year and preceding the epidemic season.

Higher levels of irrigation and associated wealth would

underlie more effective implementation of planned IRS,

and in so doing keep malaria transmission in check at

the same time that malaria risk itself would remain

responsive to climate variability (and even increase).

This creates the possibility of surprises, with unexpected

large epidemics when a temporary failure of control

coincides with an anomalous monsoon year. An exam-

ple of this is suggested by data on residual insecticide

spraying in Kheda (See Additional file 8; Table S1). In

2004, the number of cases increases dramatically follow-

ing a series of years of low incidence and low insecticide

application. This year also exhibits an excess of rainfall.

This large epidemic was then followed by an increase in

the level of insecticide spraying and, correspondingly, by

low levels of malaria cases, which in turn gave way to

low levels of control up to the present.

These findings have implications for control policies

and the relevance of a climate-based early-warning sys-

tem to control itself. Control in these regions is expli-

citly reactive in the sense that cases in the previous year

determine the allocation and planning of resources for

insecticide spraying in the next season within the dis-

tricts. Even in the absence of such policy, the implemen-

tation and planning of control in epidemic regions is

likely to be implicitly ‘reactive’. This is because a feed-

back is likely to emerge from past disease levels to

future human and economic resources allocated to

reducing vector abundance and malaria transmission.

Whether or not an explicit reactive control policy exists,

this feedback can operate at time scales longer than one
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year, depending in a complex way on the perception of

the problem and availability of resources. Thus, our

findings have implications beyond the specific district of

Kheda to other regions of epidemic malaria where irri-

gation and its concomitant development underlie more

effective control measures. They suggest that inter-

annual variability in control levels can set the stage for

temporal windows of high susceptibility to anomalous

weather conditions. They also indicate that remote sen-

sing in indicator regions (such as the Thar desert) can

be used to forecast the potential risk of an outbreak

given regional climate variability, especially when con-

trol levels fall to low levels.

The dynamical model of mosquito abundance in an

irrigated landscape further illustrates the persistent role

of climate forcing for disease risk under irrigation.

Under irrigation, the seasonal relationship between rain-

fall and mosquitoes is altered, but only in the non-epi-

demic months (of low rainfall). In the epidemic months,

mosquito abundance continues to respond to rainfall

events and, therefore, the inter-annual variability of

mosquito abundance after the rainfall season remains

unaltered (See Additional file 11, Figure 11, Panel D).

This is consistent with the scenario of no decrease in

the risk of large epidemics in Kheda with increased irri-

gation, and the persistence of climatic variability as an

important factor, now modulated by levels of control.

Entomological studies may also shed light on this con-

clusion. Anopheles culicifacies, the principal malaria vec-

tor in rural areas of India, is mainly present in riverine

and canal areas, where two peaks in vector abundance

are observed yearly, one in the monsoon season (Jul-

Aug) and another in March-April associated with irri-

gated rice fields [25]. Although temperatures in March

increase enough to support mosquito development, tem-

peratures become very high in May-June, leading to the

decline of vectors’ abundance and lifespan. The short

vector longevity during winter leads to a low sporogony

rate, and therefore, a low transmission rate for this per-

iod. In the monsoon season, however, optimum tem-

peratures and humidity, and extensive areas for

breeding, generate suitable conditions for parasite devel-

opment and large vector populations.

Finally, this study has considered the particular scale of

the district, at which the epidemiological data were aggre-

gated. This may not match well the scales at which irriga-

tion influences socioeconomic conditions. In this regard,

the complexity of the interaction between malaria

dynamics and land-use change, and the long-term conse-

quences of the interaction between socio-economic deter-

minants and malaria dynamics, deserve a closer

examination. At local scales, irrigation can be associated

with high mosquito populations, but not necessarily with

high incidence, a phenomenon known as the paddies

paradox [26,27]. Irrigation also may provide new ways to

enhance wealth that subsequently improve education

levels, housing conditions, or other types of protective

measures taken by the individuals in a community or

population [28,29]. Therefore, in addition to control mea-

sures implemented at larger spatial scales, the observed

decoupling between climate variability and malaria can

also reflect long-term changes in socio-economic drivers

such as better coverage by health facilities, self protective

measures, and house improvements. Regardless of the spe-

cific mechanism, in areas where the risk itself persists for

anomalous climatic conditions, it would be beneficial to

incorporate predictions of this risk based on remote sen-

sing tools in the planning of spray interventions.

Further work is needed to understand the connection

between agriculture, mosquitoes, human behaviour, and

wealth in human-modified landscapes at different spatial

and temporal scales. At the large scale of districts, these

findings underscore the differential effects of irrigated

landscapes on malaria’s risk and predictability, including

the possibility of unexpected epidemics that are more

difficult to predict because of the complex interaction

between climate forcing and control efforts. At lower

scales, to understand the role of remote sensing in pre-

dicting epidemic risk in different agricultural landscapes

and how this risk changes in space and time, more

research is clearly needed.

