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Abstract. The link between streamflow extremes and cli-
matology has been widely studied in recent decades. How-
ever, a study investigating the effect of large-scale circu-
lation variations on the distribution of seasonal discharge
extremes at the European level is missing. Here we fit a
climate-informed generalized extreme value (GEV) distribu-
tion to about 600 streamflow records in Europe for each of
the standard seasons, i.e., to winter, spring, summer and au-
tumn maxima, and compare it with the classical GEV distri-
bution with parameters invariant in time. The study adopts
a Bayesian framework and covers the period 1950 to 2016.
Five indices with proven influence on the European cli-
mate are examined independently as covariates, namely the
North Atlantic Oscillation (NAO), the east Atlantic pattern
(EA), the east Atlantic–western Russian pattern (EA/WR),
the Scandinavia pattern (SCA) and the polar–Eurasian pat-
tern (POL).

It is found that for a high percentage of stations the
climate-informed model is preferred to the classical model.
Particularly for NAO during winter, a strong influence on
streamflow extremes is detected for large parts of Europe
(preferred to the classical GEV distribution for 46 % of the
stations). Climate-informed fits are characterized by spatial
coherence and form patterns that resemble relations between
the climate indices and seasonal precipitation, suggesting a
prominent role of the considered circulation modes for flood
generation. For certain regions, such as northwestern Scan-
dinavia and the British Isles, yearly variations of the mean
seasonal climate indices result in considerably different ex-
treme value distributions and thus in highly different flood

estimates for individual years that can also persist for longer
time periods.

1 Introduction

The understanding of extreme streamflow is a key is-
sue for infrastructure design, flood risk management and
(re-)insurance, and the estimation of flood probabilities has
been a focus of scientific debate in recent decades. Tradi-
tionally, streamflow has been analyzed with regard to as-
sociated hydro-climatic processes acting at the catchment
scale. In recent years many studies have additionally focused
on the link between local streamflow and larger-scale cli-
mate mechanisms, extending beyond the catchment bound-
aries (Merz et al., 2014). An early example can be found
in Hirschboeck (1988), who provides a detailed explanation
of relationships between floods and synoptic patterns in the
USA. Large-scale atmospheric patterns acting at global or
continental scales have been shown to significantly influ-
ence flood magnitude and frequency at the local and regional
scale. Regional in this context refers to the joint considera-
tion of several gauges. For example, Kiem et al. (2003) strat-
ified a regional flood index in Australia according to quan-
tiles of the El Niño–Southern Oscillation (ENSO) index and
showed that La Niña events are associated with a distinctly
higher flood risk compared with El Niño events. Ward et
al. (2014) found that peak discharges are strongly influenced
by ENSO for a large fraction of catchments across the globe.
Delgado et al. (2012) detected a dependence between the
variance of the annual maximum flow at stations along the
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Mekong River and the intensity of the western Pacific mon-
soon.

This perception of climate-influenced extremes has been
incorporated into flood frequency analysis by including cli-
matic variables as covariates of extreme value distribution
parameters. It is therefore assumed that the probability den-
sity function (pdf) of streamflow is not constant in time
but it is conditioned on external variables. This framework,
usually called nonstationary, can be particularly useful for
hydro-climatic studies since the influence of the climatic phe-
nomena on the distribution of the hydrological target vari-
able, such as extreme streamflow, can be considered (Sun et
al., 2014). This means that the whole distribution as well
as certain parts of the target variable distribution, such as
the tails, can be assessed by including the influence of the
large-scale climate phenomenon and used for flood risk man-
agement or reinsurance purposes. This conditional or non-
stationary frequency analysis has been popularized in the
field of hydrology and flood research in recent years. Dif-
ferent covariate types have been examined for their influ-
ence on flood extremes, e.g., time (e.g., Delgado et al., 2010;
Sun et al., 2015), snow cover indices (Kwon et al., 2008),
reservoir indices (López and Francés, 2013; Silva et al.,
2017), population measures (Villarini et al., 2009) and large-
scale atmospheric and oceanic fields and indices (Delgado
et al., 2014; Renard and Lall, 2014). A review of nonsta-
tionary approaches for local frequency analyses is given by
Khaliq et al. (2006), while some of their limitations are dis-
cussed by Koutsoyiannis and Montanari (2015), Serinaldi
and Kilsby (2015) and Serinaldi et al. (2018).

In this study, we focus on the European continent and the
relation between streamflow extremes and the large-scale at-
mospheric circulation. The European climate is mainly in-
fluenced by pressure patterns acting at the broader region
covering Europe and the northern Atlantic. In particular, five
circulation modes have been shown to significantly modify
the moisture fluxes into the European domain: the North At-
lantic Oscillation (NAO), the east Atlantic (EA), the east
Atlantic–western Russia (EA/WR), the Scandinavia (SCA)
and the polar–Eurasian (POL) patterns (Bartolini et al., 2010;
Casanueva et al., 2014; Rust et al., 2015; Steirou et al., 2017).
These patterns represent the first five pressure modes north
of 50◦ N, derived by means of a rotated principle component
analysis of monthly mean 500 hPa geopotential height fields
(Barnston and Livezey, 1987). The modes indicate the po-
sition and magnitude of large-scale atmospheric waves and
thus control the strength and location of the northern hemi-
spheric jetstream. All modes are characterized by a particular
pattern of large-scale winds and moisture fluxes and strongly
affect near-surface climate conditions over vast parts of the
Northern Hemisphere. Particularly NAO has been shown to
significantly influence the European winter climate: its pos-
itive state has been linked to positive (negative) anomalies
of moisture fluxes, cyclone passages and precipitation over
northern (southern) Europe (Hurrell and Deser, 2009; Wibig,

