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Abstract. It is well known that output from climate mod-

els cannot be used to force hydrological simulations with-

out some form of preprocessing to remove the existing bi-

ases. In principle, statistical bias correction methodologies

act on model output so the statistical properties of the cor-

rected data match those of the observations. However, the

improvements to the statistical properties of the data are lim-

ited to the specific timescale of the fluctuations that are con-

sidered. For example, a statistical bias correction methodol-

ogy for mean daily temperature values might be detrimental

to monthly statistics. Also, in applying bias corrections de-

rived from present day to scenario simulations, an assump-

tion is made on the stationarity of the bias over the largest

timescales. First, we point out several conditions that have to

be fulfilled by model data to make the application of a statis-

tical bias correction meaningful. We then examine the effects

of mixing fluctuations on different timescales and suggest an

alternative statistical methodology, referred to here as a cas-

cade bias correction method, that eliminates, or greatly re-

duces, the negative effects.

1 Introduction

One of the greatest challenges facing modern society in a

changing climate is the management of risk associated with

hydrological extremes, namely floods and droughts (Voros-

marty et al., 2000; Oki and Kanae, 2006). Risk is a concept

expressed in statistical terms, hence, proper management of

risk tied to future events must be informed by statistically

correct forecasts. Numerical simulations are the principal

tool in climate forecasting and hydrological models are used
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to obtain simulations of future components of the hydrolog-

ical cycle. Ordinarily, output fields from climate models, re-

gional or global, are used to force future hydrological simu-

lations. To varying extent, all numerical models suffer from

systematic error, i.e. the difference between the simulated

value and the observed. Bias is defined as the time indepen-

dent component of the error. It is well known that some form

of pre-processing is necessary to remove biases present in the

simulated climate output fields before they can be used for

this purpose (Sharma et al., 2007; Hansen et al., 2006; Chris-

tensen et al., 2008). However, bias correction cannot cor-

rect for incorrect representations of dynamical and/or phys-

ical processes and, as will be detailed in this article, model

data must provide an adequate representation of the physi-

cal system from the outset, to make statistical bias correction

applicable.

In the simplest formulations of bias correction only the

changes in a specific statistical aspect of the simulated fields

is used. The change is applied directly to present day ob-

servations to obtain a field which is then used to force the

hydrological models. Often the change in mean value or the

variance is employed. This is tantamount to correcting the

observations with an additive or multiplicative gridded con-

stant. More advanced bias correction methodologies correct

for more than one explicitly chosen statistical aspect (Le-

ander and Buishand, 2007 and applied by Hurkmans et al.,

2010; Widmann et al., 2003; Schmidli et al., 2006).

Hydrological processes depend on the entire distribution

function of precipitation intensity and temperature. For ex-

ample, extreme hydrological conditions are often caused by

unusual precipitation amounts or high temperatures. Persis-

tent heavy precipitation over several days can lead to floods

while the absence of precipitation along with high tempera-

tures is often the cause of drought. Hence, improvements on

simple bias correction methods can be made when adjusting

the entire probability density function (pdf) of the simulated
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fields to that of the observations. Consequently, adjusting

the likelihood of the occurrence of a given magnitude of

daily precipitation or temperature, allows a more adequate

representation of the risk of flood and drought by the cor-

rected data (Wood et al., 2002; Hay and Clark, 2003; Dobler

and Ahrens, 2008; Piani et al., 2010a,b). These methods are

also sometimes referred to as “quantile mapping” (Deque,

2007), “histogram equalization” and/or “rank matching”. A

recent review is given by Maraun et al. (2010). In Piani et al.

(2010a) daily precipitation and temperature fields were cor-

rected by fitting probability density functions to the mod-

eled and observed data. A mapping of the corresponding

fit-coefficients was then defined. The method was developed

and tested on distinct periods within the control period. In Pi-

ani et al. (2010b) the method was refined by first sub-dividing

the climatological year into monthly segments and perform-

ing bias-corrections within each segment separately. Also,

the method was improved by employing transfer functions

(TFs) to map modeled to observed quantities directly, which

reduces the number of required parameters.

While these existing approaches do offer a means of equal-

izing the statistical properties of modeled and observed cli-

mate data, they do not take into account that oscillations on

different timescales are caused by disparate physical mech-

anisms. When a bias correction is performed where all data

are grouped into one joint dataset, the fluctuations on differ-

ent timescales are mixed. This can blur the interpretation for

future scenario corrections. Therefore, in the current study

we propose a modification of the existing methodology to

separate different timescales by performing a cascade of bias

corrections.

In Sect. 2 we present the general methodology of the sta-

tistical bias correction and outline some possible obstacles.

In Sect. 3 actual model and observational data are used to

probe to what extent these obstacles are relevant. In Sect. 4

we offer an improvement of the method by producing a cas-

cade of bias corrections. Section 5 features a more general

discussion on bias correction methodologies and Sect. 6 con-

cludes.

