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ABSTRACT

This study investigates how subgrid cloudwater inhomogeneity within a grid spacing of a general circulation

model (GCM) links to the global climate through precipitation processes. The effect of the cloud inhomo-

geneity on autoconversion rate is incorporated into the GCM as an enhancement factor using a prognostic

cloud water probability density function (PDF), which is assumed to be a truncated skewed-triangle distri-

bution based on the total water PDF originally implemented. The PDF assumption and the factor are eval-

uated against those obtained by global satellite observations and simulated by a global cloud-system-resolving

model (GCRM). Results show that the factor implemented exerts latitudinal variations, with higher values at

low latitudes, qualitatively consistent with satellite observations and theGCRM. TheGCM thus validated for

the subgrid cloud inhomogeneity is then used to investigate how the characteristics of the enhancement factor

affect global climate through sensitivity experiments with andwithout the factor incorporated. The latitudinal

variation of the factor is found to have a systematic impact that reduces the cloud water and the solar re-

flection at low latitudes in the manner that helps mitigate the too-reflective cloud bias common amongGCMs

over the tropical oceans. Due to the limitation of the factor arising from the PDF assumption, however, no

significant impact is found in the warm rain formation process. Finally, it is shown that the functional form for

the PDF in a GCM is crucial to properly characterize the observed cloud water inhomogeneity and its re-

lationship with precipitation.

1. Introduction

The climate feedback of cloud remains one of the

largest uncertainties in estimating the climate sensitivity

(Boucher et al. 2013; Stephens 2005). To address this

issue, realistic representations of clouds in general cir-

culationmodels (GCMs) are critical. Recent advances in

evaluating GCMs using satellite observations, however,

have revealed that model representations of clouds are

subject to systematic biases common among models,

such as geographical distributions of cloudiness and

their radiative effects (Lauer and Hamilton 2013). In

addition, simulated clouds potentially have ‘‘compen-

sating biases’’ at their process-level characteristics in

precipitation process and radiative effects even though

the mean states of global climate and its long-term trend

in the recent past reasonably match the observations

(Kay et al. 2012; Nam et al. 2012; Stephens et al. 2010;

Suzuki et al. 2013; Zhang et al. 2005). This indicates that

current GCMs commonly fail to represent key under-

lying cloud physical processes.

The fundamental difficulty in representing clouds

is rooted in the horizontal grid spacing [O(100)km]

adopted by modern GCMs, which is much coarser than

can resolve individual clouds. This requires the models

to parameterize subgrid-scale cloud processes in terms
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of grid-scale model variables. In particular, subgrid-scale

variability of cloud liquid water content Lc (kgm23)

within the cloudy part of a model grid (hereafter cloud

inhomogeneity) has a significant impact on grid-scale

representations of key cloud processes such as micro-

physics and radiative transfer process that vary non-

linearly with Lc (e.g., Pincus and Klein 2000). In general,

for a nonlinear process whose rate is given as R(Lc), sys-

tematic biases arise from neglecting cloud inhomogeneity

and simply substituting Lc into R—that is, R(Lc)—when

computing R(Lc), where the overbar denotes the grid

mean of in-cloud value (Larson et al. 2001).

To account for the effect of cloud inhomogeneity on

R(Lc), a correction factor F that satisfies

R(L
c
)5F3R(L

c
) (1)

is often introduced into GCMs as a part of the param-

eterization. A typical way to introduce F is to employ a

probability density function (PDF) of Lc within the grid

[P(Lc)]. The correct estimate of R(Lc) is thus calcu-

lated as

R(L
c
)5

ð

‘

0

[R(L
c
)3P(L

c
)] dL

c
: (2)

This integral yields F of Eq. (1) that is determined by the

nonlinearity of R(Lc) and the functional form of P(Lc).

Of particular importance among nonlinear processes

is the autoconversion process that controls liquid-phase

precipitation, exerting a substantial impact on water

budget and lifetime of low-level clouds. GCMs typically

treat the liquid condensates as either cloud or rain in the

bulk parameterization, in which the autoconversion

process accounts for conversion from cloud water into

rainwater. The autoconversion rate is widely parame-

terized as power-law equations of Lc and cloud droplet

number concentration Nc (m
23) as

R(L
c
)52

dL
c

dt
}La

c 3N2b
c , (3)

where a and b are positive constants (Beheng 1994;

Berry 1968; Khairoutdinov and Kogan 2000; Liu and

Daum 2004; Tripoli and Cotton 1980). In general, the

autoconversion formulation is highly nonlinear with

regard to Lc (a� 1). Therefore, F in Eq. (1), termed the

‘‘enhancement factor’’ for the autoconversion process

(hereafter denoted by Eau), is substantially larger than

unity (Morrison and Gettelman 2008).

Due to the importance of Eau, it has been introduced

into several GCMs. In some of these studies, Eau is as-

sumed to be constant regardless of meteorological states

and geographical locations (Rotstayn 2000; Morrison

and Gettelman 2008). On the other hand, observation-

based studies of Barker et al. (1996) and Lebsock et al.

(2013) showed that cloud water variability is greater in

the trade cumulus regime than in the stratocumulus re-

gime, suggesting that a regime-dependent representa-

tion of the cloud inhomogeneity is required in GCMs.

A regime-dependent Eau is enabled by prognostic

PDF-based parameterizations, which have been origi-

nally developed for cloud fraction diagnosis in GCMs

(Tompkins 2008), based on the temporarily and spatially

variant P(Lc) as the saturated part of total water PDF.

The prognostic PDF approach would be more theoret-

ical than the approach that parameterizes cloud inho-

mogeneity as a function of cloud fraction, atmospheric

stability, or convective activity (Boutle et al. 2014; Hill

et al. 2015; Xie and Zhang 2015), given that PDF is a

fundamental physical quantity that can also be obtained

from and thus validated against observations and high-

resolution cloud simulations. This approach also allows

for a self-consistent treatment of cloud inhomogeneity

across multiple cloud processes within a model in the

way based on a common PDF.

Some studies incorporated prognostic Eau into the

GCM and reported the improvements of cloud repre-

sentations (Guo et al. 2014; Song et al. 2018a;Weber and

Quaas 2012). While Hill et al. (2015) showed the impact

on cloud cover and TOA radiation when parameterizing

the enhancement factor for autoconversion and accre-

tion processes, the characteristics of the factors such as

their magnitude and geographical pattern were not

shown, and their individual contributions were not dis-

cussed. The present study addresses a remaining ques-

tion, that is, howEau based on the model’s own PDF can

adequately represent the global characteristics of Eau.

We also draw on additional observations for the liq-

uid water path (LWP) and precipitation to provide a

more complete understanding of how such globally

varying Eau with cloud regimes is linked to the global

climate field.