Conclusion

Remote sensing (the vegetation index known as NDVI)

provides a useful predictor of malaria epidemics in

regions with low levels of irrigation. Increased irrigation

modifies the coupling between climatic forcing and

malaria’s inter-annual variability. This decoupling

appears to reflect the effect of control measures rather

than a reduction in disease risk. Thus, early-warning

systems based on remote sensing in regional indicator

regions remain of value to control itself and to the pre-

paredness for public health responses. In addition, reac-

tive control policies may lead to unexpected large

epidemics in areas with increased irrigation, when

anomalous rainfall coincides with relaxations of control.

Prediction efforts coupled to non-reactive control would

be of particular value in the transition stage from largely

rainfall-driven epidemics to a more permanent reduction

of the malaria risk that would accompany socio-eco-

nomic development and increased irrigation.

Additional material

Additional file 1: Time series of malaria incidence. The y-axis

represents the monthly number of cases per 100,000 people. Note that

the range in the y-axis varies across districts. For comparison purposes,

see Additional file 2: Figure S2.
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Additional file 2: Box-plots of malaria incidence and NDVI. The first

row shows the average and the range of anomalies of cases (in

logarithmic scale) for each district in a gradient of irrigation intensity. The

second row shows NDVI from the time series inside the districts.

Additional file 3: A simple model of mosquito population dynamics,

rainfall and irrigation.

Additional file 4: Graphical representation of the model. The land

inside the district is divided into irrigated and non-irrigated agriculture (i

and n) and into other uses (p). A network of canals drains the water that

precipitates on p to supply the production of irrigated agriculture.

Additional file 5: Coefficient of variation and seasonality of NDVI.

BMP and Kheda both exhibit low coefficients of variation (red colours)

and a peak in NDVI in the month of January. (In the left side of both

figures, the red coloured areas delineate the irrigation tract associated

with the Indus River in neighbouring Pakistan.)

Additional file 6: Correlation maps using MODIS images. Spearman

rank correlation between September NDVI from MODIS and malaria

incidence for a specific district in the epidemic season (the sum of the

cases for October, November and December). Note that the dataset

consists of ten years (and only 7 years for Barmer). At a significant level

of 0.1, evidence for an association between malaria and NDVI at the

regional level is present for both Barmer and Kutch. This pattern is less

pronounced, however, than for the NOAA NDVI data because of the

shorter length of the time series for MODIS NDVI.

Additional file 7: Wavelets analysis (continuation). Similar to Figure 4,

but for the three districts in the middle part of the irrigation gradient.

The picture shows that as irrigation intensified, the 1 year signal became

stronger over longer periods of time, both for incidence (Panel A) and

NDVI (Panel B).

Additional file 8: Total rainfall, insecticide application and number

of cases recorded in Kheda. The amount of insecticide use corresponds

to the proportion of the state population covered by spray activity in

that particular year. Rainfall and cases are the total values for the year.

Note that in 2004 the large number of cases coincides with anomalous

conditions of rainfall and a relatively low level of insecticide application,

not just that year but also for a number of previous years. In 1997 and

2001 similar anomalous rainfall conditions did not produce this large

number of cases. (Insecticide use data were missing for 2003; the value

in the table was predicted by a linear regression of insecticide use at the

district level as a function of insecticide use for 10 talukas, administrative

units within the district; regression coefficient 0.979). No rainfall data after

2006 are available at this point.

Additional file 9: Malaria predictability based on NDVI v/s rainfall.

The x-axis shows the month of the year used to fit a linear model of the

number of cases in the epidemic season (October to December). The y-

axis shows the corresponding R-squared value. NDVI is a better predictor

than rainfall one month prior (September; dashed line) to the epidemic

season (October-November-December) for Barmer, Bikaner and Kutch.

For BMP, rainfall from Banaskantha is a better predictor. For Kheda,

neither NDVI, nor rainfall, are good predictors of epidemics.

Additional file 10: Maximum, minimum and yearly average

mosquito abundance. Panel A shows that the minimum mosquito

abundance increases as the total area under irrigation increases, however

its maximum does not change. Panel B shows that mosquito abundance

increases linearly with the proportion of land under irrigation (i).

Additional file 11: Seasonal and inter-annual correlation. Correlation

between mosquito (M) and precipitation (P) with non-irrigated

agriculture (i = 0; panel, A and C), and with 30 percent of the landscape

under irrigated agriculture (i = 0.3; panels B and D). Seasonal correlation

in panels A and B and inter-annual correlation in panels C and D. The

values for the rest of the parameters are: n = 0.1; p = (1 - n - i); e = 30; d

= 200; c = 0.1; b = 120; μ = 18; r = 0.8; ω = 0.1; fn = fi = 3; r1 = 200; r0 =

0.99; m1 = 200; m0 = 0.99; h = 5; an = 2; ai = 3. The annual cycle leads

to the change in correlation, but not the actual inter-annual variability.
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