2 Statistical bias correction

Statistical bias correction (SBC) is a mathematical procedure

(a functional) that maps the probability density function (pdf)

of model data onto that of the observations:

TF (xmod) = F−1
obs (Fmod (xmod))

where Fobs (Fmod) is the cumulative distribution function of

the observed (modeled) data xobs (xmod). Hence, in general

it is an operation that acts on all moments of the distribution.

In this sense, SBC is not a model of the physical world in

itself. It completely relies on information being contained in

the climate model data albeit with a systematic discrepancy

from the observational data. SBC can hence not make up

Fig. 1. Two possible options for performing a statistical bias cor-

rection on the distribution of the variable x in arbitrary units; Heavy

(thin) lines are control (scenario) period data; Solid (dashed) lines

are observed (modeled) data; solid straight line represents the lin-

ear transfer function. Note that in (a) the climate change signal is

enhanced by applying the bias correction (1µcor > 1µ) while in

(b) it is not (1µcor = 1µ).

for fundamental qualitative flaws of the climate model. To

conceptually illustrate the procedure, in the following sec-

tions we repeatedly make reference to a bias correction of a

given normally distributed climate variable x with mean µ

and standard deviation σ . In the case of normal distributions

of daily data, a perfect bias correction need only adjust the

first two moments of the distribution. To construct a map-

ping between the observed and the modeled data, a transfer

function is derived (as described in Piani et al., 2010b).

2.1 Construction of transfer functions

In Fig. 1 the TF is shown for the simple Gaussian exam-

ple. In this case, the control period (heavy lines) means and

standard deviations are µmod,con = 1, µobs = 4, µmod,sc = 2,

σmod,con = σmod,sc = 1, σobs = 2 where the subscripts mod

(obs) indicate model (observations), and con (sc) refer to

the control (scenario) period. Hence, the slope of the TF is

the ratio of the standard deviations of observed and modeled

data, namely σobs/σmod,con. This factor stretches the distri-

bution of modeled data to match the width of the observed.

In the case of normal distributions, the TF is always linear

and the corrected mean µcor
mod and variance σ cor

mod are

µcor
mod,sc = µobs +

σobs

σmod,con

(

µmod,sc − µmod,con

)

(1)

σ cor
mod,sc =

σobs

σmod,con
σmod,sc. (2)

Such TFs are derived using observational and model data of

the same control period, hence a period of known boundary

conditions, such as carbon dioxide concentrations. Once the

TF is computed, it can be used to produce bias corrected data

for the future (scenario) model run, where observational data

are not available. To apply the bias correction to a modeled
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time series, for each individual value of the model data, the

transfer function is used to map this value onto a modified

(bias corrected) value. A more detailed description of the

method is available from Piani et al. (2010b).

As the observed data have a larger standard deviation than

the model data (Fig. 1a), the slope of the TF becomes greater

than 1. The original model data are hence stretched, both

in the control and scenario period. We call the change in

the distribution mean 1µ ≡ µsc −µcon between the control

and scenario period the mean climate change signal. In this

case, the bias correction leads to an increase in the mean cli-

mate change signal from 1µ = 1 to 1µcor = 2 after the bias

correction is applied. Hence, the bias correction has caused

a modification in the model produced mean climate change

signal.

Another option to correct the data would be to apply dif-

ferent types of corrections to the mean and to the standard

deviation. In Fig. 1b we show the same case as in Fig. 1a, but

the mean is corrected by simply adding the mean uncorrected

climate change signal produced by the model to the original

observed mean. The standard deviation is adjusted as be-

fore. The correction is still a two-parameter correction, with

one parameter multiplicatively adjusting the variance and the

other additively adjusting the mean.

To define the TF, one could equally well choose other fluc-

tuations instead of daily fluctuations, for example seasonal

fluctuations. In the case of temperature, seasonal fluctuation,

similar to diurnal fluctuations, are caused – directly or indi-

rectly – by the changes in the solar radiance and could be

seen as a response of the system to such changes in the en-

ergy budget. However, climate change is usually assumed

to be due to changes in boundary conditions, which bring

about the greenhouse effect. Greenhouse gases – such as car-

bon dioxide – capture long-wave radiative energy emitted by

Earth.

In the following, a simple example is given to demon-

strate the consequences of choosing a certain timescale at

which statistics are produced. Let us take model and observa-

tional data with matching pdfs of monthly mean data. How-

ever, take the day-to-day variability of the model to be larger

than that of the observations. We exemplify this situation in

Fig. 2 where we show synthetic data sampled randomly from

Gaussian distributions. Consequently, the histograms of the

daily data (right column of Fig. 2) have significantly different

widths. If a TF were constructed from these data, the slope

of the line in Fig. 1a would be greater than unity and exag-

gerate the variance in the monthly means for both the control

and scenario period. The choice of day-to-day fluctuations

in developing the bias-correction would consequently lead to

vastly different results than the alternative choice of monthly

mean statistics.

Hence, it is important to note that a bias correction mixing

statistics that occur at different timescales may lead to un-

wanted results. In Sect. 3 we discuss how strong such effects

are in actual model and observational data.

Fig. 2. Example of modeled – (a), gray – and observed – (b), gray

– time series of daily data, monthly means indicated by heavy black

lines; Panels on the right are normalized histograms of the daily

time series.