Recent progresses in global high-resolution modeling

with explicit representations of individual clouds (e.g.,

Satoh et al. 2019) and in global satellite observations of

cloud and precipitation processes (e.g., Stephens et al.

2018) provide an unprecedented opportunity to inves-

tigate subgrid-scale characteristics of clouds and pre-

cipitation on the global scale (Lebsock et al. 2013; Hill

et al. 2015). This study exploits these new capabilities to

assess the fidelity of the representation of unresolved

properties of cloud and their impact on nonlinear cloud

processes in a GCM, taking Eau as a representative case

that fundamentally depends on cloud inhomogeneity.

Specifically, we incorporate Eau into a GCM based

on a prognostic PDF scheme and evaluate its global
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characteristics. A detailed comparison with regard to

cloud inhomogeneity representation between the GCM

and global cloud-system-resolving model (GCRM)

against satellite observations is then conducted for the

first time to reveal the effectiveness and limitations of

Eau parameterization based on the PDF scheme. It is

revealed that the assumption for the mathematical form

of cloud water PDF could be a fundamental source of

bias in representing Eau. Given the validated charac-

teristics of Eau, global climatic impacts of Eau are in-

vestigated through comparing GCM simulations with

and without an Eau of varying magnitudes. The analysis

is then used to explore how such process-level model

characteristics relevant to the cloud inhomogeneity link

to global geographical characteristics of cloud and ra-

diation fields. The investigation of the linkage between

Eau and warm rain process suggests a need for the Eau

formulation to properly connect cloud inhomogene-

ity with precipitation. Finally, constraints inherent

to a variety of mathematical functional forms for the

PDF are discussed to determine the implications for

other GCMs.

The rest of the paper is organized as follows: section 2

describes the experimental design to incorporate Eau

into aGCMand the simulation setup. Section 3 provides

a general description of the data and analysis methods

for evaluations of the GCM-simulated cloud inhomo-

geneity against GCRM simulations and satellite obser-

vations. Section 4 shows the results and discussions. The

main findings are summarized in section 5.

2. Global climate model simulations

a. Model description

In this study, the enhancement factor Eau was intro-

duced into the atmospheric component of a GCM,

the latest version of the Model for Interdisciplinary

Research on Climate (MIROC6; Tatebe et al. 2019). All

MIROC6 simulations in this study were conducted at a

horizontal resolution of T85, which approximately cor-

responds to 1.48 grid spacing. The vertical resolution was

40 levels up to 3hPa and the time step was set to 12min.

In MIROC6, clouds and their properties are repre-

sented separately between stratiform and convective

clouds as in majority of GCMs. The parameterizations

most relevant to the current work are the stratiform

cloud scheme. The stratiform cloud fraction (CF) and

the corresponding grid-mean cloudwatermixing ratio qc
(kg kg21) are derived using a statistical PDF-based

scheme (Sommeria and Deardorff 1977). The scheme

assumes the PDF for the conserved quantity s, denoted

by G(s). CF and qc are obtained at each model grid by

integrating the saturated part ofG(s) and (Qc 1 s)G(s),

respectively, whereQc denotes the grid-scale saturation

deficit. MIROC6 adopts the prognostic statistical scheme

of Watanabe et al. (2009), which assumes a skewed-

triangle shape for G(s) as depicted in Figs. 1a–c. The

shape of G(s) is defined by the two prognostic variables

(i.e., variance and skewness), which vary through influ-

ences by cumulus convection, cloud microphysics, tur-

bulent mixing, and advection.

In the stratiform cloud microphysical process, grid-

mean values of water vapor mixing ratio qy, cloud water

mixing ratio qc, ice mixing ratio qi, and cloud droplet

number concentration Nc are predicted with the bulk

scheme. The ice parameterization is based on Wilson

and Ballard (1999). The conversion of cloud water to

rainwater is computed as the sum of the autoconversion

and accretion processes. Finally,Nc is predicted with the

scheme of Abdul-Razzak and Ghan (2000) from aerosol

number concentrations predicted by the online aero-

sol module, the Spectral Radiation-Transport Model

for Aerosol Species (SPRINTARS; Takemura et al.

2005, 2009).

b. Incorporation of autoconversion enhancement

factor

In MIROC6, autoconverison is the dominant process

to produce warm rain particularly due to the diagnostic

treatment of rainwater (Michibata and Takemura 2015;

Michibata et al. 2019). In the current standard version of

MIROC6, the autoconversion rate Rau (kgm23 s21) is

derived from the parameterization given by Berry (1968)

(referred to herein as the BR scheme) as

R
au
(L

c
)5

a
BR

3L2
c

0:181 10213 3N
c
/L

c

, (4)

where aBR is a ‘‘tunable’’ constant (Ogura et al. 2017)

andLc is the product of qc and air density ra (kgm
23). In

the original cloud scheme of MIROC6, the cloud inho-

mogeneity is not considered in the autoconversion

process. The Rau is then calculated by simply substituting

the Lc into Eq. (4) as

R
au
(L

c
)5R

au
(L

c
), (5)

where the overbar denotes the grid mean of in-

cloud value.

To incorporate the effect of the cloud inhomogeneity

into the autoconversion process, we adopt the saturated

part of G(s) as the PDF of cloud water P(qc), as illus-

trated in Figs. 1a–c. Normalized P(Lc) is thus ob-

tained as

P(L
c
)5

G(s1Q
s
)

CF
, (6)
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where
Ð

‘

0P(Lc) dLc 5 1. Equation (4) is then integrated

with weight of Eq. (6) to obtain

R
au
5

ð

‘

0

[R
au
(L

c
)3P(L

c
)]dL

c
: (7)

Here the enhancement factor Eau is computed as

E
au
5

ð

‘

0

[R
au
(L

c
)3P(L

c
)]

R
au
(L

c
)

dL
c
: (8)