1999). A seasonal shift of the NAO pressure centers and
moisture fluxes towards the north during summer has been
detected (Hurrell and Deser, 2009). EA, often referred to
as a southward-shifted NAO, is characterized by distinctly
defined geopotential height anomalies and an associated in-
fluence on westerly moisture fluxes and local climate condi-
tions over Great Britain (Comas-Bru and McDermott, 2014;
Moore and Renfrew, 2012). EA/WR features two centers of
action over central Europe and central Russia. During its
positive state, a planetary ridge is located over northwestern
Europe, and this reduces the advection of moist air masses
(Krichak and Alpert, 2005). SCA is particularly active over
northern Europe and triggers atmospheric blocking during
its positive phase (Bueh and Nakamura, 2007). POL repre-
sents the strength of the pressure gradient between the polar
regions and the midlatitudes and thus controls the westerly
circulation, particularly over northern Europe (Claud et al.,
2007). Correlation maps, demonstrating links between these
circulation modes and seasonal precipitation and tempera-
ture, are included in the Supplement (Figs. S1–S4).

Apart from Northern Hemisphere modes, the El Niño–
Southern Oscillation (ENSO) has been suggested to in-
fluence the European hydrology. Significant relations have
been found with precipitation and different discharge indices
(Guimarães Nobre et al., 2017; Mariotti et al., 2002; Steirou
et al., 2017). However, in contrast to the above-described
circulation modes, ENSO does not shape the European cli-
mate and hydrology directly, but rather indirectly through
the regulation of the phase of other large-scale modes, such
as the EA (Iglesias et al., 2014). Other patterns acting
at a smaller scale, such as the Mediterranean Oscillation
(MO) and the western Mediterranean Oscillation (WMO),
have also been related with hydrological variables in Eu-
rope (Criado-Aldeanueva and Soto-Navarro, 2013; Dünkeloh
and Jacobeit, 2003; Martin-Vide and Lopez-Bustins, 2006).
However, such modes seem to have limited importance at the
continental scale.

While the relation between European hydrology and large-
scale circulation has attracted much attention and has been
widely studied, only a few studies have adopted a condi-
tional flood frequency framework for the investigation of
climate–flood interactions. Villarini et al. (2012) conducted
a frequency analysis of annual maximum and peak-over-
threshold discharge in Austria with NAO as a covariate.
López and Francés (2013) examined maximum annual flows
in Spain conditioned on the principal components of four
winter climate modes: NAO, AO, MO and WMO. Still, a
comprehensive study on streamflow extremes at the Euro-
pean scale has not been conducted.

Thus, this study aims at a large-scale investigation of
circulation–streamflow interactions for the entire Euro-
pean continent by adopting a flood frequency framework.
We examine seasonal streamflow maxima from more than
600 gauges covering the entire European continent and par-
ticularly investigate the influence of the five major pressure
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modes that directly affect the European climate: NAO, EA,
EA/WR, SCA and POL. In order to quantify the effect of
important hydro-climatological processes for the streamflow
regimes, we investigate contemporaneous relationships only,
without considering any time lags. We identify regions with
a consistent influence of each particular circulation index in
order to explain the spatial coherence of flood frequency.
The analysis is conducted at a seasonal scale in order to bet-
ter account for the intra-annual variations of the circulation
characteristics and the associated seasonal shift of climate–
streamflow relationships. A Bayesian framework is adopted
for the flood frequency analysis because of its advantages
concerning the quantification and interpretation of uncer-
tainty. Furthermore, prior information about hydrologic ex-
tremes exists in the literature and can be used for inference.

2 Data and methods

2.1 Streamflow data and circulation indices

The time period of our analysis is from 1950 to 2016, de-
fined by the overlap between streamflow data and circula-
tion indices. Daily streamflow data for the European conti-
nent were received from GRDC (Global Runoff Data Cen-
tre). From this dataset, gauges with record lengths of at least
50 years after 1950 and with a catchment area larger than
200 km2 were selected. Small catchments are not considered,
as they may be more prone to local phenomena, which could
blur the large-scale atmospheric influence. In total, 649 sta-
tions covering northern and central Europe with the excep-
tion of Poland are considered. Due to the underrepresentation
of southern Europe, additional data from other sources satis-
fying the abovementioned criteria are included in the analy-
sis. Five time series with monthly maximum discharges were
obtained for Spain and one station with daily discharge was
provided for Portugal. For details about these additional sta-
tions the reader is referred to Mediero et al. (2014, 2015).
Finally, one record with daily streamflow data was provided
for Pontelagoscuro in Italy (Alessio Domeneghetti, personal
communication, 2017). For each station, the maximum value
of mean daily streamflow is derived for the four standard bo-
real seasons: winter (DJF), spring, (MAM), summer (JJA)
and autumn (SON). Seasons with more than 20 % missing
values are not considered. Overall 586 records in winter, 604
in spring, 599 in summer and 597 for the autumn season are
utilized for the analysis.

Time series of monthly circulation indices for the period
1950–2016 were retrieved from the Climate Prediction Cen-
ter (CPC) of the National Oceanic and Atmospheric Ad-
ministration (NOAA) (http://www.cpc.ncep.noaa.gov/data/
teledoc/telecontents.shtml, last access: May 2017). We make
use of the five indices mentioned in the introduction, namely,
the NAO, EA, EA/WR, SCA and POL patterns. Seasonal
mean climate indices are used for the adjustment of the ex-

treme value distribution; however, we also examine whether
the results differ if monthly values (in accordance with the
observed flood date) are considered as covariate. The time se-
ries of the seasonal indices, along with their running mean for
a 10-year window, are shown in Fig. S5. Histograms showing
the distribution of mean circulation indices for each season
are provided in Fig. S6.

