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Climate-induced range shifts drive adaptive
response via spatio-temporal sieving of
alleles

Hirzi Luqman 1,2 , Daniel Wegmann 3,4, Simone Fior 1,5 &
Alex Widmer 1,5

Quaternary climate fluctuations drove many species to shift their geographic
ranges, in turn shaping their genetic structures. Recently, it has been argued
that adaptationmay have accompanied species range shifts via the “sieving” of
genotypes during colonisation and establishment. However, this has not been
directly demonstrated, and knowledge remains limited on how different
evolutionary forces, which are typically investigated separately, interacted to
jointly mediate species responses to past climatic change. Here, through
whole-genome re-sequencing of over 1200 individuals of the carnation Dia-
nthus sylvestris coupled with integrated population genomic and gene-
environment models, we reconstruct the past neutral and adaptive landscape
of this species as it was shaped by the Quaternary glacial cycles. We show that
adaptive responses emerged concomitantly with the post-glacial range shifts
and expansions of this species in the last 20 thousand years. This was due to
the heterogenous sieving of adaptive alleles across space and time, as popu-
lations expanded out of restrictive glacial refugia into the broader and more
heterogeneous range of habitats available in the present-day inter-glacial. Our
findings reveal a tightly-linked interplay of migration and adaptation under
past climate-induced range shifts, which we show is key to understanding the
spatial patterns of adaptive variation we see in species today.

Present-day species have persisted through repeated periods of fluc-
tuating climate, exemplified by the Quaternary ice ages (2.58 Mya –

present) that occasioned major shifts in global sea levels, continental
ice sheets and consequently in the habitats of species1,2. Species
responded to these changing conditions by shifting their range,
adapting or going locally extinct, generating the distribution ranges
and patterns of genetic structure that we see today1,3,4. By shaping the
distribution of genetic variation potentially relevant for climate-
related traits, past climate fluctuations may have played major roles
in dictating the adaptive potential of species, that is, how able species
are to adapt to subsequent bouts of climate-driven selection5,6. While

studies on the biotic impacts of climatic change are rife7–9, few studies
consider these genetic legacies of past climate, and fewer still incor-
porate both past and present, neutral and adaptive, evolutionary
processes in their evaluations. Such an integrative approach, however,
may be crucial to understand and predict species’ evolutionary
responses to changing climate10.

Previous studies of species response to Quaternary climate fluc-
tuations have focused on range shifts and range expansions (hereafter
collectively referred to as range shifts3), through reconstructions of
past distributions based on fossil and contemporary occurrence
records, and through inferences of past demography based on
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patterns of neutral genetic variation1,3,11,12. This focus wasmotivated by
the long-held assumption that taxa are more likely to migrate and
colonise adjacent habitat than evolve a new range of climate
tolerances3. The rationale, in part, was that if species could effectively
adapt to cope with past climatic change, they would have been able to
persist in-situ without shifting their geographic distribution; in
apparent contrast with the numerous evidence for range shifts across
taxa13,14. This paradigm has been increasingly challenged in the last two

decades3,5,9,13,15. Pre-eminently, Davis and Shaw (2001)3 argued that
adaptation concomitant with range shifts may have been central to
species responses during Quaternary climate fluctuations. They sug-
gested that adaptation during range shifts can emerge due to selective
“sieving”3,16 of genotypes intolerant to local conditions during coloni-
sation and establishment3. In other words, local conditions can act as
sieves that sort standing genetic variation unequally across the
landscape3,6,16 during the course of species’ range shifts (Fig. 1). This is
relevant because adaptation and range shifts, if acting in concert, can
lead to vastly different outcomes of species response to climatic
change than if either process acts alone5,15. Empirical evidence to
support this interplayof adaptation and range shifts, however, remains
scarce, because of prior-held assumptions and methodological chal-
lenges related to the joint reconstruction of these processes13.

The selective sieving of genotypes across space, and local adap-
tation in general, imply that populations inhabiting different areas of
the species rangemay carry different genotypes and hence respond to
changes in climate differently5,17,18 (Fig. 1). Accordingly, recent studies
have demonstrated that adaptive responses to climatic change can be
captured by modelling genotype frequencies to environmental
gradients5,9,17,19, under the premise that each genotype exhibits a range
of environmental conditions which it can tolerate. By assuming that
contemporary gene-environment associations distributed across
space reflect gene-environment associations across time20,21, these
studies suggest that proxies for past or future (i.e., unsampled) gen-
otypes can further be predicted;5,9,17,20,21 contingent that future or
ancestral-like habitats are present and sampled today. While gene-
environment models can incorporate adaptation into evaluations of
species’ response to climatic change, they do not currently integrate
other evolutionary processes such as migration and drift, i.e., as
shaped by demography10. Integration of these demographic processes
is, however, increasingly feasible with modern population genetic
approaches10,15, and provides a promising avenue to reconstruct the
past neutral and adaptive landscapes of species.

Here, we employ such an integrative approach to elucidate the
interplay of adaptation and range shifts in response to Quaternary
climatic fluctuations in Dianthus sylvestris. This perennial flowering
plant native to the Alpine, Apennine and Dinaric mountain ranges of
Europe inhabits an environmentally and topographically diverse
landscape thatwas intimately affectedby theQuaternaryglacial cycles.
By quantifying shifts in adaptive genomic composition from inferred
ancestral to present-day populations through the novel metric “glacial
genomic offset”, we show that adaptive responses emerged as a nat-
ural consequence of populations’ expansion from glacial refugia into
the increasingly heterogeneous environmental landscape createdwith
the post-glacial retreat of glaciers. We validate this result by testing
glacial genomic offset predictions against observed population
genetic signatures sensitive to past selection and demography,
demonstrating thatwe can accurately predict where adaptive diversity
is most constrained in contemporary populations. Our results corro-
borate theory3,13 that the interplay of adaptation and range shifts has
been central in species response to past climatic fluctuations, and
highlight the continued role that past fluctuations play in shaping
evolutionary responses to climate-driven selection today.

Results
Distinct evolutionary lineages separate by geography
We sequenced the genomes of 1261 individuals from 115 popula-
tions (5–20 individuals per population) across the contemporary
geographic range of D. sylvestris at low (mean ca. 2x) sequencing
depth (Fig. 2, Supplementary Data 1). Principal component ana-
lysis (PCA) and pairwise genetic distances of whole genome
sequences separate sampled individuals by geography into
Alpine, Apennine and Balkan clusters (Fig. 2A, Supplementary
Figs. S1, S2). This was supported by admixture analyses, which
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Fig. 1 | Conceptual mechanism for an adaptive response during a range shift.
A A shift from glacial to interglacial climate leads to a shift in the overlap of a
species’ fundamental niche (the rangeof environmental conditions toleratedby the
species; dashed contour) with the period’s available environmental space (the
range of environmental conditions expressed in a certain area and time;blue ellipse
– glacial, pink ellipse - interglacial). B The species’ realised niche (striped curve),
reflecting this overlap, hence shifts between glacial (top) and interglacial (bottom)
periods, constrained by the species’ fundamental niche (dashed outline). Impor-
tantly, rather than uniform entities described by a singular niche, species may
comprise multiple genotypes, each with their own, potentially different, environ-
mental niche (multiple grey-shaded curves). C Climate shifts, e.g., reflecting novel
climatic conditions encountered by the species during post-glacial range shifts or
expansions, thus act differently on different genotypes; changing their frequencies.
D This filters or ‘sieves’ particular genotypes (alleles) from the pool of standing
genetic variationdependingon the local environment.EAs the species expands out
of a refugia (black cross) and across an environmentally-heterogenous landscape,
this drives an adaptive response via the spatio-temporal sieving of climate-
associated alleles.