The value of Eau depends on the shape of P(Lc) and the

nonlinearity ofRau(Lc). The prognosticP(Lc) allowsEau

to be regime dependent. According to Eq. (4), the

nonlinearity with regard to Lc [represented by the ex-

ponent a in Eq. (3)] of the BR scheme takes a value

between 2 and 3. To explore the climate impact of Eau,

additional simulations were conducted adopting au-

toconversion schemes that have different nonlinear

exponents, namely the schemes of Khairoutdinov and

Kogan (2000) and Beheng (1994) (hereafter the KK

and BH schemes, respectively). The conversion rates

for the KK and BH schemes are given by

R
au
(L

c
)5a

KK
3 1350L2:47

c (N
c
3 1026)21:79

r
21:47
a

, (9)

and

R
au
(L

c
)5a

BH
3 6:03 1028(L

c
3 1023)4:7(N

c
3 1026)23:3,

(10)

respectively, where aKK and aBH are ‘‘tunable’’ con-

stants. These schemes have the nonlinearity of a 5 2.47

and 4.7 in Eq. (3). The BH scheme is characterized by

remarkably higher nonlinearity. For some PDF shapes

previously adopted in GCMs, the cloud water PDF

need to be assumed in the way inconsistent with total

water PDF (Guo et al. 2014; Song et al. 2018a) or to be

FIG. 1. Examples of cloud water PDFs (a)–(c) assumed inMIROC6, (e),(g) obtained from satellite observations, and (i),(k) constructed

from the NICAM simulation. The MIROC6 figures also show the total water PDF. The saturation point (saturation surplus equals zero)

corresponds to the situation that cloud water equals zero. The observed PDFs in (e) and (g) are obtained from (d),(f) the 130 sequential

pixel-scale retrievals. TheNICAMPDFs in (i) and (k) are from (h),(j) cloudwater content at each columnwithin the set of 144 grid points.
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numerically integrated, which requires expensive com-

putational cost (Weber and Quaas 2012). In contrast,

integrations of Eq. (8) were conducted analytically for

all the three autoconversion formulations because P(Lc)

in this study is a linear function.

c. Experimental design

In addition to the control (Cont) experiments that

neglect cloud inhomogeneity when evaluating Rau [as in

Eq. (5)], two different types of experiments, denoted as

the Eau and Eau-tune experiments, were conducted for

each of the three alternate autoconversion schemes. In

the Eau experiments, Eau was introduced according to

Eq. (8). This imposed a feedback onto liquid cloud

distribution and thus had an impact on the radiation

field. In the Eau-tune experiment, the coefficient pa-

rameters (aBR, aKK, and aBH) were retuned to main-

tain the global and annual average net TOA radiation

balance within 61Wm22 in addition to the intro-

duction of Eau.

As a result of the experimental setup described above,

the total of nine experiments (Cont, Eau, and Eau-tune

for three choices of autoconversion schemes) were

conducted with MIROC6. The simulation period was

4 years for each experiment. Observed monthly mean

sea surface temperature and sea ice data of the year

2005–08 were used as boundary conditions. The con-

centrations of anthropogenic gases and aerosols were set

to present-day emissions. The simulated results were

analyzed to show the mean state of the last three years

unless otherwise stated.

d. COSP

To facilitate the quantitative evaluation of clouds in

MIROC6 against satellite observations, we used the

satellite simulator COSP version 1.4 (Bodas-Salcedo

et al. 2011). In this study, low-level (.680hPa) CF of

MIROC6 diagnosed by the COSP lidar module was

evaluated against CALIPSO remote sensing using the

GCM-Oriented CALIPSO Cloud Product (GOCCP;

Chepfer et al. 2008, 2010; Guzman et al. 2017) algorithm.

In addition, we evaluated the warm rain characteristics

in MIROC6 through comparisons of radar reflectivity

statistics from COSP radar simulator (Haynes et al.

2007) withCloudSat observations (Stephens et al. 2008).

The online COSP diagnostics were conducted ev-

ery 3 h in the MIROC6 integrations. The number of

subcolumns generated in each grid was 140. The

stratiform cloud water and rainwater were assumed

to uniformly distribute within the stratiform cloud

subcolumns in the grid box. This assumption possibly

causes overestimated radar reflectivity (Song et al.

2018b; Hillman et al. 2018), which will be discussed

later (section 4d). The maximum-random cloud

overlap assumption was applied in the vertical cloud

assignment.

3. Method to analyze cloud inhomogeneity

Figure 1 displays examples of the cloud water PDF

P(Lc) that is 1) assumed in the GCM MIROC6 PDF-

based cloud parameterizations (Figs. 1a–c), 2) obtained

from pixel-scale observations by satellites (Figs. 1e,g),

and 3) simulated by the GCRM NICAM with its fine

grids (Figs. 1i,k) by the method described below. For the

comparisons, we characterized cloud inhomogeneity in

terms of dimensionless parameters, that is, normalized

variance V (the arithmetic variance divided by the

square of mean) and skewness S. Mathematically de-

fined as
h

Ð

‘

0
(Lc 2Lc)

2
P(Lc) dLc

i

/Lc
2
, V is a measure of

cloud water variability, with its large values indicating

more heterogeneous cloud field. The V and equivalent

variables have been widely analyzed observationally

and often chosen to specify cloud inhomogeneity

within a GCM grid (e.g., Guo et al. 2014; Hill et al.

2012; Shonk et al. 2010) with its impact on cloud

processes via the enhancement factors (e.g., Kawai

and Teixeira 2012; Lebsock et al. 2013). The subgrid-

scale variability of Nc is also likely to enhance the

autoconversion rate over regions with large Nc, par-

ticularly for autoconversion schemes with the expo-

nent b in Eq. (3) significantly larger than unity such as

in the KK and BH schemes (Wu et al. 2018; Zhang

et al. 2019). However, this study assumes a uniform

distribution of Nc given that there seems no reliable

parameterization for Nc variability partly due to the

quite limited observations for Nc variability. The

analysis was focused on oceanic single-layer warm

clouds, whose cloud-top temperatures are higher than

273.15K.

a. Satellite analysis

1) THE DATA

For observation-based evaluations of the cloud inho-

mogeneity and its impact on precipitation on the global

scale, we exploited the measurements from the A-Train

satellite constellation (Stephens et al. 2002) over a 4-yr

period (2007–10), which covers from 828S to 828N with

its sun-synchronous polar orbit. The analysis is based

on the method of Lebsock et al. (2013). We employed

data from the CloudSat Cloud Profiling Radar (CPR),

CALIPSO CALIOP lidar, and MODIS instrument on

Aqua. These three satellites fly as part of the A-Train.

We used pixel-level data from the CPR footprint size of

about 1.7 km in the horizontal, with an along-track
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sampling interval of 1.1 km and at a vertical resolution

of 240m.

The LWP and Nc were derived from the MODIS

collection 5.1 level 2 MYD06 of optical thickness t and

effective particle radius Re retrieved by the 2.1-mm

channel (Platnick et al. 2003). Using an adiabatic as-

sumption with constantNc in height (Wood 2006), LWP

was estimated as LWP 5 (5/9)tRerw, where rw denotes

the liquid water density. The value of Nc was estimated

asNc 5
ffiffiffi

2
p

B3Geff1/2, whereB5 0.0620kg21/3m, andGeff

is the effective rate of increase in liquid water content

with respect to height. The analysis was limited to the

ascending (sunlit) orbits that cross the equator at ap-

proximately 1330 local time, when the retrievals are

available. The cloud geometric thickness H was taken

from the combined radar/lidar cloud mask provided in

the 2B-GEOPROF-lidar P2 R04 product (Mace et al.