2.2 Flood frequency analysis – competing models

The GEV distribution with parameters invariant in time and
with parameters conditioned on the climate indices are fitted
to the seasonal maximum streamflow data. For the climate-
informed models the condition of independent and identi-
cally distributed observations of the classical GEV distribu-
tion is relaxed to include parameters conditioned on time-
varying covariates (Katz et al., 2002). For the two types of
models we use the terms “classical model” instead of station-
ary model and “climate-informed model” rather than “non-
stationary model”. It has been suggested that if covariates
have a stochastic structure and no deterministic component,
the resulting distribution is not truly nonstationary (Monta-
nari and Koutsoyiannis, 2014; van Montfort and van Putten,
2002; Serinaldi and Kilsby, 2015). As our climate covari-
ates have no distinguishable deterministic component (not
shown), it is consequently not clear if they result in non-
stationary models. Here each streamflow gauge is handled
independently and site-specific parameters are derived. Let
Y (t) denote a streamflow observation at time t and Y =

(Y (t1),Y (t2), . . . ,Y (tn)) denote the vector of streamflow ob-
servations at a specific site. Then for the classical case the
model is given as follows:

Y (t) ∼ GEV(θ), (1)

where θ is the vector of length m of (time-invariant) distri-
bution parameters. The classical GEV distribution comprises
m = 3 parameters: a location parameter µ, a scale parameter
σ and a shape parameter ξ .

In the Bayesian framework, the posterior pdf of the param-
eter vector is computed as follows, based on Bayes theorem:

f (θ |Y ) ∝ f (Y |θ)f (θ), (2)

where f (θ) is the prior pdf of distribution parameters and
f (Y |θ) is the likelihood function:

f (Y |θ) =
∏

t

f (Y (t)|θ) . (3)

For the climate-informed distribution, parameters are as-
sumed to be a function hi of the vector of time-varying cli-
mate covariates x(t). In the general case, Eq. (1) takes the
following form:

Y (t) ∼ GEV(θ(t)), (4)
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with θ(t) = (θ1(t),θ2(t), . . . ,θm(t)) the collection of m dis-
tribution parameters at time t , and

θι (t) = hi

(

x (t) ; βi

)

, i = {1, 2, . . . }m. (5)

Here βi is the vector of (internal) parameters used in function
hi (not to be confused with parameters θi).

The climate-informed GEV distribution is a generalization
of the classical GEV distribution. The likelihood function is
then defined as follows:

f (Y |θ) =
∏

t

f (Y (t)|θ(t)) =
∏

t

f
(

Y (t)|h1
(

x(t), β1
)

,

h2
(

x(t), β2
)

, . . . , hm(x(t), βm)
)

. (6)

The function hi , linking the distribution parameters with
climate covariates, is derived by means of a linear regression.
The shape parameter is assumed to be constant as its estima-
tion includes large uncertainties, even under the assumption
of stationarity (Coles, 2001; Papalexiou and Koutsoyiannis,
2013; Silva et al., 2017). A preliminary analysis considering
the effect of a covariate on both the location and scale param-
eter (see Sect. 2.3 below) did not provide very different re-
sults than those for a covariate on the location parameter only
(not shown). Consequently and for reasons of parsimony, we
examine only conditional extreme value distributions with a
time-varying location parameter.

Conditional distributions of only one covariate at a time
are derived, since we are interested in the separate effect of
each individual climate index on flood quantiles. Based on
the abovementioned assumptions concerning model structure
and the form of the function hi , Eq. (5) can be simplified to
the following:

µ(t) = µ0 + µ1x(t), (7)

where µ(t) is the varying location parameter, µ0 the location
intercept, µ1 the location slope and x(t) the single covariate
examined.

Consequently, the conditional GEV distribution comprises
four parameters: scale and shape parameters, and intercept
µ0 and slope µ1 for the location parameter. Since five differ-
ent climate covariates x(t) are investigated, we construct six
different models (one classical and five conditional) for each
station and season. The posterior pdf of parameters in Eq. (5)
for both the classical and conditional model is estimated us-
ing a No-U-Turn Sampler (NUTS) Hamiltonian Monte Carlo
(HMC) approach implemented in Rstan, the R interface to
Stan (Stan Development Team, 2018). NUTS is an extension
to HMC, a Markov chain Monte Carlo (MCMC) algorithm
that avoids the random walk behavior and sensitivity to cor-
related parameters which characterize many MCMC meth-
ods (Hoffman and Gelman, 2014). Stan is a state-of-the-art
platform for statistical modeling and high-performance sta-
tistical computation.

For all covariates and seasons, models are fitted indepen-
dently. No posterior distributions from the classical approach

are used as priors for the climate-informed case. For all
models, noninformative uniform priors are used for the lo-
cation parameter (for both intercept and slope) and for the
scale parameter, since no prior information is available. For
the shape parameter an informative normal distribution with
mean 0.093 and standard deviation 0.12 is used. This distri-
bution is adopted from a global study of extreme rainfall by
Papalexiou and Koutsoyiannis (2013), which, to our knowl-
edge, summarizes an analysis of shape parameters using the
largest number of stations with hydrological data worldwide.
Although rainfall extremes may be characterized by slightly
different shape parameters than those of streamflow, our in-
formative prior is very close to the “geophysical prior” of
Martins and Stedinger (2000), which is often used to restrict
the range of shape parameters based on previous hydrolog-
ical experience (Renard et al. 2013). The latter prior was
not preferred because it is bounded to the interval (−0.5,
0.5), while the distribution of Papalexiou and Koutsoyian-
nis (2013) allows more extreme shape values with a low
probability.

Five chains of 14 000 simulations, with the first half dis-
carded as warmup period, are run for all parameters. Conver-
gence is investigated by the potential scale reduction statistic
R̂ (Gelman and Rubin, 1992). Following Gelman (1996), we
assume convergence for values of R̂ below 1.2. Thinning is
applied to the post-warmup simulations to remove autocorre-
lation. Every 10th value from all chains is kept, leading to a
final sample of 3500 simulations for each model and season.