Article https://doi.org/10.1038/s41467-023-36631-9

Nature Communications |         (2023) 14:1080 2



were performed on a balanced dataset comprising a common,
down-sampled size of 125 individuals per geographic region to
account for known biases related to uneven sampling across
clusters22,23 (Fig. 2B, Supplementary Fig. S3). To visualise the
geographic distribution of the three genetic clusters, we

projected ancestry proportions and principal components in
space (Supplementary Figs. S4, S5). We further identified geo-
graphic barriers that maximise divergence (FST) between pairs of
populations via Monmonier’s algorithm24 (Fig. 2A, Supplementary
Figs. S6, S7), and characterised the effective migration surface via
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Fig. 2 | D. sylvestris population structure describes genetically and geo-
graphically distinct lineages. A Map of sampled populations. Samples are
represented as coloured shapes defined according to genetic cluster, as inferred via
principal component analysis (PCA) of whole-genome sequences (PCA results for
all sampled individuals in inset; eigenvalues in axes’ labels). Landscape colour
reflects population effective diversity rates (q) calculated via EEMS. Thick black
dotted lines represent major genetic boundaries as identified via Monmonier’s
algorithm on populations’ FST. Numbers on line are (1) French Prealps-Maritime
Alps boundary, (2) Po Plain, (3) Brenner zone, Puster and Gail valleys, and (4)
Adriatic Sea. Plus, minus and asterisk symbols denote individuals and populations
at contact zones used in chromosome painting analysis. B Admixture proportions

of whole-genome sequences at K = 3; balanced dataset. Populations are ordered
(from left to right): Apennine lineage (south to north-west), Alpine linage (south-
west to north-east), and Balkan lineage (north to south). C A systematic pattern in
residuals (blocks of red or blue; bottom) representing the difference between the
observed admixture palettes for select individuals (top) and those reconstructed
by chromosome painting supports a scenario of recent bottlenecks in the popu-
lations denoted with a minus superscript, over a scenario of between-lineage
admixture in the populations denoted with a plus superscript; for the Apennine-
Balkan (left) and Alpine-Balkan (right) clines (assessed separately at K = 2). Popu-
lations used for this analysis correspond to the populations marked with their
respective symbol in A and surrounded by black borders in B.
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EEMS25 to describe regions where genetic differentiation is ele-
vated or depressed relative to expectations based on geographic
distance (Supplementary Fig. S8). Together, our results point to
the Adriatic Sea and Po Plain (Italy) as major biogeographic bar-
riers for D. sylvestris (Fig. 2A). In addition, we find that the French
Prealps and Maritime Alps form the contact zone between the
Apennine and the Alpine clusters in the west, while the Brenner
pass and Puster and Gail valleys form the contact zone between
the Alpine and Balkan clusters in the north-east (Fig. 2A, Sup-
plementary Figs. S4, S5, S8). The latter is consistent with a well-
known bio-geographic boundary for alpine plants26.

While populations from the separate genetic clusters occur in
close proximity in the contact zones (i.e., exhibit parapatric distribu-
tions), the PCA of genetic structure suggests deep divergence and
consequently a prolonged history of isolation between clusters
(Fig. 2A, Supplementary Fig. S2). This is corroborated by demographic
inference that estimates the three clusters (lineages) diverged during
the Penultimate Glacial-Interglacial Period (PGIP) ca. 200–115 kya (95%
confidence interval (CI) for initial Balkan split: 178–217 kya; 95% CI for
subsequent Apennine-Alpine split: 114–132 kya), with minimal
between-lineage migration in the last ca. 115 kya corresponding to the
Last Glacial Period (Supplementary Figs. S9, S10, S11). These results are
in contrast to the notable signals of between-lineage admixture
observed in the admixture analyses (Fig. 2B). However, inference of
population admixture using STRUCTURE-like algorithms27 can arise
even in admixture-free demographies because of violations from
model assumptions28. To tease apart alternative demographic scenar-
ios, we assessed the goodness of fit of an admixture model to the
underlying genetic data using patterns of allele sharing inferred by
chromosome painting28. We observe systematic patterns in the resi-
duals that are more consistent with recent bottlenecks in the western
populations of theAlpine lineage and in the north-western populations
of the Apennine lineage, than with recent between-lineage admixture
scenarios (Fig. 2C). In other words, the increased derived states
(uniqueness) of these bottlenecked, peripheral populations conferred

these populations “pure” ancestry assignment under the STRUCTURE-
derived algorithm, in turn generating false inferences of admixture in
the populations that likely founded them (Fig. 2C); a confounding
signal that can nevertheless be disentangled using patterns of DNA
sharing28.

Focusing on the Alpine lineage and leveraging off its dense spatial
population sampling, we find evidence that the inferred bottlenecks in
theAlps reflect a spatial expansion, originating from the east. A cline of
genetic diversity reflecting sequential founder events and character-
istic of an expansion signal29,30 is observed along the Alpine arch from
east to west (Fig. 2A). This is corroborated by a positive correlation of
the directionality index ψ31 with population pairwise distance (Sup-
plementary Fig. S12). Using a time difference of arrival (TDOA) algo-
rithm on ψ, we inferred the most probable geographic origin of the
expansion to be around Monte Baldo and the western Dolomites
(Fig. 3A). We further quantified the strength of this expansion at 1%
founder effect generated per 139 km. This spatial expansion left a
characteristic clinal genetic structure in the lineage, such that genetic
structure currently mirrors geography in the Alps (Fig. 3, Supple-
mentary Fig. S13). This pattern of structure, such that populations are
clustered by geography and not ecology, implies that ecotype forma-
tion along elevational gradients in the Alps evolved repeatedly in-situ
rather than once and subsequently spreading across the range (Fig. 3).

Distribution models recapitulate genetic data and identify
distinct glacial refugia
The inference of three evolutionary lineages each inhabiting separate
geographic regions suggests that they may have occupied distinct
refugia during the last glacial period. To test this, we modelled the
distribution of the pooled species as well as of each lineage separately,
based on contemporary occurrence records and present-day climate,
and projected these distribution models to the Last Glacial Maximum
(LGM)32. We applied an unsupervised density-based spatial clustering
algorithm on the predicted occurrences, which inferred in both the
pooled and lineage-specific cases three discrete refugia: in the Alps,
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Fig. 3 | Genes mirror geography in the Alps. A Geographic sampling of Alpine
populations. Black dashed contours and colour gradient reflect the probabilistic
inference of the origin of the Alpine expansion, calculated via a time difference of
arrival (TDOA) algorithm on the directionality index ψ. An eastern origin for the
Alpine lineage around the regions ofMonte Baldo (1) and thewesternDolomites (2)
is inferred. B Genetic structure of Alpine individuals inferred via principal

component analysis (PCA) of whole-genome sequences reflects geography.
C Elevation of populations in metres above sea level. In all panels, samples are
represented as triangles coloured according to their coordinates in the first two
principal components of genetic space (as shown inB). Population representations
in A and C reflect population means of individuals.
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Apennines and Balkans (Fig. 4A, Supplementary Figs. S14, S15). During
the LGM, the distribution range for the Alpine lineage was highly
reduced and restricted to the south-eastern peripheries of the Alps
(Fig. 4A), consistent with the geographic region independently iden-
tified as the source of the expansion from our genetic analyses (ψ). In
contrast, refugial areas in the Apennines and Balkans weremuch larger
and covered extensive areas across their respective peninsulas. The
marked difference in size between predicted refugia for the three
lineages is consistent with the lower genetic diversity observed in
present-day Alpine populations compared to Apennine and Balkan
populations (Fig. 2A).