2009). We note that the uncertainty of cloud-base height

would not be crucial for the horizontal cloud inhomo-

geneity analysis (Lebsock et al. 2013), although in some

cases the cloud layer near surface is possibly undetected,

causing underestimated H.

2) ANALYSIS METHOD

Sequences of 130 continuous profiles (corresponding

to the MIROC6 horizontal grid size of approximately

140 km) were extracted from the CPR granules to

define a segment of satellite data. Cloudy pixels were

defined as those that satisfy the radar/lidar cloud mask

and also have successful retrievals of t and Re. A sample

was discarded if the multilayer cloud flag by the radar/

lidar cloud mask was contained or if any cloudy pixel

possesses a cloud-top temperature lower than 273.15K.

The remaining segments are therefore composed of

clear-sky and single-layer warm cloud pixels. Segments

containing more than two valid cloud retrieval pixels

were required so that S has a meaningful value. For

each cloudy pixel, Lc was simply estimated as Lc 5

LWP/H.

For each segment, V and S were calculated using the

method of moments. The value of Nc was averaged

within the cloudy pixels and then the value of Eau

was evaluated assuming the autoconversion to be

either of the three schemes. The cloud fraction was

defined as the ratio of the cloudy pixel number rel-

ative to 130.

For evaluations of warm rain, the radar reflectivity

Ze (expressed in dBZ) from the 2B-GEOPROF-lidar

product was employed. The higher Ze is typically asso-

ciated with greater likelihood of precipitation. The

lowest four pixels (1 km above the surface) of Ze were

discarded to avoid the ground clutter following Tanelli

et al. (2008).

b. GCRM analysis

1) MODEL AND SIMULATION SET UP

The 1-yr simulations with Nonhydrostatic Icosahedral

Atmospheric Model (NICAM) (Satoh et al. 2008, 2014;

Suzuki et al. 2008; Tomita and Satoh 2004), which were

also used in Sato et al. (2018), were analyzed. The hor-

izontal resolution employed was approximately 14 km

(grid division level 9). The vertical grid was 38 levels

extending to the height of 40 km above the sea level, and

the time step was set to 1min.

NICAM dynamics employs a set of governing

equations for a fully compressive fluid on the icosahe-

dral grids. Cloud microphysics adopted a one-moment

bulk scheme called NICAM single-moment water 6

(NSW6; Tomita 2008), and no cumulus parameteri-

zation was applied. In NSW6, the mixing ratios of

water vapor qy, cloud qc, rain qr, ice qi, snow qs,

and graupel qg are predicted based on microphysical

conversion processes, and saturation adjustment is

applied between qyand qc; Nc is predicted by the

scheme of Abdul-Razzak and Ghan (2000) in online

SPRINTARS.

The numerical integrations were conducted with sea

surface temperature prescribed for the 20-yr average

results of Kodama et al. (2015) after spinup periods of

1.5 months. Two types of simulations, which adopted the

BR and KK schemes for the autoconversion process

respectively, were analyzed. For warm rain evaluations,

the Joint Simulator for Satellite Sensors (J-simulator;

Hashino et al. 2013) was applied to the NICAM-simulated

atmosphere profiles. The J-simulator calculated the at-

tenuated radar reflectivity at 94GHz at a horizontal reso-

lution of 14km.

2) ANALYSIS METHOD

Using the 6-hourly instantaneous output at 14-km grid

spacing, we analyzed the cloud inhomogeneity within a

grid size of MIROC6, which consists of 144 horizontal

points of the NICAM output (12 pixels in longitude and

latitude, respectively). We extracted the sets of points

composed of single-layer warm cloud columns and clear-

sky columns alone. A volume (a grid point at a vertical

level) was assumed as cloudy if the sum of the hydrom-

eter condensatemixing ratio (qc1 qr1 qi1 qs1 qg) in the

volume exceeds the threshold chosen to be 1025kgkg21.

As a result, cloudy columns are selected as those that

satisfy all the following three conditions: 1) liquid-phase

condensate mixing ratio (qc 1 qr) $ 1025kgkg21 from

cloud-top layer to cloud-bottom layer, 2) cloud-top

temperature$ 273.15K, and 3) cloud optical thickness$ 0.3.

Clear-sky columns are defined as those that satisfy either or
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both of the following two conditions: 1) none of the layer is

cloudy and 2) cloud optical thickness # 0.3.

For a selected cloudy column, the LWP contained

within the whole layer (including clear-sky layer) was

divided by the H to obtain Lc as LWP/H in the manner

consistent with satellite analysis. The CF is defined as

the fractional count of cloudy columns relative to 144.

3) MIROC6 ANALYSIS

Cloud inhomogeneity parameters in MIROC6 simu-

lations were analyzed with the instantaneous output

data at 6-hourly intervals. A column was selected if the

conditions 1–3 above for NICAM cloudy column were

satisfied, where the hydrometer condensate mixing ratio

was replaced with the sum of qc and qi in MIROC6. For

each cloudy volume (at a level within a column), CF, V,

S, and Eau are obtained by analytical calculation using

P(Lc) of the volume. These variables were vertically

averaged within cloudy layers weighted with Lc of

each layer.

4. Results and discussion

a. Cloud inhomogeneity

The cloud inhomogeneity in MIROC6 is at first

compared with that in satellite observations and

NICAM. We note that the horizontal resolution of

14 km adopted by NICAM is substantially larger than

that of satellite retrieval pixels. NICAM thus cannot

completely capture the cloud inhomogeneity as small as

those captured by satellite measurement. However,

NICAM even at this resolution is one of the most

elaborate models that enable year-long and global-scale

experiments under current computational capability.

We therefore regard NICAM as a superior model to

traditional GCMs in terms of cloud inhomogeneity

representations.

It should also be noted that the absolute value of CF

and cloud inhomogeneity parameters are subject to

analysis conditions such as water mixing ratio threshold

that distinguishes cloudy and clear-sky conditions and

the horizontal scale of sampling the data (Boutle et al.

2014; Hill et al. 2012; Lebsock et al. 2013). Given that it

is impossible to make these conditions exactly identical

between MIROC, NICAM, and satellite observations,

we focus on qualitative comparisons of the cloud inho-

mogeneity. In this subsection, we show results from the

MIROC6 Eau-tune experiment and NICAM both with

the BR scheme for evaluating the models.