2.3 Model selection

We apply a two-step methodology to select the optimal
model among the classical and conditional competitors. First,
we assess whether the covariates have a significant effect
on our extreme streamflow models by examining the pos-
terior distribution of the slope µ1 of the location parameters
(Eq. 7). Conditional models are considered significant if the
zero value is not included in the 90 % posterior interval of
the slope parameter (and thus not by means of a significance
test). A second criterion is additionally adopted in order to
select the distribution with the best performance by taking
into consideration that complex models with more parame-
ters tend to fit the data better. The deviance information cri-
terion (DIC) (Spiegelhalter et al., 2002) is chosen for model
selection. The DIC was preferred against two more com-
mon tools, the Akaike information criterion (AIC; Akaike,
1974) and the Bayesian information criterion (BIC; Schwarz,
1978), because it is based on the posterior distribution of the
model parameters and thus includes parameter uncertainties,
while the AIC and BIC are based on maximum likelihood
estimates of parameters.

The deviance, used for the calculation of the DIC, is de-
fined as follows:

D(θ) = −2log(f (Y |θ)), (8)
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where θ is the parameter vector. The DIC is then given by the
following equation:

DIC = D + pD, (9)

where D is the expectation of the deviance with respect to
the posterior distribution, and pD = D − D(θ) is the effec-
tive number of parameters (penalty for model complexity,
following Spiegelhalter et al., 2002). θ is a vector of the ex-
pectation of parameters θ . Models with smaller DIC values
are preferred.

Conditional models satisfying both criteria are preferred to
the classical model. The model comparison is performed in
two steps: first, for each station and season, each climate-
informed competitor is pairwise compared to the classical
GEV distribution. Subsequently, the model with the overall
best performance is identified.

2.4 Conditional flood quantiles

In the classical or stationary approach one can define the n-
year return level as the high quantile of the examined variable
for which the probability of exceedance is 1/n. In this case,
the same probability of exceedance is assigned to the same
events in different years. The concept of return periods can
then be introduced as the reciprocal of the probability of ex-
ceedance of a specific value or return level of the examined
variable (Cooley, 2013). In engineering practice, return peri-
ods are often used to communicate risk and are understood
either as the expected time interval at which the examined
variable exceeds a certain threshold for the first time (aver-
age occurrence interval) or as the average of the time inter-
vals between two exceedances of a given threshold (average
recurrence interval) (Volpi et al., 2015). When the param-
eters of the distribution vary in time, as in the nonstation-
ary or conditional frequency analysis, a different probabil-
ity of exceedance is assigned to different years. In this case,
the concept of return periods becomes less straightforward
to define. Thus, communicating risk by means of probabili-
ties makes more sense (Cooley, 2013). Instead of the classi-
cal return levels the term “effective” return levels has been
introduced (Gilleland and Katz, 2016), which represents the
quantiles of the conditioned distribution under consideration
of a particular value of the covariate during a given year.

Here we assess whether the consideration of climatic
drivers leads to a significant alteration of flood “effective”
return levels or conditional quantiles in individual years.
Differences of flood quantiles during years with high and
medium values of the considered circulation indices are
quantified. Since the model is linear, the effect of high and
low covariate values on the extreme value distribution quan-
tiles is approximately symmetric (it would be symmetric if
the seasonal indices had a symmetric distribution around zero
– see Fig. S6) and thus low covariate values are not consid-
ered. The 95th and 50th quantile of the considered climate
index are chosen as high and medium index values, respec-

tively. Index quantiles are calculated for the entire period
1950–2016.

From the No-U-Turn sampling after thinning, 3500 post-
warmup sets of parameters are obtained, each corresponding
to a flood quantile (for a given probability of exceedance).
The median value of all 3500 flood quantiles is chosen as
a point estimate. The median estimate was preferred to the
maximum a posteriori (MAP) estimate because it is more
representative of the posterior distribution. Based on this ap-
proach, the percent relative difference Yp (%) of the two
flood quantiles for a particular probability of exceedance p,
corresponding to the high and medium climate index quan-
tiles, respectively, is calculated as follows:

Yp =
yp, h − yp,m

yp,m

, (10)

where yp, h is a flood quantile for the probability p, incor-
porating a high value of the considered climate index (95th
quantile). yp,m is the quantile value for the same probabil-
ity p under consideration of the medium (50th quantile) cli-
mate index. The analysis is performed for probability of ex-
ceedance of 0.02 (corresponding to the 50-year return period
of the classical case).

2.5 Uncertainty analysis

In the previous chapters an automatic methodology for the
choice of an adequate model and a discussion of flood quan-
tiles for different covariate values is presented. However, a
visual comparison of point estimates and uncertainty inter-
vals of the classical and conditional models can be useful,
since it illustrates the differences but also the plausibility and
possible drawbacks of the competing models. For this rea-
son, we plot the time series of flood quantiles for a probabil-
ity of exceedance of 0.02 for selected gauges and covariates
based on both the classical and the climate-informed extreme
value distribution. As discussed in the previous section, the
median flood quantile for a probability of exceedance of 0.02
is chosen as point estimate (median quantile curve). Uncer-
tainty of flood quantiles is quantified by means of posterior
or credibility intervals, which are the Bayesian equivalent to
frequentist confidence intervals, although there exist differ-
ences in the interpretation of the two types (Renard et al.,
2013; Gelman et al., 2013).

3 Results

3.1 Spatial patterns of competing models

For all seasonal indices climate-informed models are pre-
ferred over the classical distribution for a large number of
stations; percentages of preferred models (based on both the
DIC and the significance of the slope of the location param-
eter) are shown in Table 1 and spatial patterns are mapped
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Table 1. Percentage of stations with climate-informed fits preferred
to the classical GEV distribution model. Indicated is the result of the
pairwise comparison of each covariate with the classical model and
the percentage of preferred fits for each covariate when all models
are compared (in brackets). Results are shown per season and for
mean seasonal covariates.