3 Bias correction with GCM data

An actual bias correction is now performed with daily data

from a GCM and global observational data. The GCM is

the Max Planck Institute for Meteorology ECHAM5/MPI-

OM model (Roeckner et al., 1999; Jungclaus et al., 2006).

We use the data generated for the fourth assessment report

of the Intergovernmental Panel on Climate Change (IPCC).

While this GCM is a state-of-the-art global climate model,

not all physical processes present in the real system can be

captured. In fact, in some regions of the globe fundamen-

tal misrepresentations are likely, especially when performing

one-to-one comparisons between model gridboxes and ob-

servational data. Such comparisons are especially misleading

when processes have small spatial extent – e.g. in the case of

storm track patterns. Also, the representation of the timing

and frequency associated with the El Nino Southern Oscil-

lation phenomenon may not be reproduced adequetely at a

fundamental level. Global observational data are taken from

the dataset synthesized within the EU-WATCH (WATer and

www.hydrol-earth-syst-sci.net/15/1065/2011/ Hydrol. Earth Syst. Sci., 15, 1065–1079, 2011
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Fig. 3. Temperature bias correction data for ECHAM5 corrected using EU-WATCH forcing data for the years 1960–1999 for Decem-

ber: Improvement in standard deviation between original and bias corrected model (negative values mean improvement); (a), daily values;

(b), monthly mean values.

global CHange, http://www.eu-watch.org) project, which is

sometimes referred to as WATCH forcing data (WFD, Wee-

don et al., 2010) in the following. This dataset is a combina-

tion of monthly observed data and daily reanalysis data and

is taken as the best guess approximation to actual observa-

tions that is available for the globe and for several decades.

Both datasets provide overlapping data for the 40-year period

from 1960 to 1999.

3.1 Temperature bias correction

For temperature, we have performed a bias correction for

this period using the linear transfer function method as de-

scribed in Sect. 2 and in Fig. 1a. In the following we will

refer to this as the standard bias correction. Hence, within

each gridbox, for every month we group all available data

into one joint dataset (say, all Januaries from 1960 to 1999

yielding 1240 daily values) and perform a mapping of the

statistical properties of the model data to those of the ob-

servational data. The bias correction – by construction – will

make the mean and the variance of corrected daily model and

observational data equal. As taking the mean is a linear op-

eration, both the daily and monthly distribution means will

be equal when the corrected model and the observations are

compared. This does not apply to the variances as we have

exemplified in Sect. 2.

To examine this aspect, we investigate whether the bias

correction has improved on the discrepancy between the

modeled and the observed standard deviation. In Fig. 3a we

first present the change in discrepancy of standard deviation

of the daily values caused by the bias correction:

1 SD(T ) =

∣

∣SD
(

Tmod,cor

)

− SD (Tobs)
∣

∣ (3)

−

∣

∣SD
(

Tmod,org

)

− SD (Tobs)
∣

∣.

Here, SD denotes the standard deviation of the distribution,

Tmod,cor (Tmod,org) represent the corrected (original) model

temperature data and Tobs are the observed temperature data.

As Fig. 3a shows, in all regions of the globe the value is not

positive, meaning the standard deviation in the corrected case

is closer to that of the observations. This is not surprising as

this feature is built into the bias correction.
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http://www.eu-watch.org


J. O. Haerter et al.: Climate model bias correction and the role of timescales 1069

The computation in Eq. (3) is now repeated for the

monthly mean values of temperature, obtained before and af-

ter applying the bias correction based on daily values. The

result is shown in Fig. 3b. While large regions of the globe

still show a substantial improvement – meaning negative val-

ues – there are also some areas, such as Greenland or Siberia,

with a substantial increase of the deviation from observations

in the monthly mean standard deviation.

Hence, while the bias correction has led to an improve-

ment of the day-to-day variance, the variance of the monthly

means has in fact become less realistic after performing the

bias correction.

In Fig. 4a we show the daily and monthly mean standard

deviations for the WFD. The first striking feature of this plot

is that fluctuations at the daily and monthly scales are not

independent (similar patterns in the two panels of Fig. 4a).

Regions where there are large day-to-day fluctuations gener-

ally also have larger fluctuations of the monthly means from

one year to the next. The high latitudes show larger fluc-

tuations than the tropics. In the low and mid latitudes, the

difference between the modeled temperature fluctuations and

the observed (Fig. 4b) shows no systematic pattern, neither

for the daily nor the monthly mean standard deviation and

there is no clear dominance of a positive or negative signal.

However, the ECHAM5 model appears to generally underes-

timate day-to-day variability in the high latitudes while the

bias is more mixed in the case of interannual fluctuations.

Comparing the panels in Fig. 4b, we find there are some re-

gions – such as South America, parts of Africa and Australia

– where the bias in the daily and interannual fluctuations is

rather similar. We now turn to the comparison of the bias

corrected data (Fig. 4c) with the observations. Clearly, the

bias in the day-to-day fluctuations has been all but removed.

