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Abstract

It is well-recognized that new technology is a crucial part of any solution to the

problem of climate change. But since investments in research and development take

time to mature, price and quantity instruments, i.e., carbon taxes and cap-and-trade,

run into a commitment problem. We assume that the government cannot commit to the

level of a policy instrument in advance, but sets the level to be optimal ex-post. Under

these assumptions, we show that when the supply curve of dirty (emission-producing)

energy is flat, then an emissions tax is ineffective in promoting R & D into green

(emission-free) energy while an emissions quota (i.e., cap and trade) can be effective.

A subsidy to R & D is welfare-reducing. More realistically, when the supply curve of

dirty energy is upward-sloping, then both tax and quota regimes can be effective in

promoting R & D into emission-free technology. In this case, a tax generally induces

more R & D than a quota. When the supply curve is sufficiently steep compared to the

demand curve, a subsidy to R & D can expand the range of parameter values under

which R & D occurs and this can be welfare-improving. If there is sufficient uncertainty

about whether a climate policy will be adopted ex-post, then subsidizing R & D is an

even more attractive policy option since a welfare-improving subsidy to R & D exists

under a wider range of circumstances.
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1 Introduction

Economic instruments for pollution control in general and climate policy in particular

are considered superior to traditional regulation and subsidies because they are believed to

induce adjustment on all appropriate margins in a least-cost way. Analyses of the virtues of

these instruments, however, are typically made in a static context.

Avoiding dangerous climate change and ocean acidification involves a halt to, and possi-

bly even a reversal of, the build-up of carbon dioxide in the atmosphere. It is, therefore, clear

that energy technologies that replace those emitting carbon dioxide are a necessary part of

any solution. This makes technological advance to reduce the cost of carbon-free energy an

important target of climate policy.

In order to induce investment in research and development, incentive-based instruments

such as emissions taxes and carbon cap and trade have to be expected to be in place after

the new technology comes to market. This can be several years after the decision to invest in

R & D is made. Policies announced or put in place today can be changed. To put it simply,

there is a commitment problem. This commitment problem does not apply to policies put in

place today that lower the cost of R & D, such as subsidies or complementary investments

by public-sector entities. We compare the effects of an emissions tax, an emissions quota

with tradeable permits, and R & D subsidies on a firm’s incentive to conduct R & D in the

absence of commitment by the government.

While there is a considerable literature on the role of emission-reducing R & D, Kneese

and Schulze (1975), Marin (1978), Downing and White (1986), Milliman and Prince (1989),

Jung et al. (1996), Denicolo (1999), Fischer et al. (2003), most of it concerns technologies

that reduce the rate of emissions. This approach is suited to the study of end-of-pipe abate-

ment technologies, or others where emissions rates can be reduced by changing the quality of

fuel. It is of limited applicability in studying carbon dioxide emissions, the most significant

contributor to climate change. Of greater significance in the climate context are technologies

that replace carbon-based fuels with an entirely different source of energy, such as solar,

wind, or nuclear energy. In recent years, Montgomery and Smith (2005) studied the com-

mitment problem in climate policy in a framework where innovation leads to development of

zero carbon technologies. They concluded that standard market-based environmental policy

tools cannot create credible incentives for R & D. A crucial assumption in their paper was

that the R & D sector is competitive. Thus their negative result is a consequence of the

non-appropriability of the returns from R & D. In our work, we assume a monopolistic R &

D sector so that the returns from R & D are appropriable. We obtain results that are less

pessimistic than Montgomery and Smith (2005).
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The paper whose framework most closely resembles our own is that of Denicolo (1999).

Like us, Denicolo considers a monopolistic firm that decides how much to invest in R & D

on the basis of its expectation about the level of an emissions tax or quota with tradeable

permits. Denicolo assumes that the extent of emission reduction per unit of output is an

increasing function of the amount invested in R & D but that the private marginal cost of

producing a unit of output is unaffected by R & D. In contrast, we assume that R & D is

used to reduce the marginal cost of zero-emission technologies. Our assumption is intended

to model replacement technologies of the kind mentioned above, while his is better suited to

modeling end-of-pipe abatement of a particular kind: one in which there is a sunk cost of

abatement (R & D) but no variable cost. Denicolo shows that if the government sets the level

of the emissions tax or aggregate quota to be optimal ex-post, that is, after the result of R

& D is realized, then tax and quota policies are equivalent. They induce the same R & D. In

contrast, we show that in our framework in which R & D affects the cost of a zero-emission

technology, a tax can never induce R & D while a quota can do so.1 Scotchmer (2009) uses

a framework similar to that of Denicolo and obtains similar results.Kolstad (2010) develops

a model without dynamic inconsistency. He models technological progress on the lines of

Denicolo (1999) and shows that a single instrument in the form of a tax or an abatement

quota can ensure social optimality.