Index Winter Spring Summer Autumn

NAO 46 (28) 19 (10) 13 (8) 31 (24)
EA 29 (20) 32 (26) 18 (11) 19 (13)
EA/WR 24 (10) 3 (1) 10 (7) 20 (13)
SCA 26 (11) 14 (12) 10 (6) 15 (11)
POL 24 (9) 14 (11) 7 (6) 13 (5)
All indices (77) (60) (38) (66)

Table 2. Same as Table 1 but for monthly covariates at the same
month as the seasonal streamflow extremes.

Index Winter Spring Summer Autumn

NAO 33 (28) 16 (12) 13 (9) 13 (8)
EA 27 (18) 15 (12) 15 (10) 22 (18)
EA/WR 26 (14) 14 (9) 13 (11) 17 (12)
SCA 15 (8) 17 (12) 12 (9) 13 (9)
POL 7 (4) 16 (13) 6 (4) 10 (7)
All indices (72) (58) (43) (54)

in Figs. 1–2. The climate-informed fits form spatial clusters
that resemble the correlations between the climate indices
and average seasonal precipitation (Figs. S1–S4), while a re-
lation with the correlations of seasonal mean temperature is
not straightforward. Particularly for NAO a dipole pattern is
evident in winter, with a positive influence on extreme dis-
charge in northern and central Europe and a negative rela-
tionship south of the Alps (Fig. 1). The intra-annual shift of
the NAO pressure centers is well captured. The positive influ-
ence of NAO on flood magnitudes during summer is only de-
tected for northern Scandinavia (Fig. 2). Similar dipole struc-
tures, resembling the correlations with seasonal mean precip-
itation, are found for other indices. However, there are some
deviations from the precipitation patterns. For example, con-
tradicting results are found in Scandinavia during spring and
summer for the SCA index. Scandinavian rivers usually have
small catchments and are fed by snowmelt in particular in
spring; subsequently, in this area, both temperature and pre-
cipitation are important for runoff generation. An opposite
sign between correlations with precipitation and the slope of
the location parameter can also be found during autumn in
northeastern Germany for the EA index.

NAO is the covariate with the highest number of signifi-
cant fits in winter (46 %) and autumn (31 %) and EA in spring
(32 %) and summer (18 %). High percentages of preferred
climate-informed models are also found for EA and SCA in
winter, which is the season where most indices are charac-
terized by their strongest influence on the European climate

(Table 1). The worst overall results are found for EA/WR in
spring (3 %) and POL in summer (7 %). It can be argued that
these two latter cases could occur solely by chance or due
to spatial correlation of nearby flood time series; however,
results are coherent in space and cover large regions, which
suggests a real influence of the circulation modes on the lo-
cation parameter of the extreme value distributions, restricted
though to certain subregions of Europe.

Similar spatial patterns are obtained from the same anal-
ysis if monthly covariates during the month of the seasonal
discharge peaks are examined (Figs. S7–S8). Clusters of sta-
tions with positive or negative slopes of the location pa-
rameter agree with those for seasonal indices; however, in
most cases the percentages of preferred fits are lower for the
monthly covariates, with EA/WR in spring being an excep-
tion. In particular, the role of NAO in winter and autumn and
of EA during the rest of the seasons is less pronounced in
the monthly-scale analysis. NAO and SCA are the covariates
with the highest number of preferred fits in spring and EA
together with EA/WR in summer and autumn (Table 2). Re-
garding the spatial patterns of preferred fits, deviations from
those for seasonal covariates can be found for EA/WR, SCA
and POL during spring and summer.

For all indices examined, a percentage of stations between
5 % and 13 %, depending on the season and the covariate, are
characterized by lower DIC for the climate-informed model,
although the slope of the location parameter is not signifi-
cant (illustrated as yellow points in Figs. 1 and 2). Only a
few station records, up to three per season and index (not
shown in Figs. 1 and 2), are characterized by higher DIC
value for the climate-informed model without showing a sig-
nificant slope. These results indicate that DIC is a weaker
criterion for model selection than the slope significance at
10 % level.

In order to illustrate the spatial structure of the best mod-
els, the preferred model (classical or climate-informed) is
mapped in Figs. 3 and 4 for each station for seasonal co-
variates. Spatial patterns do not resemble the pattern of sig-
nificant fits for separate indices (Figs. 1, 2), since the influ-
ence of the selected climate modes on flood frequencies is
overlapping for some regions and some of the indices are
correlated for particular seasons (Table S1). Winter (sum-
mer) is the season with the highest (lowest) overall percent-
age of preferred climate-informed models: 77 % and 38 %,
respectively. In winter, NAO is the most influential climate
mode, being preferred over the other modes for 28 % of the
gauges. The largest influence of NAO on flood frequencies
is detected in central Europe, Great Britain, parts of Scandi-
navia and the Iberian Peninsula (Fig. 3). The first three re-
gions also show a high fraction of SCA-influenced models,
which points towards a joint effect of NAO and SCA during
winter. The two indices are significantly correlated during
this season (Table S1). EA is identified as the best covariate
in winter for Great Britain. In spring an expansion of the EA
influence towards central Europe is detected. The NAO in-
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Figure 1. Results comparing the climate-informed and the classical GEV models for all covariates examined for the winter and spring
season. Nonsignificant models preferred only by the DIC (yellow points) are plotted on top of stations for which climate-informed models
were not chosen by any of the two criteria (grey points). Preferred climate-informed models chosen by both criteria (blue and red triangles)
are illustrated on top of the other models so that they can be better distinguished.
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Figure 2. Same as Fig. 1 but for the summer and autumn seasons.
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Figure 3. Best overall models among the five climate-informed and classical GEV distribution tested for the winter and spring season. Mean
seasonal covariates are examined.

fluence is shifted to the south during the transition seasons
(spring and autumn) and is completely dissolved in summer.
Patterns for SCA are heterogeneous throughout the year. The
same results but for monthly covariates are shown in Figs. S7
and S8. Spatial patterns resemble those for seasonal covari-
ates. Percentages of preferred climate-informed models are
included in Tables 1 and 2.