To reconstruct potential colonisation routes, we projected the
lineage-specific distributionmodels to climate rasters at 100-year time
intervals from the LGM to the present-day32. We applied a dispersal
kernel to limit the rate of dispersal and enforced competitive exclusion
among lineages, to address non-abiotic factors that may influence
lineage distributions33–35. Under this forward-simulation, we tracked
the advance of lineage-specific SDMs in time, and generated an
expectation of present-day lineage distributions highly congruentwith
the genetic structure (Figs. 2A, 4A, Supplementary Figs. S4, S5). This
congruence suggests that range limits in these lineages are well-
determined by climate, competitive exclusion among sister lineages
and dispersal limitations. Overall, results from the distributionmodels

provide support for the three evolutionary lineages each having
occupied distinct glacial refugia and each having experienced inde-
pendent glacial and post-glacial evolutionary histories.

Shifts in environmental space characterised by warm habitats
expanding at the expense of alpine habitats
The range shifts between the LGM and present-day were driven by
contemporaneous climate shifts, and reflect the expansion of popu-
lations out of the glacial refugia into novel habitats and environmental
conditions. To quantify and visualise the shifts in available environ-
mental space from LGM to present, for each region, we projected both
present-day and LGM sets of environmental variables to a common,
lower-dimensional space and quantified the area occupied at each
coordinate in this transformed space. In the Alps, available environ-
mental space was both severely reduced and characterised by colder
temperatures during the LGM compared to the present-day (Fig. 4B,
Supplementary Fig. S16). As a result, less overlapoccurredbetween the
lineage’s environmental niche and the LGM environmental space,
resulting in the highly reduced distribution range (refugia) during the
LGM (Fig. 4A). In contrast, theApennine andBalkan regions underwent
less of a restriction in available environmental space during the LGM,
with the latter characterised more by shifts in climate seasonality than
in absolute temperature between the two time periods (Fig. 4B). In
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addition to the contraction and shifts in environmental space inferred
for the three regions, the area occupied by distinct environments was
markedly redistributed. Particularly in the Alps, warm habitats
expanded in area at the expense of alpine habitats during the post-
glacial period (Fig. 4B).

Heterogenous climate shifts drove spatio-temporal sieving
of alleles
The heterogenous change in environment between the LGM and
present-day combined with range expansion out of glacial refugia
imposed a spatially heterogenous and temporally changing selection
regime on D. sylvestris. To assess whether present-day populations
have similar, or altered, compositions of adaptive genetic variants
compared to refugial populations, we used gradient forest (GF)17,36 to
model SNP allele frequencies to contemporary environment, correct-
ing for structure. We focus on the Alpine lineage leveraging on our
reconstruction of its expansion dynamics, and apply GF on ca.
400,000 exon SNPs that segregate across Alpine populations (Sup-
plementary Fig. S17). To facilitate comparison of climate adaptation
across time, we generated distribution models of climate-associated
genomic composition for the present-day and LGM by projecting GF
models to these two time periods. GF projections infer the ancestral
adaptive genotype(s) present in the LGM refugia to be most similar to
present-day alpine genotype(s) (dark blue and purple hues; Fig. 5A,
Supplementary Fig. S18), as a result of the refugia exhibiting a climate
most similar to present-day alpine habitats. The adaptive genotype
characteristic of present-day low-elevation valleys (green to bluish-
green hues; Fig. 5A) appears distinct to that of alpine habitats (Fig. 5A,
Supplementary Fig. S19). This implies that all contemporary popula-
tions, whether lowland or alpine, likely evolved to their current adap-
tive optima from an alpine-like refugial state. This is supported by the
observation that low-elevation populations possess a subset of the
adaptive variation present in the high-elevation and refugial popula-
tions (Supplementary Fig. S19C).

To predict the evolutionary change populations had undergone,
we quantified the differences in genomic composition between time
points. We accounted for the effect of expansion and isolation-by-
distance (IBD) by performing comparisons between the predicted
adaptive genomic composition of each current population and that of
its (geographically) closest predicted refugial source during the LGM
(Supplementary Fig. S20). This prediction of evolutionary change,
whichwe term “glacial genomic offset”, is proposed to reflect both the
neutral effect of IBD and expansion (collective drift) from the refugial
to the present-day population, in addition to the adaptive response to
selection imposed by differences in environment between the present-
day location and the refugium. We observe a characteristic pattern of
low glacial genomic offset in alpine areas close to the inferred refugia
and high values of glacial genomic offset in valleys and regions far
away from the glacial refugia (Fig. 5B, Supplementary Fig. S21). This
implies that both environmental and geographic distances from refu-
gia underlie the divergence of present-day populations from their
ancestral populations in the refugia.

Population genetics validate glacial genomic offset predictions
Non-random evolution of populations, through processes such as
directional selection and demographic expansion-contraction, can be
inferred from the genetic data of contemporary populations via per-
turbations in the site frequency spectrum (SFS) from random
expectations37–39. To validate our predictions, we correlated the glacial
genomic offset with population genetic statistics of present-day
populations that capture such SFS biases. We observe a greater
excess in high-frequency derived alleles—a characteristic pattern pro-
ducedby selective sweeps37,38,40—with increasing glacial genomic offset
(positive correlation with Zeng’s E37, and negative correlation with Fay
& Wu’s H;38 p < 1 × 10−4; Fig. 6A). While demography may also affect

these statistics37, correlations of glacial genomic offset were stronger
with E andH centred around environmentally-associated loci (r = −0.57
and 0.63, R2 = 0.31 and 0.38; for HGF and EGF, respectively) than with
genome-wide estimates (r = −0.48 and 0.53, R2 = 0.21 and 0.26; forHGW

and EGW respectively).
To further assess the legacy of post-glacial demographic and

selective processes on genetic diversity, we compared levels of
nucleotide diversity (π) for contemporary low- and high-elevation
populations along the Alpine expansion axis. We find higher levels of
diversity around environmentally-associated loci compared to
genome-wide (πGF >πGW, Mann–Whitney U test; p < 1 × 10−15; Fig. 6B, C,
Supplementary Fig. S22), suggestive of highly-diverged adaptive hap-
lotypes beingmaintained within populations. Importantly, we observe
significantly lower diversity (Mann–Whitney U test; p < 0.001) in low-
elevation compared to high-elevation populations (controlling for the
effect of distance), both for genome-wide diversity (πGW) and for
diversity centred around environmentally-associated loci (πGF)
(Fig. 6B). This can arise due to the colonisation of low-elevation
environments from high-elevation populations (founder effect)41, or
alternatively, due to polygenic selection in the low-elevation
environment40, or both. Notably, we observe that this difference in
diversity between low- and high-elevation population pairs (ΔπGF)
increases from east to west along the expansion axis, suggesting that
populations simultaneously at the expansion front and environmental
margin of the lineage host lowest adaptive diversity (Fig. 6B, C).

Discussion
The impact of past Quaternary climate shifts on species has typically
been investigated through the lens of neutral genetic variation and
species distributionmodels, with adaptive processes either ignored or
treated separately3,13. The prevailing assumption has been that range
shifts, rather than adaptation or an interplay of the two processes,
were species’ principal response to past Quaternary climate
fluctuations3,13. While this paradigm has been challenged in recent
years, arguments supporting a joint response of adaptation and range
shifts have remained largely conceptual3,13. Here, by modelling the
response of climate-associated alleles in the plant D. sylvestris under
post-glacial warming (20 kya - present), we show that adaptive pro-
cesses concomitant with range shifts were central to this species’
evolutionary response to past climate shifts. Specifically, increasing
regional temperatures and the extensive retreat of glaciers post-LGM
led to the emergence of novel warm valley environments in the Alps,
generating a heterogenous mosaic of alpine and warm habitats in the
path of the colonising species. As D. sylvestris populations expanded
out of alpine-like glacial refugia into this broader and heterogenous
environmental space, warm-associated alleles increased in frequency
due to climate-driven selection in the low-elevation habitats. In con-
trast, populations in alpine habitats retained genotypes closer to those
of ancestral populations. This spatially-structured adaptive response
supports theory that differential survival imposed by local conditions
during migration and establishment selectively sieves out maladapted
genotypes3. In this study, we capture this spatio-temporal sieving
process via gene-environment models and the glacial genomic offset
that explicitly integrate the effects of past adaptation, migration and
expansion.