In this paper, we compare the effects of tax and tradeable quota policies in the absence of

commitment, and the role of R & D subsidies.2 In Section 2 we show that when the marginal

cost of dirty (emission-producing) energy is constant, then an emissions tax is ineffective in

inducing R & D, while a quota can be effective. The reason for this is that a fall in the

marginal cost of the emission-free technology as a result of R & D means that a lower tax is

sufficient to allow the new technology to compete. Since a higher-than-necessary tax results

in a welfare loss by giving the owner of the new technology monopoly power, the government

reduces the emissions tax in response to successful R & D. This destroys the incentive to do

R & D.

When the policy instrument is an emissions quota, we show that the government will

reduce the quota when the emission-free technology gets less expensive (as long as it remains

more costly than the dirty alternative), because the cost of reducing emissions has fallen.

1This result holds only under the assumption (common to Denicolo (1999)) that the marginal cost of the

dirty technology is constant.
2We do not model the international aspect of the problem. In any case, the results are relevant for

jurisdictions with large energy markets such as China, the United States, and the European Union. In fact,

one attractive feature of technological improvements is that they may make international agreement easier

to reach.
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This response induces R & D. But we also show that the introduction of a technology that is

less costly than the dirty alternative is inhibited. This is because the government response

in such a case is the opposite: It increases the quota since it is no longer needed to contain

emissions and only enhances the monopoly power of the green firm. We show that any sub-

sidy to R & D investment that actually induces R & D is welfare-reducing when the marginal

cost of dirty energy is constant.

Since fossil fuels are subject to increasing marginal costs of production when harder to

reach mineral deposits have to be extracted, it is more realistic to assume that the supply

curve of dirty energy is upward-sloping. We make this assumption in Section 3 of the paper.

Now both tax and quota regimes can be effective in promoting R & D into emission-free

technology but they are not equivalent. The results of Section 2 are reversed (for a suffi-

ciently steep supply curve of dirty energy) and a tax generally induces more R & D than a

quota. When the supply curve of dirty energy is sufficiently steep compared to the demand

curve for energy, a subsidy to R & D can expand the range of parameter values under which

R & D occurs and this can be welfare-improving.

Once we allow for the upward-sloping supply of dirty energy, then the owners of easily

extractable fossil fuels have rents. The assumption that climate policy will be statically

optimal ex-post is then questionable since fossil fuel rentiers will lobby to protect their rents.

This will give rise to uncertainty about whether a climate policy will be adopted at all in the

future. In Section 4, we assume that there is some probability that no climate policy will be

adopted. We show that if this probability is sufficiently high, then the range of parameter

values under which a welfare-improving subsidy to R & D exists is expanded.

2 The model with a constant marginal cost of dirty energy

2.1 Structure of the economy

There is a representative consumer who consumes two goods, energy (e) and the nu-

meraire good (y). The consumer maximizes a quasi-linear utility function

U(e) + y = ae − b
2
e2 + y (2.1.1)

subject to

Pe + y = Y, (2.1.2)
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where P is the price of energy and Y is the endowment with the consumer. Solving this

problem gives the consumer’s inverse demand function for energy

P = D−1(e) =

{

a − be if e < a
b

0 if e > a
b

(2.1.3)

So b is the slope of the marginal social benefit of energy.