However, the improvement of the interannual fluctuations is

only obvious in regions of overlapping day-to-day and inter-

annual biases. Hence, only when short-term and long-term

fluctuations are aligned, the bias correction will lead to im-

provements on both timescales. In some regions, most no-

tably Greenland and parts of Siberia, the bias corrected sig-

nal has led to a worsening of the interannual fluctuations as

the day-to-day and interannual bias have opposite signs in

those regions (Fig. 4b, blue and red colors). We return to the

remaining panels of this figure in Sect. 4.2.

To better understand the effect of mixing timescales,

we now choose a single gridbox in Siberia (61.25◦ N,

112.25◦ E), where it is particularly pronounced. In Fig. 5

we present the daily (Fig. 5a) and monthly mean (Fig. 5b)

time series for the observations as well as the original and

corrected ECHAM5 simulation data. The daily time series

shows that the observations produce rather strong oscillations

as compared to the original model data. Therefore, the cor-

rected model data become somewhat stretched in the vertical

direction to equalize the variances. In the case of the monthly

mean time series the oscillations of the observations are not

very strong and perhaps even smaller than those produced by

the model. However, due to the adjustment of the day-to-day

variance, the corrected monthly time series acquires an even

larger amplitude of oscillation than before. Hence, the wors-

ening of the monthly mean statistics in this region is caused

by the underestimation of the day-to-day variability by the

model compared to the observations.

In Fig. 5a we also present the histograms of the original

and corrected model data in comparison with the observa-

tions. They show that there is a clear equalization of the

mean and variance. Conversely, the standard deviation of the

observed monthly means is 3.1 K, and for the original (cor-

rected) model, it is 3.5 K (4.7 K). Hence, while the original

model variance was rather close to that of observations, the

corrected value is nearly 50% too large.

3.2 Precipitation bias correction

In the case of daily precipitation, the discussion of Sect. 3.1

is less relevant. On the one hand, the distribution of precip-

itation intensities is never of a symmetric or even Gaussian

shape as in the case of temperature and the precipitation dis-

tribution is bounded from below by zero. To approximate the

distribution function of daily precipitation intensity, Gamma

distributions or other rapidly decaying functions of intensity

have been used in the past (Piani et al., 2010a; Gutowski

et al., 2007; Wilson and Toumi, 2005; Haerter et al., 2010).

The common feature of such functions is that they have well-

defined means (as opposed to power-law distribution func-

tions on short timescales as reported in Haerter et al., 2010)

and the mean and variance are coupled.1

On the other hand, the monthly precipitation mean is not

the average of 30 values of the random variable as is the case

for temperature. For precipitation, non-zero measurements

are recorded only on a few days of the month. Hence, the

monthly mean value is often dominated by only a small num-

ber of daily precipitation records and hence is often rather

well approximated by one or two large events. Furthermore,

precipitation processes on the daily and monthly timescales

are often closely related, e.g. no rain events (short range

timescale) over northern Europe during strong Euro-Atlantic

blocking regimes (medium range timescale). Hence, com-

puting the variance of monthly means and that of daily data

consequently often leads to rather similar results. To check

this, we have computed the variance of monthly means in the

WFD, the original and the corrected model data (Fig. 6). The

figure confirms that the corrected model data more closely

agree with the WFD than the original data, unlike the tem-

perature case shown in Fig. 3.

1In the case of the Gamma distribution of a random variable x:

ρ(x) ≡ xk−1 exp(−x/θ)

Ŵ(k)θk with the shape parameter k and scale pa-

rameter θ the mean is kθ and the variance kθ2. Hence, the mean

and variance are not independent as in the case of a Gaussian distri-

bution.
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Fig. 4. Comparison of December standard deviation of monthly mean temperature (left) and standard deviation of daily temperature (right)

for observations (a) and the ECHAM5/MPI-OM model: (b), difference plot of standard deviation of the original ECHAM5 minus standard

deviation of observations; (c), same as (b) but using bias corrected data; (d), same as (b) but using cascade bias correction. Note the change

in scale between monthly and daily data in (a). Circle and arrow in (a), right panel, mark a point used for time series in Fig. 5.

Note also that the representation of precipitation extremes

and local precipitation patterns by GCMs is often not re-

alistic. Qualitative misrepresentation of precipitation fea-

tures can be caused by the lack of spatial resolution and

the inability to adequately model subgrid-scale processes in-

volved in precipitation formation. Strong topographic gradi-

ents cannot be considered appropriately by most GCMs and

the proper parameterization of convective precipitation is an
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Fig. 5. Time series of observational, original and corrected model

data for daily (a) and monthly (b) values at location (61.25◦ N,

112.25◦ E) marked in Fig. 4a; in (a) we also show the histograms

of the observational (red), the original (blue) and corrected (green)

model data.

active field of research. These shortcomings of current-day

GCM model data make it difficult to apply grid-point by grid-

point statistical bias correction in all regions of the globe.

In summary, we have shown that the statistical bias correc-

tion as used in Piani et al. (2010b) does equalize the statistics

of the daily observations. However, this can lead to unwanted

results at longer timescales. In the following Sect. 4 we pro-

pose an extension of the method.