Our inference of adaptive shifts hinges on the reconstruction of
the evolutionary history and post-glacial expansion dynamics of D.
sylvestris. Genetic structure and demographic inference reveal that D.
sylvestris comprises three evolutionary lineageswhich diverged during
the PGIP (ca. 200–115 kya). Post-divergence, these three lineages had
relatively independent histories, as inferred from their survival in
separate glacial refugia and from a lack of recent admixture between
them. The Alpine lineage was particularly affected by the LGM, as
evidenced by its highly constrained glacial refugial range relative to
present, and the relatively low genetic diversity in contemporary
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populations. Our identification of glacial refugia and expansion routes
in the Alps allow for the effects of IBD, expansion and adaptation to be
jointly incorporated in our glacial genomic offset, a measure that
quantifies shifts in adaptive genomic composition from inferred
ancestral to present-day populations. Such an integrative approach
addresses previously highlighted shortcomings of gene-environment
models10 and enable us to assess both range shift and adaptation
responses simultaneously.

Our retrospective approach provides a unique opportunity to
validate evolutionary predictions based on the glacial genomic offset
against realised biological outcomes. Population genetic signatures
observed across high-low elevation population pairs substantiate gla-
cial genomic offset predictions by showing that populations simulta-
neously furthest away from glacial refugia and inhabiting
environments divergent from the ancestral habitat have lowest levels
of adaptive genetic diversity, as a consequence of experiencing the
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Fig. 5 | Heterogenous climate shifts drove spatio-temporal sieving of alleles.
A Projections of adaptive genomic composition across geographic space, for the
last glacial maximum (LGM) (left) and present-day (right). Areas with similar col-
ours are predicted to harbour populations with similar adaptive genomic compo-
sition, while divergent colours indicate populations with divergent adaptive
genomic composition. Colours are basedon the first three principal components of
transformed climate variables (aka eigenvectors describing the composition of
genetic variation), where each principal component (PC) is plotted as a separate
colour channel in RGB space (PC1 - red, PC2 - green, PC3 - blue). The left inset,
applicable to both time projections, shows the loadings (i.e., direction and mag-
nitude) of all environmental variables with respect to the first 2 PCs of transformed
climate space, with arrows colour-coded as follows: white - temperature variables,

grey - climate seasonality variables, black - precipitation variables, brown - a
topographic variable (slope), and aqua - soil pH. The ranges of transformed climate
space expressed in the LGM refugium and present-day distribution are shown by
the dashed and solid contours of the inset respectively. Dashed and solid contours
similarly circumscribe the LGM refugium and present-day distribution of the line-
age in geographic space in themain left and right panels, respectively.B Prediction
of the glacial genomic offset across geographic space. This metric quantifies the
evolutionary change in present-day populations from their predicted ancestral
state in the LGM refugia, by measuring the shift in adaptive genomic composition
between each present-day population and that of its closest LGM refugial ancestor
accounting for the effects of expansion and isolation by distance. The present-day
distribution of the Alpine lineage is circumscribed by the black line.
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most evolutionary change. Correlations of Zeng’s E and Fay & Wu’s H
(population genetic statistics that are sensitive to past selective
sweeps) with glacial genomic offset provide complementary valida-
tion, and indicate that our model assumptions were justified. Toge-
ther, this evidence lends credence to our hypothesis that migration
and adaptation acted jointly in D. sylvestris’ response to past climate
shifts.

The characteristic imprint left by the concerted mechanism of
migration and adaptation on patterns of adaptive genetic diversity has
key relevance on how able populations are to respond to future cli-
matic changes. For D. sylvestris in the Alps, the described decay of
adaptive diversity implies that populations inhabiting the warm, low-
elevation environments at the expansion front bear limited potential
to adaptively respond tonewbouts of climate-driven selection, though
predictions can be nuanced. On one hand, low-elevation populations
may be relatively well-adapted to tolerate further warming due to past
selection in that direction. On the other hand, the consequences of
climate change are not exclusive to increase in temperatures, but also
novel biotic interactions including competition42,43 and shifts in other
environmental parameters (e.g., precipitation regimes)44, where the
general loss of diversity as observed in low-elevation populations may
be detrimental. While the loss of genetic diversity at expansion mar-
gins has been well-described45–48, we show that in heterogenous land-
scapes, genetic diversity is also determined by the environmental
distance between a population’s current habitat and that which
the population was pre-adapted to (i.e., its ancestral habitat). Thus,
our historical perspective can complement future-oriented
approaches9,15,17,19 by providing evolutionary context to observed and
predicted patterns of adaptation.

Analysing adaptive variation facilitates our understanding of spe-
cies response to climatic change because it acts as a lens into the past
different than and complementary to that given by stochastic neutral
variation, which perceives the demographic past exclusively. Here, we
jointly assess patterns of neutral and adaptive genetic variation in an
Alpine plant and provide novel evidence for the interplay of migration,
adaptation and expansion in the species’ Quaternary history. In doing
so, we elucidate the manner in which climate acts to shape species’
adaptive variation, and highlight species’ reliance on the genetic lega-
cies of past climate to respond and adapt to future changes.

Methods
Study populations and sequencing strategy
DNA libraries were prepared for 1261 D. sylvestris individuals from 115
populations (5–20 individuals per population) under a modified
protocol49 of the Illumina Nextera DNA library preparation kit (Sup-
plementary Methods S1.1, Supplementary Data 1). Individuals were
indexed with unique dual-indexes (IDT Illumina Nextera 10nt UDI –
384 set) from Integrated DNA Technologies Co, to avoid index-
hopping50. Libraries were sequenced (150bp paired-end sequencing)
in four lanes of an Illumina NovaSeq 6000 machine at Novogene Co.
This resulted in an average coverage of ca. 2x per individual.
Sequenced individuals were trimmed for adapter sequences (Trim-
momatic version 0.3551), mapped (BWA-MEM version 0.7.1752,53) against
a reference assembly54 (ca. 440Mb), had duplicates marked and
removed (Picard Toolkit version 2.0.1; http://broadinstitute.github.io/
picard), locally realigned around indels (GATK version 3.555), recali-
brated for base quality scores (ATLAS version 0.956) and had over-
lapping read pairs clipped (bamUtil version 1.0.1457) (Supplementary

Distance to source (km)

Lo
g 

nu
cl

eo
tid

e 
di

ve
rs

ity
 (π

)

Distance to source (km)

0.010 0.015 0.020

0.
10

0.
12

0.
14

0.
16

Glacial genomic offset

Ze
ng

’s
 E

G
F

−0
.0

8
−0

.0
6

−0
.0

4

Fa
y 

& 
W

u’
s 

H
G

F
a b c

R2
0.1 0.2 0.3 0.40.0

***
**

*
***

**

* Nucleotide diversity π

Fay & Wu’s H

Zeng’s E

Tajima’s D

GF
GW

0 100 200 300 400

−4
.8

−4
.7

−4
.6

−1
.8

−1
.7

−1
.6

12 126 286 360

−4
.8

−4
.7

−4
.6

−1
.8

−1
.7

−1
.6

πGF

πGW

Fig. 6 | Population genetics validate glacial genomic offset predictions. A Top
panel: Goodness-of-fit (adjustedR2) estimates for the correlationof glacial genomic
offset with select population genetic diversity and neutrality statistics (linear
regressionmodels; n = 43 populations; p-value threshold: *0.01, **0.001, ***0.0001;
F-test for linear regression). Model goodness-of-fit (bars) are shown for mean per-
site statistics calculated genome-wide (GW; grey bars) and weighted by the R2 of
sites’ environmental association (GF; green bars). Significant correlations with Fay
and Wu’s HGF (middle panel) and Zeng’s EGF (bottom panel) describe an excess of
high-frequency, derived variants - characteristic of selective sweeps - with
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Methods S1.1). Population genetic analyses were performed on the
resultant BAM files via genotype likelihoods (ANGSD version 0.93358

and ATLAS versions 0.9–1.056), to accommodate the propagation of
uncertainty from the raw sequence data to population genetic
inference.