A primary factor controlling cloud inhomogeneity is

CF, as found by prior observational analysis (Ahlgrimm

and Forbes 2016; Boutle et al. 2014; Hill et al. 2012;

Lebsock et al. 2013; Xie and Zhang 2015). Figure 2

compares how V is correlated with CF in MIROC6,

satellite observations, and NICAM. Satellite observa-

tions show that V tends to increase and decrease with

increasing CF when the CF is smaller and larger than

about 0.2, respectively. The bell-shaped relationship,

similar to what is found in the previous studies, is well

reproduced in NICAM at least qualitatively. This sug-

gests that explicit representations of the cloud inhomo-

geneity in NICAM with fine grids (Figs. 1d,f) can

capture the satellite-observed subgrid-scale water vari-

ability characteristics. In MIROC6, on the contrary, V

almost takes a single value of 0.500 when CF is smaller

than 0.5. In this situation, P(Lc) is fixed to be a right-

angled triangular shape (Fig. 1a) and unable to form

other shapes such as the distribution with the long tail

toward high liquid water content (Figs. 1e,i), resulting in

the confined value of V5 0.5. The cloud inhomogeneity

of MIROC6 is thus overconstrained by CF, particularly

over small CF conditions, due to the skewed-triangle

shape G(s) assumed. For CF larger than 0.5, although

the variability at a given CF is small, V in MIROC6

decreases as CF increases, which is consistent with sat-

ellite observations and NICAM.

The correlation characteristics are also found in the

context of global geographical distributions of V and

FIG. 2. Normalized variance V of cloud water content for warm clouds as a function of cloud fraction in

(a) satellite observations, (b) MIROC6, and (c) NICAM. The bold lines show the median, and thin lines show the

25th and 75th percentiles.
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low-level CF as shown in Fig. 3. In satellite observations

(Fig. 3a), the region of low (high) V well corresponds to

where low-level clouds are ubiquitous (sparse). This

implies that the meteorological conditions associated

with CF play a crucial role in determining the geo-

graphical distribution of V through the relationship of

Fig. 2a. The low values of V are observed particularly

over high latitudes and on the eastern margins of the

subtropical ocean basins, where stratus and stratocu-

mulus are the principal cloud types. In contrast, high

values of V are observed in the tropical central ocean,

where trade wind cumulus clouds typically occur and

P(Lc) is often characterized by a long tail extending

toward large Lc (Fig. 1e). These regional characteristics

are captured by NICAM quite well (Fig. 3c). MIROC6

reproduces the latitudinal variation of V, with detailed

regional characteristics ofV found to be biased (Fig. 3b).

In the eastern margin of subtropical oceans, for exam-

ple, the locations with low V is shifted to the west in

MIROC6, which is likely related to the CF bias that

stratocumulus region is too far from the coast (Fig. 3d).

b. Enhancement factor for autoconversion

The characteristics of the cloud inhomogeneity influ-

ence the process rate as an enhancement factor through

Eq. (2) with an assumed functional form of P(Lc) in

GCMs (Kawai and Teixeira 2012). Given that the

mathematical form of P(Lc) serves as a ‘‘closure’’ that

connects the lower and higher moments of the cloud

water distribution, it would be helpful to investigate the

relationship among different statistical properties of

cloud water PDF such asV and S and their link toEau for

understanding how prescribed form of PDFs captures

and possibly constrains the relationships in representing

the enhancement factor.

Figures 4a–c illustrate the statistical relationship be-

tween V and S in the form of the joint PDFs, which

characterizes the ‘‘shape’’ of P(Lc) as illustrated in

Figs. 4d–f. Satellite observations (Fig. 4a) show that V

and S tend to be positively correlated with each other,

which is successfully simulated by NICAM (Fig. 4c),

suggesting that key observed characteristics of P(Lc)

are well captured by NICAM. The relatively rare oc-

currence of positively skewed distribution in NICAM

might be becauseNICAM lacks shallow cumulus clouds,

which is not expected to be fully resolved with 14-km

horizontal resolution. On the other hand, this relation-

ship in MIROC6 is strongly constrained by the as-

sumption that G(s) is a skewed triangle. In particular,

69% of the analyzed column corresponds to a single

point (green dot in Fig. 4b), where V 5 0.500 and S 5

0.567 with a right-angled triangle P(Lc) in Fig. 1a.

Figure 4b also shows that the MIROC6 cloud scheme

restricts the range of V and S to 0 # V # 0.500

and 20.567 # S # 0.567.

Figure 5 demonstrates how V and S influence the

value of Eau for different choices of autoconversion

schemes. It is found that Eau is largely determined by V

in the case of the BR and KK schemes, while bothV and

S have comparable contributions to Eau for the BH

scheme because of its higher nonlinearity for Lc. These

results illustrate how limited variations of V and S in

MIROC6 (Fig. 4b) preventEau from taking large values.

It is therefore suggested that the skewed-triangle shape

assumption for G(s) in MIROC6 is a fundamental

source of bias in parameterizing Eau, particularly for

conditions of large cloud inhomogeneity.

The global geographical distributions of Eau are

shown in Fig. 6. As expected from the close relations of

EauwithV in Fig. 5, the regional variations of Eau reflect

FIG. 3. Mean value of cloud water normalized variance V for warm clouds in (a) satellite observations, (b) MIROC6, and (c) NICAM.

Climatological of low-level (.680 hPa) cloud fractions are derived by (d) the CALIPSO GOCCP version 3 algorithm in CALIPSO

satellite observations for the years 2007–10 and (e) the MIROC-COSP lidar simulator. The low-level cloud fraction of NICAM is con-

structed from 6-hourly instantaneous diagnosis: For each column, low-level cloud fraction is assigned as 1 if any layer below 680 hPa is

cloudy and as 0 otherwise. (f) The annual mean value.
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those of V shown in Fig. 3. The Eau takes relatively low

values at the high latitudes and on the eastern margin of

the subtropical oceans similar to V in satellite observa-

tions. As expected, the BH scheme has the largest value

of Eau, reflecting the highest nonlinearity. In addition,

the BH case does not show as clear longitudinal varia-

tion as the BR and KK scheme cases at subtropical

oceans, likely reflecting the strong dependence of Eau

on S as well as on V. MIROC6 represents the Eau

characteristics differently from satellite observation and

NICAM over subtropical oceans: The distribution is

rather uniform zonally and the particularly high Eau

values in convective cloud regimes are missing. These

biases are interpreted to arise from the MIROC6 pa-

rameterization that overconstrain the Eau values at low

CF regime as argued above. The latitudinal variation

with larger Eau values at low latitudes in MIROC6,

however, is consistent with those of satellite observa-

tions and NICAM.

c. Impact of enhancement factor on global cloud field

To assess the climatic impact ofEau, themean states of

the cloud properties and their responses to the Eau in

MIROC6 simulations are investigated. Since the auto-

conversion process serves as a sink for cloud water, its

modification with Eau would directly impact LWP. The

simulated LWP climatology is thus evaluated against the

Multisensor Advanced Climatology of LWP (MAC-

LWP; Elsaesser et al. 2017) datasets, which provide

satellite-based monthly oceanic LWP. Figure 7 compares

LWP of the observation (Fig. 7a), model biases of the

Cont experiments (Cont minus observation; Figs. 7c,f,i),

and the impacts of Eau with and without retuning (Eau-

tune minus Cont and Eau minus Cont; Figs. 7e,h,k,d,g,j).