4 Improved statistical bias correction

Before discussing a possible improvement of the statistical

bias correction we caution that application of the procedure

requires several conditions to be fulfilled: the model data at

hand must constitute a realistic simulation of the actual phys-

ical system. The model bias is a systematic quantitative time-

independent transformation of the probability distribution

function of modeled data. The bias correction can neither im-

prove on the representation of fundamentally misrepresented

physical processes nor can it account for misrepresentation

of the transient response to green house gas emissions. To

give an example, it is not to be expected that biases caused

by a misrepresentation of phenomena such as the El Nino

Southern Oscillation can be corrected by bias correction. If

the extent of the warm tongue or the timing of El Nino are

misrepresented, it is not possible to improve such behavior

in any way by employing bias correction. It is further not

proven that a biased response to the solar irradiation cycle

should be scale dependent. Investigating the cause of model

bias is a central question in the climate modeling commu-

nity and goes beyond the scope of this article. To make our

argument, we need to assume that the model data are repre-

senting the actual physical processes of the climate system –

albeit with a quantitative departure from the actual observa-

tional data. This is a strong assumption that may not apply

for all model data and should be kept in mind when perform-

ing similar corrections on other data.

We now address cases where these assumptions are ful-

filled, i.e. the model data do constitute a realistic description

of the actual physical phenomena, while the model proba-

bility density function may differ from that of the observa-

tions. To improve the statistical bias correction and remedy

the shortcomings mentioned in Sects. 2 and 3 we propose

a cascade bias correction methodology. The problems dis-

cussed there may be caused by treating data originating from

mechanisms that act on different timescales on equal foot-

ing: day-to-day variability is caused by fluctuations of lo-

cal weather systems, the magnitude of the diurnal cycle and

evaporative processes.

4.1 Description of cascade bias correction method

The cascade bias correction breaks down the original process

into its different timescales thereby avoiding their mixing.

As an example, take a long time series (several decades) of

daily temperature data. We then break down the time series

into segments of months and combine all months of January

into a new time series. The motivation for doing so is that we

assume the temperature data in January to fluctuate little as

a result of the systematic seasonal dependence of statistical

expectation value within the month but rather due to the nat-

ural fluctuations from one day to the next. The choice of one

month is of course somewhat arbitrary, two months or two

weeks could be equally acceptable choices, depending per-

haps on the geographic region. A trade-off has to be made

between the statistical permutability of the values within the

segment and the required size of the sample of fluctuations

required to produce probability density functions of the nat-

ural fluctuations.

In the following we assume the segment to be one month

and the discussion focuses on several years of data for this

particular month (say January). After such a segmentation

has been completed, each daily value can be expressed rela-

tive to the mean within its segment, hence a daily temperature
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Fig. 6. Standard deviation of monthly mean precipitation from 1960–1999 for December for WFD (a), original model data (b) and bias

corrected model data (c).

value Ti,j corresponding to month i and day j will be

mapped onto the anomaly

T ′

i,j ≡ Ti,j − Ti (4)

where Ti is the monthly temperature mean within the given

month i and primed variables are anomalies. More precisely,

at any given day j of month i the monthly mean should be

defined as the running monthly mean value involving the pre-

vious and subsequent 15 days to avoid jumps at the interfaces

between months. We skip this point to simplify the discus-

sion but we suggest that it could be included in the algorithm

to avoid jumps at the interfaces between calendar months.

Note that using running mean values can modify the monthly

means of calendar months which are conventionally defined

as temporal entities in the community. Hence, the benefits

of working with running means may be outweighed by the

difficulty of the interpretation of the resulting corrected time
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series. The set of anomalies T ′

i,j of all months i can then be

used to compute the distribution of daily anomalies. To per-

form a bias correction, the same operation will be performed

on model and observational data and a TF (which we call

fdaily) will be derived for the daily anomalies, similar to the

method described in Sect. 2. A bias corrected daily value is

then obtained as T ′cor
i,j = fdaily(T

′

i,j ).

In the following step the monthly means T i are consid-

ered.2 Statistics of all available monthly means T i will

be constructed for both model and observations. Trans-

fer functions can then be derived in the spirit of Sect. 2

but for the monthly means (which we call fmonthly). A

bias corrected monthly mean of month i is then obtained as

T
cor

i = fmonthly(T i). To obtain the bias-corrected daily model

data, one would simply combine the corrections on the two

levels of the cascade to yield

T cor
i,j = T

cor

i + T ′cor
i,j (5)

for the bias-corrected value of Ti,j . This procedure would

apply similarly for the other months of the year.

Furthermore, if a sub-daily – say hourly – bias correction

is intended (as in Sect. 4.2.2), the cascade should be contin-

ued towards smaller time-intervals. The day would be di-

vided up into hourly segments and within each segment the

temperature would be re-defined relative to the daily mean

value. The procedure would then begin at the hourly level

but continue as stated above. The final bias corrected hourly

values would then become

T cor
i,j,k = Ti

cor
+ T ′cor

i,j + T ′′cor
i,j,k (6)

where Ti,j,k is the temperature value at month i, day j and

hour k. Note that all TFs except that for the longest time-

interval for the various cascade steps will have only a slope

parameter as the means are zero. Hence, the number of pa-

rameters required for a cascade of n steps will be n + 1.