Population genetic structure and biogeographic barriers
To investigate the genetic structure of our samples (Fig. 2A, Supple-
mentary Fig. S2), we performed principal component analyses (PCA)
on all 1261 samples (“full” dataset) via PCAngsd version 0.9859, follow-
ing conversion of the mapped sequence data to ANGSD genotype
likelihoods in Beagle format (Supplementary Methods S1.2). To
visualise PCA results in space (Supplementary Fig. S4), individuals’
principal components were projected on a map, spatially interpolated
(linear interpolation,akimaRpackage version0.6.260) andhad thefirst
two principal components represented as green and blue colour
channels. Given that uneven sampling can bias the inference of
structure in PCA, PCA was also performed on a balanced dataset
comprising a common, down-sampled size of 125 individuals per
geographic region (“balanced” dataset; Fig. 2B, Supplementary Fig. S3;
Supplementary Methods S1.2; Supplementary Data 1). Individual
admixtureproportions and ancestral allele frequencieswereestimated
using PCAngsd (-admix model) for K = 2–6, using the balanced dataset
to avoid potential biases related to imbalanced sampling22,23 and an
automatic search for the optimal sparseness regularisation parameter
(alpha) soft-capped to 10,000 (Supplementary Methods S1.2). To
visualise ancestry proportions in space, population ancestry propor-
tions were spatially interpolated (kriging) via code modified from
Ref. 61 (Supplementary Fig. S5).

To test if between-lineage admixture underlies admixture pat-
terns inferred by PCAngsd or if the data is better explained by alter-
native scenarios such as recent bottlenecks, we used chromosome
painting and patterns of allele sharing to construct painting palettes
via the programmes MixPainter and badMIXTURE (unlinked model)28

and compared this to the PCAngsd-inferred palettes (Fig. 2B, C; Sup-
plementary Methods S1.2). We referred to patterns of residuals
between these palettes to inform of the most likely underlying
demographic scenario. For assessing Alpine–Balkan palette residuals
(and hence admixture), 65 individuals each from the French Alps
(inferred as pure Alpine ancestry in PCAngsd), Monte Baldo (inferred
with both Alpine and Balkan ancestries in PCAngsd) and Julian Alps
(inferred as pure Balkan ancestry in PCAngsd) were analysed under
K = 2 in PCAngsd and badMIXTURE (Fig. 2C). For assessing
Apennine–Balkan admixture, 22 individuals each from the French pre-
Alps (inferred as pure Apennine ancestry in PCAngsd), Tuscany
(inferred with both Apennine and Balkan ancestries in PCAngsd) and
Julian Alps (inferred as pure Balkan ancestry inPCAngsd) were analysed
under K = 2 in PCAngsd and badMIXTURE.

To construct a genetic distance tree (Supplementary Fig. S1), we
first calculated pairwise genetic distances between 549 individuals (5
individuals per population for all populations) usingATLAS, employing
a distance measure (weight) reflective of the number of alleles differ-
ing between the genotypes (Supplementary Methods S1.2; Supple-
mentary Data 1). A tree was constructed from the resultant distance
matrix via an initial topology defined by the BioNJ algorithm with
subsequent topological moves performed via Subtree Pruning and
Regrafting (SPR) in FastME version 2.1.6.162. This matrix of pairwise
genetic distances was also used as input for analyses of effective
migration and effective diversity surfaces in EEMS25. EEMS was run
setting the number of modelled demes to 1000 (Fig. 2A, Supplemen-
taryFig. S8). For each case, ten independentMarkov chainMonteCarlo
(MCMC) chains comprising 5 million iterations each were run, with a
1 million iteration burn-in, retaining every 10,000th iteration. Bio-
geographic barriers (Fig. 2A, Supplementary Fig. S7) were further
identified via applying Monmonier’s algorithm24 on a valuated graph

constructed via Delauney triangulation of population geographic
coordinates, with edge values reflecting population pairwise FST; via
the adegenetR package version 2.1.163. FST between all population pairs
were calculated via ANGSD, employing a common sample size of
5 individuals per population (Supplementary Fig. S6; Supplementary
Methods S1.2; Supplementary Data 1). 100 bootstrap runs were per-
formed to generate a heatmap of genetic boundaries in space, from
which a weighted mean line was drawn (Supplementary Fig. S7). All
analyses inANGSDwere performedwith the GATK (-GL 2)model, aswe
noticed irregularities in the site frequency spectra (SFS) with the
SAMtools (-GL 1) model similar to that reported in Ref. 58 with parti-
cular BAM files. All analyses described above were performed on the
full genome.

Ancestral sequence reconstruction
To acquire ancestral states and polarise site-frequency spectra for use
in the directionality index ψ and demographic inference, we recon-
structedancestral genome sequences at eachnodeof thephylogenetic
tree of 9 Dianthus species:D. carthusianorum, D. deltoides, D. glacialis,
D. sylvestris (Apennine lineage), D. lusitanus, D. pungens, D. superbus
alpestris, D. superbus superbus, and D. sylvestris (Alpine lineage). This
tree topology was extracted from a detailed reconstruction of Dia-
nthus phylogeny based on 30 taxa by Fior et al. (Fior, Luqman,
Scharmann, Zemp, Zoller, Pålsson, Gargano, Wegmann & Widmer;
paper in preparation) (Supplementary Methods S1.3). For ancestral
sequence reconstruction, one individual per species was sequenced at
medium coverage (ca. 10x), trimmed (Trimmomatic), mapped against
the D. sylvestris reference assembly (BWA-MEM) and had overlapping
read pairs clipped (bamUtil) (Supplementary Methods S1.3). For each
species, we then generated a species-specific FASTA using GATK Fas-
taAlternateReferenceMaker. This was achieved by replacing the
reference bases at polymorphic sites with species-specific variants as
identified by freebayes64 (version 1.3.1; default parameters), while
masking (i.e., setting as “N”) sites (i) with zero depth and (ii) that didn’t
pass the applied variant filtering criteria (i.e., that are not confidently
called as polymorphic; Supplementary Methods S1.3). Species FASTA
files were then combined into a multi-sample FASTA. Using this, we
probabilistically reconstructed ancestral sequences at each node of
the tree via PHAST (version 1.4) prequel65, using a treemodel produced
by PHAST phylofit under a REV substitution model and the specified
tree topology (Supplementary Methods S1.3). Ancestral sequence
FASTA files were then generated from the prequel results using a
custom script.