In theEau experiments, LWP is overall reduced due to

the enhanced conversion from cloud water to rainwater.

The BH case shows the largest decrease due to the

highest value of Eau (Fig. 6). In the Eau-tune experi-

ments, this reduction of LWP is compensated for by the

increase of cloud water induced by retuning of the

a coefficient. This competition between Eau and retun-

ing shapes the regional variations of the LWP response

shown in Figs. 7e, 7h, and 7k. These figures, together

with Fig. 6, illustrate that LWPs generally increase at

higher latitudes where Eau is relatively small, whereas

LWPs are rather reduced at tropical ocean where Eau is

large. The responses of low-level CF tend to correspond

to those of LWP, although their geographical distribu-

tions are rather noisy: Eau overall reduced CF and Eau-

tune tended to reduce CF at low latitudes (not shown).

FIG. 4. Characteristics of cloud water PDF represented with its cloud water normalized varianceV and skewness S.

The fractional occurrence of V (abscissa) and S (ordinate) is shown for (a) satellite observations, (b) MIROC6, and

(c) NICAM. The numbers of bins for normalizedV and S are 50. The relationships ofV and S are plotted by the black

line (lognormal distribution) and by the green line (gamma distribution), respectively in (a). The green dot shown in

(b) corresponds to the point whereV equals 0.500 and S equals 0.567. Examples of cloud water PDFs are shown with

their values of V and S for (d) the truncated skewed triangle as in MIROC6 assumption, (e) lognormal distribution,

and (f) gamma distribution. All the PDFs are normalized, and their mean values are adjusted to 1.0 (1024 kgm23).
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These responses of cloud fields are expected to have a

significant impact on the radiation field in MIROC6.

The geographical distributions of shortwave cloud ra-

diative effect (SWCRE) at TOA is evaluated against the

data of CERES-EBAF at TOA edition 4.0 (Loeb et al.

2018) in Fig. 8. The response of SWCRE in theMIROC6

Eau experiments (Figs. 8c,f,i) and Eau-tune experiments

(Figs. 8d,g,j) affirm that the geographical distribution of

Eau systematically influences the SWCRE distribution.

In the Eau experiments, SWCRE is generally decreased

with the BH case exerting the largest decrease reflecting

the highest value of Eau. The Eau-tune experiment ex-

hibits latitudinal characteristics that SWCRE tends to be

larger (rendering the region warmer) over tropical

oceans while SWCRE appears to decrease (cooler ef-

fect) at high latitudes.

Based on the characteristics of Eau over oceans

and their global effects described above, let us argue

whether the incorporation ofEau could helpmitigate the

cloud biases typical among GCMs. For this purpose, the

Cont and Eau-tune MIROC6 results are compared and

the impacts of Eau on cloud and radiation fields shown

above are discussed here. First, we note that the am-

plitude of Eau in MIROC6 is restricted particularly for

the convective cloud regime due to the constraint of

PDF assumption (Fig. 5). This is likely to limit the im-

pact ofEau on the climate field inMIROC.However, the

BH experiment with largest variability of Eau (Fig. 6h)

would overcome the limitation regarding the absolute

magnitude of the Eau effect and would exert the most

pronounced impact on climate among the three auto-

conversion schemes tested. Figure 7 indicates that LWP

responses to Eau, particularly with retuning, do not

necessarily reduce the LWP biases and even tend to

worsen the LWP bias, especially at high latitudes. We

note that the LWP responses are comparable to uncer-

tainty in satellite retrieval of LWP (Fig. 7b), implying

that cloud responses induced by Eau may not be large

enough to be fully validated with satellite observations.

Focusing on SWCRE, nevertheless, the too-reflective

FIG. 5. Mean value of factorEau as a function of cloud water normalized variance (abscissa) and skewness (coordinate) in (left) satellite

observations, (center) MIROC6, and (right) NICAM for the (a)–(c) BR, (d)–(f) KK, and (g),(h) BH autoconversion schemes. The range

of the color bar is the same for each row.
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SWCRE biases over the tropical open ocean regions in

the Cont experiments (Figs. 8b,e,h) tend to be mitigated

(Figs. 8d,g,j) as a consequence of latitudinal changes of

LWP and CF. It is therefore reasonable to conclude that

incorporation of Eau with realistic regional distribu-

tion is useful to reduce the SWCRE biases in GCMs

because Eau generally takes high values in tropical

oceans (Fig. 6), where state-of-the-art GCMs typically

FIG. 7. Global climatology of (a) oceanic LWP (gm22) and (b) root-mean-square error of LWP (gm22) only for non-precipitating water

fromMAC-LWP for the years 2007–10. The data for (a) and (b) exclude rainwater from total (cloud and rain) water path (Elsaesser et al.

2017). Also shown are (c),(f),(i) the LWPbias of theMIROC6Cont experiments and the LWP changes of the (d),(g),(j)Eau and (e),(h),(k)

Eau-tune experiments relative to Cont experiments for the (second row) BR, (third row) KK, and (fourth row) BH autoconversion

schemes. For MIROC6 LWP evaluation in (c)–(k), vertically integrated cloud water qc is plotted and rainwater is not contained for the

equivalent comparison to the MAC-LWP dataset.

FIG. 6. Mean value of the factorEau obtained from (left) satellite observations, (center)MIROC6, and (right) NICAM for the (a)–(c) BR,

(d)–(f) KK, and (g),(h) BH autoconversion schemes.
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suffer from the too-reflective SWCREbiases (Nam et al.

2012; Lauer and Hamilton 2013). The tension between

the LWP and SWCRE biases revealed should be ad-

dressed in the future.

d. Impact of enhancement factor on rain formation

process

Since autoconversion is a key process determining the

warm rain characteristics in models,Eau is also expected

to influence the warm rain formation process. In par-

ticular, multiple GCMs are known to have too frequent

and too light rain production as a common bias (Jing

et al. 2017; Stephens et al. 2010; Suzuki et al. 2015). This

bias is likely related to model representation of Eau,

given that precipitation characteristics tend to be cor-

related with cloud inhomogeneity according to obser-

vational (Lebsock et al. 2013; Wu et al. 2018) and

modeling (Takahashi et al. 2017) studies. Previous studies

indeed showed that incorporation of Eau into GCMs

changed the properties of rain production (Song et al.

2018a; Weber and Quaas 2012).