Energy in the economy can be produced in two ways. There is a competitive industry that

produces dirty energy ed, with a pollutant being emitted as a by-product. This has a constant

average and marginal cost of production of zero.3 Energy can also be produced without any

pollution emissions. The quantity of this green energy is denoted by eg. The marginal cost

of producing green energy depends on the research and development investment made by a

monopolist in the period before production occurs. If I is investment measured in units of

the numeraire good, then the marginal cost of green energy that will be realized next period

is g = g(I) given by

g(I) =

{

g − ( I
i
)

1

2 if 0 ≤ I < ig2

0 if I ≥ ig2 where i > 0.
(2.1.4)

Therefore,

g′(I) < 0, g′′(I) > 0, g(0) = g > 0 (2.1.5)

Equation (2.1.4) can also be written as:

I : [0, g] → R
+ where I(g) = i(g − g)2

1
i

measures the impact of investment on the marginal cost of green energy. The lower the

value of i, the more sensitive the marginal cost of green energy is to R & D investment.

Emissions produce an externality that is not internalized by the consumer. We choose

units so that one unit of dirty energy produces one unit of emissions and we suppose that

the damage from emissions is linear so that ed units of dirty energy result in an external

damage of δed. Thus δ is the (constant) marginal damage of dirty energy.

The sequence of events in the model is as follows: The government inherits from the past

the choice of policy instrument: tax or quota. It is assumed that it cannot change this. The

government chooses a subsidy rate for the firm’s investment in research and development.

Then the green firm chooses its investment in R & D. In the next period, as a result of the

green firm’s R & D, its marginal cost of production g is realized. The government observes

g and then chooses the level of the quota or tax (as the case may be) with the objective

3We discuss the case of a positive marginal cost in Section 4.
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of maximizing social welfare. We assume that in the first period the government cannot

credibly commit to the level of the quota or to the tax rate it will impose in the second

period. However, it is committed to the kind of instrument it has inherited, whether that is

a tax or a quota. The government is free to choose a non-binding quota or a zero tax. After

observing the tax rate or the level of the quota, the green firm chooses its price and output. 4

In reality, we believe that the choice of quota or tax is made by governments on the basis

of their usefulness in the current period. Governments are not looking half a decade, or

even several decades ahead at the effects on the technologies that become available. Once

this choice is made, an institutional infrastructure is locked in around it, so it is not eas-

ily reversible. On the other hand, the effective level of the tax or quota can be altered by

future legislatures or governments that react to the then prevailing conditions. This is the

motivation for our assumptions above. Since we are interested in the effects of instruments

on the incentive to innovate, we do not model production and emissions in the current period.

We assume that in the absence of a green firm, it is socially optimal to produce a positive

level of dirty energy, and that the initial marginal cost of the green firm is below the marginal

social value of energy at e = 0. That is,

Assumption 2.1 a ≥ max(δ, g) ≥ 0

Now if g = 0, then the green firm’s monopoly price is a
2
. For positive g the monopoly

price will be a+g

2
. (This is easily checked.)

The green firm’s profit net of investment in R & D is denoted by

Π = π − I

where π denotes gross profit in the last stage of the game. Similarly, social welfare net of

investment in R & D is denoted by

W = w − I

where w is the gross social welfare that the government maximizes in the second stage of

the game:

4 Even with commitment, a single policy instrument will not be able to achieve the first best. The number

of instruments required to achieve a vector of policy targets cannot be less than the number of elements in

the vector. Since we have two targets: the level of abatement, given a marginal cost of abatement and the

marginal cost of abatement itself, a single instrument is unable to achieve it (Tinbergen, 1964).

In Kolstad (2010), optimality is achieved as he assumes that policy targets abatement rather the level of

emissions, thus restricting the number of margins along which adjustment can take place.
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w = ae −
b

2
e2 + Y − geg + δed (2.1.6)

2.2 The Tax Regime

Proposition 1 There will be no investment in research and development under the tax

regime.

Proof :

Suppose the firm chooses g > δ (which can happen only if g > δ) in the first stage.

Then the social marginal cost of green energy is greater than that of dirty energy. Thus

the optimal tax is δ, the difference between the social and private marginal costs of energy

production. The green firm will not produce and so will incur a net loss with π = −I(g) ≤ 0,

where equality holds only when g = g.

If g ≤ δ, then the optimal tax is infinitesimally greater than g. This is just sufficient to

drive the dirty firms out of the market, but not enough to allow the green firm to exercise

its monopoly power to restrict output. Now the green firm can only charge the tax, which

is just infinitesimally greater than g. Thus the green firm incurs a loss of −I(g) ≤ 0.

Therefore, the green firm must set I = 0 if it is to avoid a loss.

!

Figure 1: Tax Regime with g < δ
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The optimal tax falls with g, wiping out the incentive to do R & D.