Expansion signal
To calculate the population pairwise directionality index ψ for the
Alpine lineage, we utilised equation 1b from Peter and Slatkin (2013)31,
which defines ψ in terms of the two-population site frequency spec-
trum (2D-SFS) (Supplementary Methods S1.4). 2D-SFS between all
populationpairs (10 individuals per population; SupplementaryData 1)
were estimated via ANGSD and realSFS66 (Supplementary Methods
S1.4), for unfolded spectra. Unfolding of spectra was achieved via
polarisationwith respect to the ancestral state of sites defined at theD.
sylvestris (Apennine lineage) - D. sylvestris (Alpine lineage) ancestral
node. Correlation of pairwise ψ and (great-circle) distance matrices
was tested via a Mantel test (10,000 permutations). To infer the geo-
graphic origin of the expansion (Fig. 3), we employed a time difference
of arrival (TDOA) algorithm following Peter and Slatkin (2013);31 per-
formed via the rangeExpansion R package version 0.0.0.900031,67. We
further estimated the strength of the founder of this expansion using
the same package.

Demographic inference
To evaluate the demographic history of D. sylvestris, a set of candidate
demographic models was formulated. To constrain the topology of
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tested models, we first inferred the phylogenetic tree of the three
identified evolutionary lineages of D. sylvestris (Alpine, Apennine and
Balkan) as embedded within the larger phylogeny of the Eurasian
Dianthus clade (note that the phylogeny fromFior et al. (Fior, Luqman,
Scharmann, Zemp, Zoller, Pålsson, Gargano, Wegmann & Widmer;
paper in preparation) excludes Balkan representatives of D. sylvestris).
Trees were inferred based on low-coverage whole-genome sequence
data of 1–2 representatives from each D. sylvestris lineage, together
withwhole-genome sequencedata of 7 otherDianthus species, namely
D. carthusianorum,D. deltoides,D. glacialis,D. lusitanus,D. pungens,D.
superbus alpestris and D. superbus superbus, that were used to root the
D. sylvestris clade (Supplementary Methods S1.5). We estimated
distance-based phylogenies using ngsDist68 that accommodates gen-
otype likelihoods in the estimation of genetic distances (Supplemen-
tary Methods S1.5). Genetic distances were calculated via two
approaches: (i) genome-wide and (ii) along 10 kb windows. For the
former, 110 bootstrap replicates were calculated by re-sampling over
similar-sized genomic blocks. For the alternative strategy based on
10 kb windows, window trees were combined using ASTRAL-III version
5.6.369 to generate a genome-wide consensus tree accounting for
potential gene tree discordance (Supplementary Methods S1.5). Trees
were constructed from matrices of genetic distances from initial
topologies defined by the BioNJ algorithm with subsequent topologi-
cal moves performed via Subtree Pruning and Regrafting (SPR) in
FastME version2.1.6.162.We rooted all resultant phylogenetic treeswith
D. deltoides as the outgroup70. Both approaches recovered a topology
with the Balkan lineage diverging prior to the Apennine and Alpine
lineages (Supplementary Fig. S9). This taxon topology for D. sylvestris
was supported by high ASTRAL-III posterior probabilities (>99%),
ASTRAL-III quartet scores (>0.5) and bootstrap values (>99%). Topol-
ogies deeper in the tree were less well-resolved (with quartet scores
<0.4 in more basal nodes). Under the inferred D. sylvestris topology
and a less-assumptive simultaneous trichotomous split topology, 18
models were formulated spanning from simple to complex (Supple-
mentary Fig. S10). Complex models allowed for population size
changes and different migration rates (which could further be asym-
metric) at each time epoch. We allowed up to five time epochs to
accommodate (i) the two divergence events, (ii) the bottleneck-like
effect of contemporary sampling, and (iii) up to two additional tran-
sitions in demography.

To estimate the demographic parameters of these models, we
used moments version 1.0.071 to evaluate populations’ joint site
frequency spectra. We estimated the unfolded three-population
joint site frequency spectrum (3D-SFS) comprised of one repre-
sentative population each per lineage via ANGSD and realSFS, using
20 individuals per population (Supplementary Methods S1.5; Sup-
plementary Data 1). The spectra were polarised with respect to the
ancestral state of sites defined at the D. lusitanus - D. sylvestris
(Alpine lineage) ancestral node (for tree topology, see Supplemen-
tary Methods S1.3). To facilitate model selection and optimisation in
moments, we employed an iterative optimisation procedure, mod-
ified fromRef. 72 (SupplementaryMethods S1.5). Model selectionwas
performed via comparison of model log-likelihood values, the
Akaike information criterion (AIC) and via an adjusted likelihood
ratio test based on the Godambe Information Matrix (GIM) (Sup-
plementary Table S1). To estimate confidence intervals for demo-
graphic parameters, we employed a nonparametric bootstrapping
strategy by generating 100 bootstraps of the 3D-SFS, resampling
over unlinked genomic blocks. Parameter uncertainties were then
calculated by fitting bootstrap datasets in moments under the
described optimisation procedure (Supplementary Methods S1.5).
To convert generation time to calendar years, we assume a genera-
tion time of three years as inferred from population growth models
of a closely related species (D. carthusianorum) with similar life
history (Pålsson, Walther, Fior & Widmer; paper in preparation).

Distribution modelling
To model species and lineage distributions in space and time, we
acquired species occurrence data and environmental data from var-
ious sources. Species occurrence data was acquired from Con-
servatoire Botanique National Méditerranéen de Porquerolles
(CBNMed; http://flore.silene.eu), Conservatoire Botanique National
Alpin (CBNA; http://flore.silene.eu), GBIF (https://www.gbif.org;
https://doi.org/10.15468/dd.zzqdys), iNaturalist (https://www.
inaturalist.org), Info Flora (https://www.infoflora.ch), Wikiplantbase
#Italia (http://bot.biologia.unipi.it/wpb/italia), Sweden’s Virtual Her-
barium (http://herbarium.emg.umu.se), Virtual Herbaria Austria
(https://www.jacq.org) and personal collaborators. The environmental
data comprised an initial set of 19 bioclimatic variables (CHELSA32)
together with 3 topographic variables (elevation, slope and aspect)
(GMTED2010 and CHELSA PaleoDEM32,73), soil type and pH (at 5 cm
depth) (SoilGrids74). Prior to running SDMs, a coherent set (consistent
across all lineages) of most important, least collinear and biologically
relevant variables was selected. Variable selection followed an iterative
process ofmodelfitting via generalised linear (GLM; ecospatRpackage
version 3.075), maximum entropy (maxent;76 dismo R package version
1.1.477) and random forest (RF; randomForest R package version
4.6.1478, extendedForest R package version 1.6.136) modelling to assess
variable importance, combined with variance inflation factor (VIF;
usdm R package version 1.1.1879) and correlation analyses. We retained
themost important and least collinear variables (VIF < 10 andPearson’s
correlation r <0.7), based on recommended cut-offs for this type of
analysis80. This resulted in a final set of 10 variables: (1) isothermality,
(2) temperature seasonality, (3) temperature maximum warmest
month, (4) temperature mean wettest quarter, (5) temperature mean
driest quarter, (6) precipitation seasonality, (7) precipitation warmest
quarter, (8) precipitation coldest quarter, (9) soil pH at 5 cm and (10)
topographic slope. Distribution models were generated for each line-
age separately as well as for the pooled species. For each run, occur-
rences were randomly sampled from a larger set and disaggregated to
balance sampling density in geographic space, resulting in ca. 420,
260, 170 and 530 retained occurrences for the Alpine, Apennine, Bal-
kan and pooled species, respectively. Using these occurrence data and
the final set of environmental predictors, we generated an SDM
ensemble model built from the weighted average of four separate
models: (1) a generalised linear model (GLM), (2) a general additive
model (GAM), (3) a maximum entropy model (maxent) and (4) a ran-
dom forest model (RF). Model weights reflected their classification
performance (i.e., area under the curve (AUC) of the receiver operating
characteristic (ROC) curve). For each model, 5-fold cross-validation
and model evaluation was performed. The resultant ensemble SDM
model was projected onto present-day climate as well as hindcasted to
the LGM climate (Supplementary Methods S1.6). For the LGM envir-
onmental predictors, we took the ensemble (mean) of four PMIP3
global climate models (GCMs) implemented under CHELSA32: (1)
NCAR-CCSM481, (2) MIROC-ESM82, (3) MRI-CGCM383, and (4) MPI-ESM-
P;84 selecting models that are distinct and with low amount of inter-
dependence between each other85. All environmental variables apart
from soil variables were available for present-day and LGM predictor
datasets. We thus assume in our models that soil pH remained con-
stant through time. While this a strong assumption, the alternative
strategy of excluding pH would similarly assume a constant effect in
time, in addition to a constant effect across space. Here, we argue that
it is better to have an informed constant over an uninformed constant;
given that no paleo-model of global soil is currently available.