These arguments motivate us to investigate how cloud

inhomogeneity and the resultant Eau relate to rain for-

mation processes in MIROC6 in comparison to satellite

observations and NICAM to specify the cause of pre-

cipitation biases attributable to cloud inhomogeneity

representation. For this purpose, warm clouds were

grouped into three categories according to the column

maximum of radar reflectivity, Ze_max: nonprecipitating,

drizzling, and raining.MIROC6 analysis in this sectionwas

limited to the stratiform cloud subcolumns that adopt au-

toconversion and PDF parameterizations. Excluding con-

vective cloud subcolumns from analysis had a negligible

impact (not shown).

Figure 9 compares the V–CF relationships as in Fig. 2,

but broken down into the three precipitation categories.

Satellite observations (Fig. 9a) show that higher and

lower V is associated with raining and nonprecipitating

clouds, respectively, consistent with the previous studies

(Lebsock et al. 2013; Takahashi et al. 2017). This sug-

gests that cloud inhomogeneity plays an important role

in the warm rain onset. NICAM qualitatively repro-

duces this dependence of V on precipitation state. In

MIROC6, however, V is not appropriately related to

the precipitation state. This is caused by the subgrid-

scale cloud parameterization in MIROC6 based on

the skewed-triangle PDF that binds Eau with CF too

strongly. The cloud inhomogeneity and thus the Eau

parameterization based solely on CF (Boutle et al. 2014)

would fail to capture the observed dependence on pre-

cipitation. Instead, the Boutle et al. (2014) parameteri-

zation places this subgrid-scale dependence in the

FIG. 8. (a) Global climatology of cloud radiative effect for outgoing shortwave radiation (SWCRE; Wm22) at TOA from the obser-

vation of CERES-EBAFmonthly data at 18 longitude and 18 latitude resolution over the 2006–10 period, and (b),(e),(h) the SWCRE bias

of theMIROC6Cont experiments and the SWCRE changes of the (c),(f),(i) MIROC6Eau and (d),(g),(j) MIROC6Eau-tune experiments

relative to Cont experiments for the (second row) BR, (third row) KK, and (fourth row) BH autoconversion schemes.
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accretion enhancement factor. Our work suggests that a

dependence on precipitation is also present in Eau.

While the cloud inhomogeneity affects the precipitation

process, the rain formation in turnmodifies the cloudwater

distribution and cloudiness. Figure 10 compares the PDF

of CF among different precipitation categories to investi-

gate how the CF varies with precipitation characteristics.

Satellite observations show that raining clouds tend to be

associated with small CF, suggesting that rain production

depletes cloudiness. While NICAM qualitatively captures

such a relationship, MIROC6 does not reproduce the ob-

served relationship. This indicates that the MIROC6 PDF

parameterization (Watanabe et al. 2009), in which the rain

production modifies the total water PDF through the

FIG. 9. The median value of cloud water normalized varianceV for warm clouds (a) in satellite observations, in the

MIROC6 Eau-tune experiments for the (b) BR and (d) KK autoconversion schemes, and in NICAM for the (c) BR

and (e) KK autoconversion schemes. The precipitation state is categorized by themaximumZe_maxwithin the cloud

as non-precipitating (Ze_max , 215 dBZ; magenta), drizzling (215 dBZ , Ze_max , 0 dBZ; green), and raining

(0 dBZ,Ze_max; light blue). Satellite statistics are constructed for a 4-yr period from 2007 to 2010while the analysis

for NICAM and MIROC6 is obtained from 2-month period (January and July in 2007) data with 6-hourly output.

FIG. 10. PDF of cloud fraction (CF) with 0.05-width bin for three precipitation categories (non-precipitation in

magenta; drizzling in green; and raining in light blue) (a) from satellite observations, from MIROC6 Eau-tune ex-

periments for the (b) BR and (d) KK autoconversion schemes, and from NICAM for the (c) BR and (e) KK au-

toconversion schemes. Satellite statistics are constructed for the 4-yr period from 2007 to 2010 while the analysis for

NICAM and MIROC6 is obtained from a 2-month period (January and July in 2007) of 6-hourly data output.
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decrease of cloud water content, does not adequately re-

late the rain production to the cloud inhomogeneity.

Given these characteristics of Eau associated with

precipitation, let us investigate whether the Eau might

help mitigate themodel biases in the rain formation. For

this purpose, the probability of precipitation (POP) is

compared in Fig. 11. The satellite analysis (Fig. 11a)

suggests that a majority of the warm clouds are non-

precipitating, particularly over subtropical eastern and

midlatitude oceans, where Eau is relatively small

(Fig. 6). Compared to satellite observations, POPs in

the Cont experiments with both NICAM (Figs. 11b,e)

and MIROC6 (Figs. 11c,f) are substantially higher, in-

dicating that the precipitation occurs too frequently in

the two models. Although the assumptions in satellite

simulators [sections 2d and 3b(1)] might cause the

too large radar reflectivity in the models, Jing et al.

(2017) showed that assumption of rain fraction in

COSP for MIROC6 or the relatively coarse resolution

of J-simulator for NICAM do not explain all of the

model–observation discrepancy. Despite the explicit

representations of clouds in NICAM, POP is still too

high and its observed geographical distribution is not re-

produced in themodel as also found in Suzuki et al. (2011).

Also notable is that no significant effect of Eau on the

POP is found in the Eau-tune experiment with MIROC6

(Figs. 11d,g), as opposed to previous GCM studies (Song

et al. 2018a; Weber and Quaas 2012). This insensitivity of

POP to Eau appears to be due to the constraints imposed

by the PDF assumption, which prevents Eau from

representing the coupling between cloud inhomogene-

ity and precipitation formation (Figs. 6, 9, and 10).

It is thus suggested thatEaualone is not enough tomitigate

thebias inMIROC6, particularlywhen themodel retuning is

applied to autoconversion only. The bias can be attributed,

in part, to much larger autoconversion rate than accretion

rate in the MIROC6 Cont experiments, which has not sig-

nificantly changed with the introduction of Eau-tune alone

(not shown). However, other possible improvements of

model cloud physics, such as introducing the enhancement

factor for accretion rate (Lebsock et al. 2013) and incorpo-

rating theprognostic treatmentof rainwater (Michibata et al.

2019), can help achieve the proper balance of the process

rates with smaller autoconversion rate and larger accretion

rate. The model-simulated POPs are also dependent on

microphysics such as choice of the autoconversion scheme

(Jing et al. 2019; Suzuki et al. 2015) as indicated by POPs in

the KK experiments somewhat lower and closer to satellite

observation than in the BR case.

e. Implications for functional form of cloud

water PDF

The results above show that the peculiarity inherent to

MIROC6 PDF shape (i.e., a truncated skewed triangle)

could be a possible source of bias in representing cloud

inhomogeneity characteristics (Figs. 2, 4, 5, 9). In this

regard, it is worth noting that previous studies adopted

varying assumptions for P(Lc): Some studies employed

lognormal or gamma functions for P(Lc) (Lebsock et al.