3.2 Conditional quantiles and uncertainty analysis

In the previous section it is shown that models with monthly
covariates do not outperform those with seasonal covariates
for most indices and seasons. Hence, quantiles of climate in-
dices are calculated at the seasonal scale only (Table 3). Fig-
ures 5 and 6 show the relative differences of seasonal flood
quantiles for a probability of exceedance of 0.02 between a
(hypothetical) year with a climate index value equal to the
95th index quantile and a year with an index value equal to
the median. For a probability of exceedance of 0.02, rela-
tive differences higher than 20 % and up to 22 % are detected
in winter for NAO. For the rest of the seasons, maximum
relative differences are lower than 20 % with highest values
for EA/WR in autumn (marginally below 20 %). In spring
and summer the highest value is considerably lower, between

11 % and 13 % for NAO and SCA in spring and EA and SCA
in summer.

A difference of 5 %–10 % is quite common for NAO in
winter. For example, a station with a positive slope of the lo-
cation parameter and a probability of exceedance of 0.02 for
a maximum seasonal discharge value of 600 m3 s−1 during
years characterized by a medium NAO index has an effective
return level between 630 and 660 m3 s−1 during years with
a highly positive NAO state. Particularly for Great Britain
and Scandinavia, high relative differences, positive or neg-
ative, are found in winter for different indices. Differences
of extreme discharge higher than 10 % are characteristic for
variations of the EA index in southeastern Britain and for
EA/WR in Norway. Some stations with high differences are
also found in Norway and northern Britain for NAO and SCA
in spring. Summer is characterized by low relative differ-
ences, below 5 % for most stations. On the contrary, in au-
tumn clusters of stations with medium to high differences,
positive or negative (higher than 5 % and locally exceeding
10 %), are found in Scandinavia for NAO and EA/WR; in all
of northern Europe for EA; and in the Alpine region, south-
ern Great Britain and Norway for SCA.

The high relative differences of flood quantiles could
partly reflect differences in catchment size or unreasonable
posterior values of the shape parameter. A link with catch-
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Figure 4. Same as Fig. 3 but for the summer and autumn seasons.

Table 3. Seasonal quantiles of the five climate indices: median and the 95th quantile (in parentheses) are provided.

Index Winter Spring Summer Autumn

NAO −0.26 (1.04) −0.15 (0.84) 0.02 (1.14) 0.17 (0.96)
EA −0.37 (1.07) −0.13 (0.70) −0.07 (0.80) −0.19 (0.69)
EA/WR −0.19 (0.78) −0.04 (0.78) 0.15 (1.23) 0.11 (1.29)
SCA 0.21 (1.25) 0.05 (0.90) 0.09 (1.33) 0.21 (1.44)
POL 0.11 (1.44) 0.07 (0.90) −0.11 (0.94) −0.02 (0.91)

ment size was, however, not found (not shown). Posterior
shapes for all seasons and indices were further analyzed.
Summary statistics of the median shape from the posterior
distribution of each fitted model are given in Table 4. Lit-
tle deviation is observed for different models (classical or
climate-informed) during the same season but some inter-
season variation is present. No unreasonable values are ob-
served, and thus we assume that the use of an informative
prior distribution for shape adequately restricts the posterior
distributions to reasonable limits.

The results for three selected gauges with high relative
differences Y0.02 are presented in detail. The selected sta-
tions cover different characteristic combinations with regard
to the investigated season and the considered covariate. The
time series of discharge values with a probability of ex-
ceedance of 0.02 are illustrated for the classical case and

the climate-informed case for the three indices with the low-
est DIC (Fig. 7). Conditional quantiles are calculated on a
year-to-year basis, based on the observed values of the se-
lected climate indices. Details about the streamflow gauges
and the climate-informed fits are given in Tables 5 and 6,
respectively. Results show that the conditional and uncondi-
tional point estimates and uncertainty bounds can differ con-
siderably, particularly for models with a high relative dif-
ference Y0.02 and a low DIC (subplots A1, B1 and C1 in
Fig. 7). Obviously results from the conditional models vary
with time. For example, for the station Asbro 3 in Sweden,
strongly different results are obtained by the classical and the
NAO-conditional model in winter, particularly for the period
1960–1970, which was dominated by negative NAO condi-
tions and reduced winter precipitation amounts over north-
ern Europe. The same applies for the station Teston in Great
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Table 4. Summary statistics of median posterior shape parameter of all stations examined. Statistics are taken over all models for one season.
In the parentheses the maximum deviation of all the models fitted (classical and climate-informed) is provided.

Winter Spring Summer Autumn

Min −0.420 (0.072) −0.365 (0.057) −0.303 (0.058) −0.303 (0.074)
Q5 −0.137 (0.013) −0.104 (0.007) −0.055 (0.009) −0.057 (−0.010)
Q25 −0.008 (0.007) 0.002 (0.010) 0.062 (−0.005) 0.045 (−0.06)
Median 0.062 (0.006) 0.066 (0.006) 0.165 (0.005) 0.127 (−0.008)
Mean 0.063 (0.003) 0.066 (0.005) 0.165 (0.002) 0.125 (−0.008)
Q75 0.133 (−0.006) 0.133 (−0.005) 0.271 (−0.005) 0.200 (−0.010)
Q95 0.262 (−0.014) 0.226 (−0.009) 0.385 (−0.006) 0.316 (0.009)
Max 0.461 (−0.053) 0.381 (−0.019) 0.537 (−0.020) 0.527 (−0.031)

Figure 5. Percentage of the relative difference of the streamflow for an exceedance probability of 0.02 between a (hypothetical) year with a
climate index value equal to the 95th quantile and a year with an index value equal to the median index. Results are shown for winter and
spring and seasonal mean covariates.

www.hydrol-earth-syst-sci.net/23/1305/2019/ Hydrol. Earth Syst. Sci., 23, 1305–1322, 2019



1316 E. Steirou et al.: Climate influences on flood probabilities across Europe

Table 5. General information about selected sites shown in Fig. 7. Ref. code is the number of the subplot of Fig. 7.