To reconstruct lineage-specific routes of expansion and assign
present-day populations to their most likely ancestral refugia, we first
projected lineage-specific niche models to the LGM climate. We iden-
tified distinct, contiguous refugia (spatial clusters of predicted
occurrences) via an unsupervised density-based spatial clustering
(DBSCAN) algorithm (dbscan R package version 1.1.286), which
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coincided with, and were denominated according to, geographic
regions (Alps, Apennines and Balkans).We then sequentially projected
the lineage-specific niche models to climate rasters at 100-year time
intervals for the period between the LGM to the present-day. At each
(successive) time-point, new occurrences (in space) were assigned a
lineage based on the k-nearest neighbour (k = 1) of the previous (time-
point’s) set of lineage-assigned occurrences (FNN R package version
1.1.2.187), conditional that the new occurrences lie within a defined
distance d away (dispersal parameter, d = 12 km per century88). In
addition to this limit on dispersal rate, we enforced competitive
exclusion between lineages such that only a single lineage can occupy
a spatial cell at a given time. The 100-year time interval dataset was
generated by linearly interpolating climatic variables between the
current and ensemble LGMmodels. While it is known that climate did
not change in a linear fashion between these time points, we con-
sidered this approach to be more informative than the alternative of
assigning present-day occurrences to geographic refugia based on
distance measures, as the former incorporates landscape hetero-
geneity in an explicit albeit approximative spatio-temporal manner.
Recently, CHELSA-TraCE21k89 was published which explicitly models
climate in 100-year time intervals from the LGM to the present-day.
However, LGM hindcasts from this model were inconsistent with that
of the other 4 PMIP3 models employed here, potentially as a result of
being based on the older CCSM3 GCM90, and so we refrained from use
of the TraCE dataset here.

Visualising shifts in environment space and habitat availability
To visualise the shift in environmental space and habitat availability
from LGM to present, we projected the environmental space of the
LGM and present-day to a common, lower-dimensional space, via
applying the PCA transformation (scaling, centreing and rotation) of
the present-day environment to both present-day and LGM environ-
ments (Supplementary Methods S1.7). Here, the assessed environ-
mental space comprised the 19 bioclimatic variables (CHELSA)
together with elevation (GMTED2010, Chelsa PaleoDEM) and topo-
graphic slope. The density of cells occupying each coordinate in the
resultant PCA-transformed environmental space was visualised via
hexagonal binning (ggplot2Rpackage version 3.3.2), which allowed for
the quantification of area at each point (in the PCA-transformed
environmental space). The geographic extents in which the environ-
mental data were taken from and constrained to are shown in Sup-
plementary Fig. S16.

Predicting adaptive genetic structure in space and time
To predict the sieving of adaptive genetic variation in space and time,
wemodelled the association of genetic variants (SNPs)with changes in
environment, using gradient forest (GF)17,36. Here, we assume that
contemporary gene-environment associations distributed across
space reflect gene-environment associations across time9,17,20,21. GF
characterises compositional turnover in allele frequencies along
environmental gradients via monotonic, non-linear (turnover) func-
tions that transform multidimensional environmental space into mul-
tidimensional genomic space17,36. Starting with the full set of
environmental variables described above, environmental predictors
were selected by quantifying variable importance via random forests
(gradientForest R package 0.1.1836) and by assessing variable colli-
nearity via variance inflation factor (VIF) and correlation analyses. We
retained the most important and least collinear variables (VIF < 10 and
Pearson’s correlation r <0.7), resulting in a final set of 10 variables: (1)
temperature diurnal range, (2) temperature seasonality, (3) tempera-
ture minimum coldest month, (4) temperature mean wettest quarter,
(5) temperature mean driest quarter, (6) precipitation seasonality, (7)
precipitation warmest quarter, (8) precipitation coldest quarter, (9)
soil pH at 5 cm, and (10) topographic slope. To account for genetic
structure in the Alps (Alpine lineage), we included longitude and

latitude as co-variates in the model, in light that these were shown to
correlate stronglywith themain twoprincipal components of genome-
wide structure (Supplementary Fig. S13). As an alternative method, we
built a Moran’s Eigenvector Map (MEM)91 via the adespatial R package
version 0.3.892 based on a spatial weighting matrix reflective of the
Alpine lineage’s expansion history, and included this as a co-variate in
the GF model (instead of longitude and latitude) (Supplementary
Fig. S21).Here, the edges of the spatialweightingmatrixwereweighted
by the divergence of expansion paths (from the LGM refugia) between
population pairs (see the path overlap and divergence metrics of van
Etten & Hijmans (2010);88 Supplementary Fig. S21, Supplementary
Table S2). This measure of the divergence of expansion routes was
calculated over a spatial transition matrix (i.e., resistance surface)
defined by the lineage-specific SDM projection, via the gdistance R
package version 1.2.293, utilising the random walk algorithm. Samples
were considered as neighbours in the spatial weighting matrix if their
pairwise geographicdistancewas equal to or less than the longest edge
of theminimumspanning tree.Of the threepositiveMEMeigenvectors
returned, a single positive eigenvector (MEM1) explained the majority
of the variance and was used as the spatial co-variate (Supplementary
Fig. S21). For the response variable, our GF model takes population
allele frequencies. Genetic variants (SNPs) segregating across 43
Alpine populations comprising 14 individuals each were first identified
using the programme freebayes64 (version 1.3.1) (Supplementary
Methods S1.8; Supplementary Data 1). We constrained the variant-
callset to the exon regions of the genome. Population allele fre-
quencies were calculated from the resultant VCF via vcflib popStats
(version 1.0.1.1)94 utilising genotype likelihoods. We filtered this data-
set to retain only sites with depth ≥7 per population. GFwas run on the
resultant set of 390,262 exon SNPs in batches of 10,000 SNPs, using
500 decision trees. Batch runs were combined via combined-
GradientForest {standardise = “before”, method = 2} in the gra-
dientForest R package. When taking the ensemble of all exon genetic
variation—weighting the contribution of each SNP by the coefficient of
determination (R2) of its environment association (Supplementary
Fig. S17)—our GF approach can potentially include the contribution
(effects) of a major fraction of adaptive loci, including those of small
effect size that are affected by polygenic selection. Recent evidence
has demonstrated that such an approach based on large sets of
genomic SNPs can reflect fitness well19, performing on par or better
thatGFmodelsbasedon apriori identified environmentally-associated
SNPs19. The resultant GF turnover functions—which transform the
environmental variables (environmental space) to biological variables
of composition turnover (biological space)17,36—are applied to present-
day and LGM climate rasters, to characterise adaptive genomic com-
position of populations in space and time. To visualise adaptive
genomic composition in space, we plotted the first three principal
components of the transformed environmental space excluding the
transformed longitude and latitude variables, to visualise only the
adaptive component. Note here that the PCA was centred but not
scaled to retain GF-calculated importance of the transformed envir-
onmental variables17,19.