4.2 Application of cascade method

The method introduced in Sect. 4.1 is now applied to actual

model and observational data. In the first case we intend to

improve on the bias correction of Sect. 3.1. In the second,

we apply a three-tier cascade to hourly data.

4.2.1 GCM cascade bias correction

We return to the global data discussed in Sect. 3.1. We em-

ploy a two-tier correction as described in Sect. 4 and Eq. (5),

2If sufficiently long time series exist – such as in millenium sim-

ulations in some climate models – multi-year fluctuations may be

identified and it could be adequate to define multi-year oscillatory

intervals and continue in the same fashion as before, hence defin-

ing the means over these multi-year intervals and computing the

anomalies of the T i w. r. t. these means. However, for most practi-

cal purposes, the cascade will end at this level.

hence we first produce monthly means T i of the observed

and simulated data for the 40-year period between 1960 and

1999. We then extract the day-to-day anomalies T ′

i,j relative

to these monthly means and produce a two-parameter correc-

tion (slope and offset) for the T i and a one-parameter correc-

tion (slope) for the anomalies. The results are presented in

Fig. 4d. Clearly, both the monthly mean and the day-to-day

statistics now agree very well with those of the observed data.

A change of slope of the TF implies a change in the climate

change signal (Sect. 2). Therefore, we want to assess the

changes in the climate change signal brought about by the

different correction methods. Using the IPCC B1 emission

scenario (Solomon et al., 2007) and the projected ECHAM5

data for the 30-year period 2070–2099 we compare the orig-

inal model data, the standard bias-correction model data, and

the cascade correction model data (Fig. 7). In all three cases,

the general warming of the original model data is preserved,

with a positive gradient of warming with increasing latitude.

However, we note that the extreme northern latitudes gener-

ally acquire a stronger warming signal in the standard cor-

rection relative to the uncorrected model (Fig. 8a) while the

cascade corrected climate signal is not as strongly enhanced

(Fig. 8b) in these regions. In some parts of these regions the

modification of the climate change signal is actually reversed

in the cascade method. In South and Central America there

is larger agreement between the two correction procedures

since interannual and interday fluctuations are aligned there

(compare Fig. 4b).

4.2.2 Three tier cascade

We now intend to produce a three-tier cascade correction.

Therefore we employ data at an hourly resolution to allow

statistics for the hourly, daily and monthly periods. The

observational temperature data are provided by the German

Weather Service for a station in Aachen, Germany. The

model data are from the Max Planck Institute for Meteorol-

ogy regional climate model (REMO), which is available at a

10 km horizontal resolution (Jacob et al., 2008). We choose

the gridbox closest to the station to achieve an optimal com-

parison. The overlapping time-period for the two datasets are

the 20 years from 1960 to 1979. While the method described

in Sect. 4 could also be applied to precipitation statistics,

we are here comparing station data to those of model grid-

boxes. For temperature, this is appropriate as spatial fluctua-

tions are small within a 10 km distance and the region studied

has small topographic gradients. For precipitation, the grid-

box value has to be interpreted as a spatial mean over its area

and the comparison with station rain gauge measurements is

cumbersome.

In the following we generally choose the month of January

as an example. In Fig. 9 we present the hourly time series of

the observational and model data. Note the different char-

acteristics of the time series that immediately strike the eye:

The overall spread of the model data is smaller than that of
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Fig. 7. Temperature climate change signal for the B1 emission scenario projected by ECHAM5 for the period 2070–2099 relative to 1960–

1999 for December; (a), model without bias correction; (b), standard bias correction; (c), cascade bias correction.

the observations and the interannual fluctuations (from one

January to the next) are more pronounced in the observations.

We proceed by computing the daily anomalies relative

to the monthly mean values (histograms in Fig. 9) as de-

scribed by Eq. (4). We then iterate the same procedure for

the sub-daily scale by defining intra-day anomalies relative

to the daily mean. To illustrate the result, for the hourly

anomalies we display those between 16 and 17 h of each

day, hence 20 × 31 values. The probability density function

of the daily mean model fluctuations is statistically signifi-

cantly narrower than that of the observations with standard

deviations of 2.6 K (3.9 K) respectively. The hourly anoma-

lies (relative to the interpolated daily mean) are small com-

pared to the daily fluctuations and there is no statistically

significant difference between the model and observational

pdf. Hence, there are different deviations between the model

and observed data for the two timescales. Consequently, an

algorithm utilizing a blend of fluctuations on all scales to
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Fig. 8. Modification of climate change signal: (a), by using the standard correction method – panel (b) minus panel (a) of Fig. 7; (b), by

using the cascade method – panel (c) minus panel (a) of Fig. 7; and (c), the difference between the correction procedures – panel (c) minus

panel (b) of Fig. 7.

derive the correction factors is bound to mix these two statis-

tics and would alter distributions at scales where it should

not. This finding underscores the advantage of distinguish-

ing timescales when performing the bias correction.