2013; Morrison and Gettelman 2008; Wu et al. 2018),

FIG. 11. Geographical distributions of the probability of precipitation (POP) for warm clouds from (a) satellite observations, (b),(e)

NICAM, and (c),(d),(f),(g) MIROC6. POP is computed as a fractional occurrence of the precipitating category (215 dBZ , Ze_max)

relative to the total occurrence of warm clouds. Satellite statistics are constructed for the 4-yr period from 2007 to 2010 while the analysis

for NICAM and MIROC6 is obtained from 2-month period (January and July in 2007) data of every 6-hourly output. The data were

accumulated within the horizontal grids in MIROC6 and for 1.58 3 1.58grid in satellite observations and NICAM. To assess the overall

climatic impact of Eau in MIROC6, the (center) Cont and (right) Eau-tune experiments are compared.
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while others used the saturated part of G(s) as P(Lc),

where G(s) is assumed to be a variety of mathematical

functions (Tompkins 2005). Here we discuss how be-

haviors of Eau tend to differ with varying assumptions of

the PDF shape so that the results from the MIROC6

development described above can be put into the con-

text of implications for other GCMs as well.

The theoretical relationships between V and S when

P(Lc) is assumed to be the lognormal and gamma

functions are superimposed on Fig. 4a following Huang

et al. (2014). These functions have been widely used for

their convenience of allowing the enhancement factor

for a power-law process to be obtained analytically. It is

illustrated in Fig. 4a that both functions can capture the

observed positive correlations between V and S with no

definite value bounds and thus are able to represent the

convective cloud PDF characterized by highly positively

skewed distribution (Figs. 4e,f) with high value of Eau in

contrast to the truncated skewed triangle in MIROC6

(Fig. 4d). Furthermore, these parameterizations allow

cloud inhomogeneity to be free from CF and to be

properly connected to precipitation processes as op-

posed to the truncated skewed triangle (Fig. 9). Such a

sophisticated P(Lc) assumption is, however, often in-

consistent with the total water PDF assumption in

GCMs (Guo et al. 2014; Song et al. 2018a).

For application to GCM cloud parameterizations, the

characteristics of mathematical form for G(s) would

be even more important. Kawai and Teixeira (2012)

showed that typical unimodal PDFs commonly result in

the monotonic decrease of V with increasing CF (see

Fig. 0.5a of Kawai and Teixeira 2012). On the one hand,

this characteristic of V is preferable because V is ex-

pected to reproduce the geographical characteristics

relevant to cloud regimes as long as CF distribution is

realistic in the model (Figs. 2 and 3), which can help

mitigate the too-reflective cloud bias at tropical oceans

through Eau as discussed in section 4c. On the other

hand, it was also shown that simple mathematical func-

tions such as triangle and uniform with no or one

prognostic parameter inherently fix the value of V at

small CF similar to MIROC6 (Figs. 2, 9). This suggests

that more sophisticated functions such as double-

Gaussian and beta distributions (Larson and Golaz

2005; Tompkins 2002) need to be employed asG(s) to

better reproduce the observed bell-shaped relation-

ship (Fig. 2) and the cloud inhomogeneity character-

istics relevant to precipitation states (Fig. 9).

5. Summary

In this study, we have incorporated the enhancement

factor for autoconversion process,Eau, into theMIROC6

GCM. The truncated part of prognostic skewed-triangle

total water PDF is employed as cloud water PDF. The

cloud water inhomogeneity and Eau thus implemented

were evaluated against those simulated by the global

high-resolution model, NICAM, with explicit repre-

sentations of subgrid-scale cloud processes and those

obtained from analysis of global satellite observations. It

is found that large values of subgrid cloud variance V

tend to be associated with small CF through the PDF

assumption in MIROC6, which is qualitatively consis-

tent with those found in NICAM and satellite obser-

vations (Fig. 2). This relationship regulates regional

characteristics of Eau in MIROC6, which qualitatively

reproduce the satellite-observed latitudinal variation

ofEau (Fig. 6). The skewed-triangle PDF assumption of

the MIROC6 cloud scheme, however, is also found to

impose a strong constraint on Eau, which is overly

constrained by CF and is restricted to unrealistically

narrow ranges of value (Figs. 2, 4, 5). Such constraints

manifest themselves as the absence of particularly

large Eau at tropical convective cloud region (Fig. 6).

The global climate impact of Eau was then investigated

using the MIROC6 experiments with and without Eau.

The Eau-tune experiments, as clarified in the BH scheme

case with the most intense magnitude of Eau, systemati-

cally increase (decrease) LWP and CF at low (high) lat-

itudes over ocean (Fig. 7). As a result, the latitudinal

variation of Eau, validated against NICAM and satellite

observation, is shown to help reduce the too-reflective

SWCRE bias over the tropical oceans (Fig. 8) typical of

multiple GCMs. This suggests that the insufficient rep-

resentation of cloud inhomogeneity might be a cause of

the cloud biases commonly found in GCMs.

A possible linkage between the cloud inhomogeneity

and the rain formation characteristics through Eau was

also investigated. The PDF-based cloud scheme adop-

ted by MIROC6 does not reasonably represent the ob-

served linkage (Figs. 9, 10). Furthermore, no significant

impact is found on the precipitation occurrence bias

through the introduction of Eau in MIROC6 (Fig. 11),

arguably due to the strong restriction on the Eau im-

plemented. It is thus recommended that Eau be param-

eterized in such a way that Eau depends on precipitation

states as well as cloud fraction.

The cloud inhomogeneity investigation is extended

to a variety of PDFs to obtain implications for other

GCMs as well. The results suggest that lognormal and

gamma distributions are recommended for P(Lc) given

that these mathematical functions are able to roughly

capture the observed cloud inhomogeneity correlations

and can represent a wider range ofV less bounded to CF

(Fig. 4a). It is also found thatV based on total water PDF

generally decreased with increasing CF. The MIROC6
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analysis has shown that this relationship forms the

high Eau at small CF regions such as tropical ocean

(Figs. 6a,d,g), which reduced shortwave reflection by

clouds (Figs. 8d,g,j). Given that GCMs typically suffer

from too-reflective cloud bias at tropical oceans, it is

recommended to implement Eau based on the total

water PDF in other GCMs as well.

The present study, taking Eau as an example, dem-

onstrates how satellite observations and global high-

resolution modeling can be jointly employed with global

climate modeling to evaluate and constrain the unre-

solved subgrid cloud variability and explore its macro-

scopic climatic impact. The approach described would

be applicable to other climate models as well to better

characterize the multiple model biases and their causes

attributable to coarse resolution and to investigate in

what way the subgrid-scale parameterizations are useful

to overcome such obstacles in climate modeling.
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