To evaluate differences in genomic composition and quantify
evolutionary change of populations between assessed time points, we
evaluated (genomic) compositional differences (between time points)
accounting for the location of the populations’ glacial refugia. Speci-
fically, we calculated the multivariate Euclidean distance between the
genomic composition of every population in the present-day and that
of its (geographically) closest predicted refugial source at the time of
the LGM (Supplementary Fig. S20). We term this metric “glacial
genomic offset”. Here, in contrast to our visualisation of adaptive
genomic composition earlier, we retain the biological variables trans-
formed from longitude and latitude in our calculation of the glacial
genomic offset to incorporate the effect of IBD and distance-
associated drift processes (i.e., expansion). This is because we aim
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for the glacial genomic offset to encapsulate the joint, realised effects
of isolation by environment, isolation by distance (IBD) and spatial
expansion between the ancestral population in the refugia and the
present-day population. For our alternative method using MEM, we
interpolated MEM values via inverse path distance weighting across
the SDM-defined resistance surface via the ipdw R package version
0.2.695, to include (model) the effect of distance in the glacial genomic
offset. Such an interpolationapproach is coarse andprone to artefacts;
however, provides an alternative way of modelling distance effects
when genetic structure is not well-represented by a geographic cline.
Note that in our calculation of glacial genomic offsets, the geographic
extent of glacial refugia relied on distribution models, which assumes
niche conservatism. This may appear counter to the aim here of cap-
turing adaptation. We alleviate this methodological constraint, how-
ever, by employing lineage-specific, rather than species, niches and by
relying additionally on population genetic inferences (ψ) to recon-
struct glacial refugia. Moreover, our inference of past distributions are
conservative, such that inferred glacial refugia would have been
smaller, not larger, had adaptation facilitated post-glacial expansion.
Finally, we note that our prediction of adaptive variation during the
LGM is highly homogenous across space,meaning that our predictions
of glacial genomic offset remain robust under fluctuations in the
inferred geographic extent of glacial refugia.

To explore the adaptive relationship between low-elevation indi-
viduals, high-elevation individuals and refugial-proxies (i.e., those
presently inhabiting the inferred glacial refugia inMonte Baldo and the
western Dolomites), we partitioned populations (excluding refugial-
proxies) into low-elevation (<1000m) and high-elevation (>1500m)
categories. To avoid biases related to imbalanced sample sizes, cate-
gories were sub-sampled to a common sample size of 70 individuals (5
populations) each (Supplementary Data 1). We then calculated a
genetic distance tree, PCA and Venn diagram of allele presence and
absence; based on the top (unlinked) 1000 GF environmentally-
associated SNPs (Supplementary Fig. S19). The genetic distance tree
and PCA were calculated as described above for the whole-genome
dataset. For allele presence-absence, we applied a minimum allele
frequency threshold of 5%.

Validation of glacial genomic offset
To validate our predictions of glacial genomic offset, we performed
correlations of this metric with various population genetic diversity
and neutrality statistics including nucleotide diversity π, Tajima’s D,
Fu & Li’s F, Fay & Wu’s H, and Zeng’s E. Statistics were calculated for
sampled populations both genome-wide and centred around
environmentally-associated loci, using ANGSD (Supplementary
Method S1.9). For the latter, we calculated the weighted mean sta-
tistics of exon SNPs with weights given by the coefficient of deter-
mination (R2) of the SNP’s environmental association (as given under
GF; Supplementary Fig. S17A). This approach avoids the lossy
strategy of calling discrete adaptive candidates and potentially
better reflects genome-wide (including polygenic) signals of adap-
tive diversity. We further compared levels of nucleotide diversity (π)
for contemporary low- and high-elevation populations (ca. 1000m
elevation difference) in areas where they co-occur in close geo-
graphic proximity, to control for the effects of isolation by distance
(IBD) and the spatial expansion (four pairs total; Supplementary
Data 1). Given the low number of suitable population pairs, we
additionally compared π for all populations partitioned into low-
elevation (<1000m) and high-elevation (>1500m) bins, ordered
along the expansion axis. π was calculated both genome-wide (πGW)
and centred around environmentally-associated loci (πGF). The lat-
ter was calculated as the weighted mean π of exon SNPs, with
weights given by the R2 of the SNP’s environmental association (as
given under GF; Supplementary Fig. S17B).

Access of samples
Access, collection and import/export of samples were conducted in a
responsible manner and in compliance with all relevant local, national
and international laws. All necessary sampling permits were obtained
prior to sample collection. This comprised of sampling permits from
Comunità della Vallagarina for sampling in Monte Baldo, Italy (issued
on 13 July 2017, valid for the year 2017); from Parco Nazionale Gran
Paradiso for sampling in Gran Paradiso National Park, Italy (issued on
12 May 2017, valid for the summer of 2017); from Amt für Natur und
Umwelt for sampling in Graubünden, Switzerland (issued on 21 April
2017, valid for the years 2017 and 2018); from Amt für Natur, Jagd und
Fischerei for sampling in St. Gallen, Switzerland (issued on 29 May
2017, valid from the date of issue until 31 December 2018), and from
Amt für Wald und Landschaft for sampling in Obwalden, Switzerland
(issued on 29 May 2017, valid for May-September 2017 and May-
September 2018). Nagoya Protocol on Access and Benefit Sharing was
followed in countries where it had been ratified at the time of sam-
pling. Dianthus sylvestris is not listed under the Convention on Inter-
national Trade in Endangered Species of Wild Fauna and Flora (CITES)
or under the International Union for Conservation of Nature (IUCN)
Red List of Threatened Species.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing reads for the 1261 low-coverage D. sylvestris whole
genomes are deposited and available at the European Nucleotide
Archive (ENA) under accession code PRJEB53522. Raw sequencing
reads for the across-species dataset are available at ENA under acces-
sion code PRJEB54098. The D. sylvestris genome reference assembly
and structural annotation are available at theDryad repository: https://
doi.org/10.5061/dryad.x0k6djhng54. Sample accessions and metadata
are provided in Supplementary Data 1. Environmental data used was
downloaded fromCHELSA (version 1.2; https://chelsa-climate.org) and
SoilGrids (2020 version; https://soilgrids.org). Topographic data was
downloaded from CHELSA and GMTED2010 (2010 version; https://
topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php).
Species occurrence data was acquired from Conservatoire Botanique
National Méditerranéen de Porquerolles (CBNMed; http://flore.silene.
eu), Conservatoire Botanique National Alpin (CBNA; http://flore.silene.
eu), GBIF (https://www.gbif.org; https://doi.org/10.15468/dd.zzqdys),
iNaturalist (https://www.inaturalist.org), Info Flora (https://www.
infoflora.ch), Wikiplantbase #Italia (http://bot.biologia.unipi.it/wpb/
italia), Sweden’s Virtual Herbarium (http://herbarium.emg.umu.se),
Virtual Herbaria Austria (https://www.jacq.org) and personal colla-
borators in 2017. This occurrence data is deposited at the Github
repository (https://github.com/hirzi/RhEA; https://doi.org/10.5281/
zenodo.7581797)96.

Code availability
Code for performing demographic inference, running distribution
models, visualising shifts in environmental space, performing gradient
forest and calculating glacial genomic offsets are available at the
GitHub repository: https://github.com/hirzi/RhEA (https://doi.org/10.
5281/zenodo.7581797)96.
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