Now we produce linear TFs for the data at all different

timescales, namely hourly fluctuations relative to the daily

mean, daily fluctuations relative to the monthly mean and

monthly fluctuations. Note that the monthly fluctuations con-

stitute the only case where the TF acquires an offset in ad-

dition to the slope. In all other cases, the TF corresponds

to a multiplicative correction factor as the means of fluctu-

ations are zero by definition. Hence, in our three-level ex-

ample, in total four correction parameters are required for

each hour of the day and month. After the correction factors
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Fig. 9. Hourly time series of 20 Januaries for observations – (a),

gray – and model – (b), gray. Black horizontal lines indicate

monthly averages. Histograms of daily anomalies (relative to the

monthly mean, central column) and hourly anomalies (relative to

the daily mean, right column).

are computed, the bias-corrected time series is re-composed

by merging the individual components (Fig. 10) as given by

Eq. (6). In this figure we show data for both January and

July. We also show the comparison with the standard bias

correction. In the standard correction, fluctuations are not

corrected separately as in the cascade correction, however, a

correction is performed for each hour of the day, this means

all first hours of all January days (31 days × 20 years) would

yield one correction. Note that in January the diurnal fluc-

tuations are enhanced in both corrected series in comparison

with the original model data, while the day-to-day fluctua-

tions remain rather unchanged. Furthermore, an overall shift

is applied to the data as the model appears to have a general

cold bias during these months. When comparing the standard

and cascade corrections, we find that on days with extreme

fluctuations – such as at the beginning of the time series in

panel a – the standard corrected (dashed gray) time-series is

2 K lower than the cascade corrected series. The reason is

that the diurnal cycle is enhanced in the corrected version,

but in the standard correction the diurnal range is measured

in absolute terms rather than relative to the diurnal mean as

in the cascade correction. This leads to an exaggeration of

the correction in the standard version.

The situation is somewhat different in July where the

model produces more realistic diurnal fluctuations by itself

(more similar to those in the observations), hence the cor-

rected data mirror the original data rather closely and only

an overall shift of roughly 2 K towards higher temperatures

is applied to correct the cold bias present in the model data.
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Fig. 10. Original and corrected hourly time series for one week

in January (a) and July (b), long-dashed line is original model

data, solid line is cascade-corrected model data, short-dashed line is

data corrected using standard method; Inset: Diurnal cycle for Jan-

uary (c) and July (d) for model (dashed) and observations (solid),

respectively.

5 Discussion

In this paper, as in past articles on this topic, bias is intended

as the time independent component of the error. The error is

the difference between the simulated value and the observed.

Bias correction is done as part of the post processing of sim-

ulated data. Hence, it cannot add information or skill to the

simulation and, furthermore, it cannot eliminate the error.

The sole purpose of bias correction is to eliminate the time

independent component of the error if it exists. Crucially, if

there is no bias, that is if there is no constant portion to the

error, the bias correction methodology leaves the simulation

unaltered.

A grid-based bias correction can only be expected to yield

meaningful results if there is sufficient correspondence be-

tween the modeled and observed behavior within the same

gridbox. By correspondence we mean a qualitatively ad-

equate representation of the physical phenomenon at hand.

For example, if in the model northern and southern lati-

tudes were swapped, such correspondence would be lost and

the bias correction would become obsolete. Similarly, if

North Atlantic storm tracks were systematically shifted in the
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model relative to the observations, the grid-based bias cor-

rection would fail. Along with spatial offsets, a grid-based

bias correction cannot compensate for temporal offset. If the

Indian monsoon were appearing with one or two weeks de-

lay in the model compared to observations, this could not be

corrected by this method for similar reasons. Similarly, if

the timing or the frequency of the El Nino Southern Oscil-

lation phenomenon were misrepresented by the model, this

behavior could not be improved upon by SBC.

Apart from these limitations, one of the main obstacles

when applying a statistical bias correction to climate model

data is that fluctuations on different scales can mix and lead

to unexpected and unwanted behavior in the corrected time

series. To tackle this problem, we here propose to eliminate

this effect by performing a cascade of corrections that oper-

ate on the different timescales present in the system. We have

applied the method to both global and station data and shown

that it is capable of equalizing the statistics on timescales

ranging from hours to years. However, the consequence

of such a methodology is that statistical properties obtained

from the control period time series can only be taken as prop-

erties relative to the mean value of that time-interval. For

example, the soil-moisture atmosphere interaction (Senevi-

ratne and Stoeckli, 2007; Seneviratne et al., 2006; Fischer

et al., 2007) acts on timescales from days to decades and can

profoundly impact both on surface temperature and precipi-

tation. As a result, too strong model day-to-day or even inter-

annual fluctuations could be reduced by the bias-correction.

However, mechanisms functioning on timescales longer than

the control period cannot be corrected. One such mechanism

that is of crucial importance in most climate change exper-

iments is global warming due to greenhouse gas emissions.

It is an open question in climate modeling whether the bias

present in current day simulations allows conclusions on the

bias in the simulation of future climate change. Such a rela-

tionship likely depends on the details of the physical causes

behind the bias and whether or not these are relevant to the

climate change signal.