Ref. Station Country GRDC Latitude Longitude Catchment
code name no. size (km2)

A ASBRO 3 Sweden 6233100 57.240 12.310 2160.2
B TESTON United Kingdom 6607851 51.251 0.447 1256.1
C BULKEN Norway 6731200 60.630 6.280 1102.0

Table 6. Climate-informed results as shown in Fig. 7. Ref. code is the number of the subplot of Fig. 7. Mean seasonal covariates for the same
season as streamflow extremes are examined. dDIC is the difference from the DIC value of the classical distribution. Y0.02(%) is the percent
relative difference of streamflow with exceedance probability 0.02 for the 95th quantile of the covariate (y0.02, h) and of streamflow with
exceedance probability 0.02 for the median (y0.02,m). The sign of the slope is reported if it is significantly different than zero at the 10 %
significance level.

Ref. Season Covariate dDIC Slope Y0.02 y0.02,m y0.02, h

code (%) (m3 s−1) (m3 s−1)

A Winter NAO −22.9 Positive 17.7 242.7 285.6
SCA −4.3 Negative −7.9 255.3 235.2
POL −0.5 Nonsignificant – – –

B Winter EA −9.4 Positive 14.7 260.5 299.0
POL −4.6 Negative −12.0 273.8 241.0
EA/WR −4.2 Negative −8.5 276.8 253.3

C Autumn SCA −15.5 Negative −15.8 613.7 516.8
EA/WR −5.9 Negative −11.2 615.4 546.0
EA −3.6 Positive 7.7 601.6 648.0

Britain during the period 1960–1980, if EA is considered as a
covariate. These results show that the climate-informed mod-
els can modulate the estimated flood risk for single years or
longer periods and thus substantially deviate from the esti-
mation based on the classical distributions. For models char-
acterized by small relative differences or insignificant slopes
of the location parameter (subplots A3, B3 and C3), condi-
tional uncertainty bounds tend to converge to a straight line
resembling the classical case. The classical case is theoreti-
cally a subcase of the climate-informed model. However, the
two models are fitted independently and the two intervals do
not always overlap.

The uncertainty bounds of the climate-informed fits can be
narrower or wider than those of the classical model. They are
also asymmetric, contrary to uncertainty bounds that result
from a method using a normal approximation. Asymmetric
intervals are associated with the shape parameter of the GEV
distribution and are not uncommon (see for example Zeng
et al., 2017). The range of uncertainty bounds reflects an
interplay between model complexity and the additional in-
formation provided by the more complex models. In Fig. 7,
uncertainty bounds are narrower in the case of the “best”
conditional models (e.g., subplot A1). Uncertainty increases
when extrapolations are made towards high and low index
values. This can be more easily observed in Fig. 8. For the
classical case, the range is about 94 m3 s−1. For the climate-

informed case and NAO = 0 (close to its median value) the
range is around 70 m3 s−1. The range increases to 74 m3 s−1

for NAO = 1 and to 80 m3 s−1 for the most extreme observed
NAO value (NAO = −2.1). For a NAO value around 3/ − 3
the range of uncertainty bounds reaches that of the classical
model.

4 Discussion and conclusions

This study explored whether a climate-informed flood fre-
quency analysis provides insights and can improve the esti-
mation of flood probabilities at the European scale. A site-
specific model using a Bayesian framework was developed,
and five Euro-Atlantic circulation modes were investigated
as potential covariates: the North Atlantic Oscillation (NAO),
the east Atlantic pattern (EA), the east Atlantic–western Rus-
sian pattern (EA/WR), the Scandinavia pattern (SCA) and
the polar–Eurasian pattern (POL). Streamflow was analyzed
at a seasonal timescale in order to account for the variable in-
fluence of the circulation modes on the European climate dur-
ing different seasons of the year. Covariates were averaged
and examined at both seasonal and monthly scales, contem-
poraneous to the season or month of the seasonal streamflow
maxima, respectively.

The developed climate-informed models were compared
to the classical GEV distribution with time-invariant pa-
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Figure 6. Same as Fig. 5 but for the summer and autumn seasons.

rameters. For most seasons and covariates investigated, the
climate-informed models were preferred over the classical
GEV distribution for a high percentage of stations (around
20 % on average), with best results found in winter for NAO
and EA, in spring for EA, and in autumn for NAO (Table 1).
Results were shown to be coherent in space, indicating that
certain regions are influenced by particular circulation modes
(Figs. 1–4). In winter 77 % of the stations were found to be
influenced by one of the climate modes, which indicates high
potential for an improvement of flood probability estimations
by including climate information in extreme value statistics.
On the contrary, less than half of the stations examined were
significantly affected by at least one of the five large-scale

indices during summer season, indicating a rather convective
and nonpredictable precipitation regime (Table 1).

Based on the variability of the circulation indices, we iden-
tified regions that are characterized by preferred climate-
informed fits and by steep slopes of the location parameter.
For models with significant slopes, variations of the climate
indices lead to highly varying flood quantile estimations for
the same probability of exceedance. Particularly for north-
western Scandinavia and the British Isles, variations of the
climate indices result in considerably different extreme value
distributions and thus highly different flood estimates for in-
dividual years (Figs. 5–6). This difference in estimates could
be partly a result of unreasonable posterior values of the
shape parameter; however, the use of an informative prior
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Figure 7. Annual maximum discharge time series (A4, B4, C4) and climate-informed quantiles (A1–A3, B1–B3, C1–C3) with credibility
intervals for an exceedance probability of 0.02 and for three selected gauges (Tables 5 and 6). Climate-informed quantiles are compared with
those of the classical GEV distribution. The three best climate-informed models based on the DIC are shown for each site, with increasing
DIC from top to bottom.

distribution for shape adequately restricts the posterior dis-
tributions to reasonable limits. Plots of extreme streamflow
under consideration of a probability of exceedance of 0.02
indicate that the deviation between the classical and climate-
informed analysis concerns not only single years but can also
persist for longer time periods (Fig. 7), which reflects the
decadal-scale variability of NAO and other large-scale circu-
lation indices (Fig. S5).

Although the circulation indices examined are character-
ized by high intra-seasonal variability, the seasonally aver-
aged indices provided in most cases better fits compared
with monthly values (Tables 1–2). This should be empha-
sized, since extreme precipitation events are most likely more
closely related to monthly circulation states, which better

represent the moisture fluxes into the target domain. On the
contrary, the catchment wetness before the flood event is
likely to be influenced by the seasonal mean circulation and
the associated precipitation sums. Hence, our result suggests
that the skill of climate-informed extreme value distributions
is to a significant extent a consequence of the important link
between catchment wetness and flooding. Thus we assume,
in line with recent studies (Blöschl et al., 2017; Merz et al.,
2018; Schröter et al., 2015), that in many regions of Europe,
catchment wetness plays an important role for flood genera-
tion.

For the selection of the best model among the classical
and climate-informed models, two criteria were adopted: the
DIC and the significance of the slope of the location param-
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Figure 8. Comparison of climate-informed and classical streamflow
quantiles for station A (see Fig. 7 and Tables 5 and 6 for more de-
tails), an exceedance probability of 0.02 and NAO as covariate of
the climate-informed model. The legend is the same as in Fig. 7.
Observed streamflow is indicated with black dots.

eter µ1. For all indices and seasons, the DIC favored the
climate-informed models over the classical distribution for a
larger number of stations compared to the slope significance.
DIC has received some criticism for not adequately penaliz-
ing complex models and tending to choose overfitted mod-
els (Silva et al., 2017; Spiegelhalter et al., 2014). Our results
show that at least compared to the slope significance, DIC
is a weaker criterion for model selection. A criterion com-
prising a higher penalty term for model complexity could al-
ternatively be adopted. A more conservative version of DIC
has been proposed by Ando (2011) but is not commonly used
until today (Silva et al., 2017).

The described methodology can be complemented in sev-
eral ways.

a. Regional framework. In this study, a local, site-specific
flood frequency model was developed. This model al-
lowed spatial coherence in relations between stream-
flow extremes and large-scale atmospheric patterns to
be identified. However, a shortcoming of this method-
ology is the high uncertainty of streamflow estimates
for high probabilities of exceedance (corresponding for
example to the 100- or 200-year flood). Instead of a lo-
cal framework, a regional framework can alternatively
be implemented. The latter, by considering all available
streamflow information in a region, decreases uncer-
tainty and offers the possibility of improving streamflow
quantile estimation.

b. Alternative models. A linear relationship was assumed
between streamflow extremes and the large-scale at-
mospheric indices. This is a simplification of reality
and some relations may be over- or underestimated
due to existing nonlinearities in the climate–streamflow
system. More complex models, in particular nonlinear

models, would also be possible candidates for describ-
ing the relation between climate indexes and flood prob-
abilities. However, with increasing model complexity,
the chances of model overfitting also increase. In this
study we assumed a symmetric influence of the positive
and negative phases of the climate indices. However, an
asymmetric relation may better describe the effect of
certain climate modes on streamflow extremes. For ex-
ample, Sun et al. (2014) used an asymmetric piecewise-
linear regression to account for the different effects of El
Niño and La Niña on rainfall extremes in southeastern
Queensland, Australia. Furthermore, we also assumed a
varying location parameter and constant scale parame-
ter. A constant coefficient of variation as in Serago and
Vogel (2018) would also be possible and as parsimo-
nious as our model. In this case, a varying scale param-
eter linked to the location parameter would need to be
implemented.

c. Number of covariates. Single covariate models were de-
veloped, focusing on the separate effect of each individ-
ual climate mode. The methodology can be extended
to a model considering several covariates at the same
time. In that case, dependencies between the covariates,
if existent, should be taken into consideration. López
and Francés (2013) overcame this problem by using
the principal components of climatic indices as covari-
ates for the flood frequency analysis. This, however, in-
creases the model complexity considerably and thus the
chances of model overfitting. This needs to be consid-
ered in developing models with multiple covariates.

d. Contemporaneous and lagged relationships. In this pa-
per we considered contemporaneous relationships be-
tween streamflow extremes and pressure modes that di-
rectly shape the European climate and hydrology. How-
ever, lagged relationships may prove more useful for
flood risk management and the (re-)insurance industry,
since they would allow forecasts of temporal variable
flood quantiles for the following month or season. The
contemporaneous streamflow–covariate setup presented
here can be used, together with a seasonal prediction
of indices, for an ahead-of-season forecast of stream-
flow quantiles. In this case covariate uncertainty must
also be considered. A second possibility is to operate
the presented model in a forecast mode under consider-
ation of different time lags between selected covariates
and observed streamflow maxima. Our results suggest
that catchment wetness has an important role in shaping
seasonal maximum streamflow. In a follow-up study,
we will systematically test the skill of various predic-
tor variables, describing both the climate and catchment
state, in forecasting runoff extremes in Europe.
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