To exemplify to what extent a current day temperature bias

may affect the climate change signal we resort to the simplest

textbook one-dimensional energy balance model incorporat-

ing carbon dioxide feedback (Fig. 11). We assume the model

misrepresents the planetary albedo α which leads to a bias,

both during the current day and in the future. However, the

model is taken to represent the mechanism of greenhouse gas

induced warming adequately. The energy balance model of

the earth system is reduced to the earth surface and a sin-

gle atmospheric layer that is partially absorbent in the long-

wave spectrum – a fraction ǫ is absorbed by the atmosphere

– but transparent in the short-wave. Introducing more green-

house gases will lead to an increased value of absorptivity

ǫsc > ǫcon, where ǫsc (ǫcon) refer to the scenario and control

period value of absorptivity.

The reader can easily verify that under conditions where ǫ

can be changed arbitrarily, a bias correction with an additive

S0�4

ΑS0�4

H1-ΕLSu

Su

Au

Ad

Ta

Ts

Fig. 11. Simple one-dimensional energy balance model of the earth

system with solar constant S0 and globally integrated incident so-

lar radiation S0/4; planetary albedo α; absorptivity of the atmo-

sphere ǫ. Su is long-wave radiation emitted by the earth’s surface,

Ta (Ts) are emission temperatures of the atmosphere (surface); Au

(Ad) are upward (downward) long-wave radiation emitted by the

atmosphere.

correction T
mod,cor
s = T mod

s + 1T is not compatible with this

demand while a multiplicative correction T
mod,cor
s = δT mod

s

is, where δ is a multiplicative factor.

Hence, in the case of the simple energy balance model,

applying a bias correction would clearly be beneficial in pro-

ducing a more realistic climate change signal. For other,

more complex models such as a GCM, the conclusion may

be less obvious.

The consequences of choosing a certain bias-correction

method are much more dramatic in the case of precipitation

than in the case of temperature. The model mean often devi-

ates by a factor of two from that of the observations. Further-

more, a simple energy balance model cannot give an indica-

tion of which type of correction should be used here (such as

multiplicative or additive). As mentioned in the introduction,

the reaction of the hydrological cycle to greenhouse gas in-

duced warming – both in observations and in models – would

have to be known better, in order to give a definite answer

to the question of the adequate correction procedure (Allen

and Ingram, 2002; Held and Soden, 2006; Emori and Brown,

2005). However, the use of a multiplicative correction is of-

ten triggered by practical considerations, namely the poten-

tial effect of an additive correction to produce (unphysical)

negative precipitation values which then requires the artifi-

cial introduction of dry periods, hence a change in the tem-

poral structure of the time series.
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6 Conclusions

Bias correction procedures are emerging as indispensable

tools to render output from climate models useful as input to

hydrological and impact assessment models. Statistical bias

correction schemes are able to transform the entire proba-

bility density function of a given modeled climate variable

to match that of the observations. Hence, once a choice of

timescale is made, for example daily values, the statistics are

equalized. The main point of this paper is that bias correc-

tions could potentially benefit from correcting data from dif-

ferent timescales separately, especially when disparate mech-

anisms act on the different timescales. For instance daily

data and monthly mean data can exhibit completely differ-

ent statistical behavior. To motivate this statement, we have

presented data from a bias correction of daily GCM data cor-

rected with observational data. In some regions, the mag-

nitude of interannual fluctuations of monthly means show

the opposite sign of discrepancy between model and ob-

servations than the day-to-day fluctuations. Therefore, we

have proposed an improved method, which we call cascade

bias correction, which generates a cascade of bias correction

functions, each operating on a different timescale. We have

used hourly observational and model data to perform a three-

tier cascade bias correction for a single gridbox and a two-tier

cascade for GCM data for daily and interannual corrections.

Our results show that considering timescales separately sub-

stantially improves the bias correction, as the actual statis-

tical behavior of the observed data is reproduced at various

timescales.

Statistical bias correction does not replace adequate model

representation of physical processes. We therefore reiterate

the conditions on climate model data to make the applica-

tion of statistical bias correction schemes reasonable: At ev-

ery gridbox where SBC is to be applied, it must be ensured

that the model provides a realistic representation of the phys-

ical processes involved. Quantitative discrepancies between

the modeled and observed probability density function of the

quantity at hand must be constant in time.

Furthermore, this study emphasizes that every statistical

bias correction makes assumptions on the applicability of sta-

tistical TFs from today’s climate to the future climate. We

caution that it is an open question whether a bias correction

should impact on the climate change signal produced by a

climate model. The climate change mechanism operates on

very long timescales and short-term fluctuations should not

be used as a means of assessing shortcomings in the model’s

climate change projection. A bias correction is inherently as-

suming specific model characteristics that cause the discrep-

ancy between simulated and observational data. A reliable

bias correction should hence adequately involve the conse-

quences of greenhouse gas concentration changes and how

these impact on the system. We have sketched such an anal-

ysis in the case of temperature for a very simple energy bal-

ance model. In the case of a full-scale GCM an analogous

operation would involve detailed queries into the climate

model’s representation of the climate change mechanism.
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