2.3 The Quota Regime

The model is a sequential game between the government and the green firm with three

stages,

1. The green firm choosing investment.

2. The government choosing an emissions quota q.

3. The green firm choosing its price and output.

We use backward induction to solve it.

2.3.1 Response of firms given that investment has been made and a quota chosen by

government.

Suppose q ≥ D(g) for some g ≥ 0. Then the price of tradeable emissions permits will

be D−1(q) and the dirty sector can supply energy at a price less than the green firm’s cost.

Thus the green energy firm will not produce. The price of energy will be D−1(q) and energy

produced will be equal to the level of quota.

Now suppose q < D(g) for g ≥ 0. The green firm faces a residual demand curve of

D(P )− q for P in the relevant range D−1(q) ≥ P ≥ 0. It acts as a monopolist in this market

and chooses eg to maximize

The profit function of the R&D firm is :

π = eg[D
−1(eg + q) − g]

= eg[a − b(q + eg) − g].

π is concave in eg and there is no corner solution. The monopoly price is the average of

marginal cost and the highest point of the residual demand curve D−1(q). Thus the output

of clean energy and total energy, the price of energy and the profit of the green firm are

respectively:

eg(g, q) =
1

2
[D(g) − q]

=
a − bq − g

2b
(2.3.1)
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Figure 2: Quota Regime: q < D(g)

e(g, q) =
1

2
[D(g) + q]

=
a + bq − g

2b
(2.3.2)

P (g, q) =
1

2
(D−1(q) + g)

=
a − bq + g

2
(2.3.3)

π(g, q) =
1

4
[D(g) − q][D−1(q) − g]

=
(a − bq − g)2

4b
(2.3.4)

2.3.2 Optimal selection of q by the government, after observing the green firm’s choice of

g and taking the green firm’s reaction function as a constraint in its

welfare-maximizing exercise.

In this section we make the assumption that δ < g. If g < δ, there would be no emissions

problem, only a problem of making emission control less expensive.

Assumption 2.2 δ < g
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If g > δ, the social marginal cost of green energy is greater than that of dirty energy,

and it would be inefficient to allow the green firm to operate. So the optimal q ≥ D(g).

Optimality is attained at q = D(δ) where the marginal social cost of dirty energy equals the

marginal social benefit from energy consumption.

Now consider the case g < δ. Now the marginal social cost of green energy is lower than

that of dirty energy. While a stricter quota brings a welfare gain from reduced emissions, it

inflicts a welfare loss from lower consumption of energy. The government chooses the quota

taking this trade off into account.

Starting with q = D(δ), note that the marginal social benefit of tightening the quota is

δ − g −
∂e

∂q
(P (q, g) − g)

= δ − g −
1

2
[
1

2
(D−1(q) − g)].

Figure 3: Quota Regime: Sub-optimality of q = D(δ) when g0 < g < δ

δ − g (= IJ in Figure 3) is the marginal reduction in the social cost of energy as dirty

energy is replaced by clean energy while 1
2
(D−1(q) − g) (= KL in Figure 3) is the marginal

loss of social surplus when energy consumption falls in response to the decrease in q. When

q = D(δ), the expression above equals 3
4
(δ − g) > 0. Thus the optimal q < D(δ).
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In fact, note that for any q, if e(q, g) > D(δ), then P (q, g) < δ, so

δ − g >
1

2
(P (q, g) − g). (2.3.5)

Thus, total energy consumption must fall when g falls below δ. As will be seen shortly,

this fact has important implications for the welfare effects of an R & D subsidy.

Differentiating w with respect to q in 2.1.6 and using 2.3.1 and 2.3.2, we find that at the

optimal quota,

δ − g =
1

4
(D−1(q) − g). (2.3.6)

It is clear from this that if g falls, then q must also fall to restore equality. Thus, in

contrast to the tax regime, a fall in g induces a tightening of the emissions quota, thus

reinforcing the incentive for the green firm to conduct R & D. Solving equation 2.3.6 for q,

we find that the optimal quota is given by

q(g) =

{

D(δ), if g ≥ δ

max a+3g−4δ

b
, 0 if g < δ

(2.3.7)

From now on, we ignore corner solutions in q for the sake of simplicity. In other words,

we assume that the externality from emissions is not high enough to justify setting a zero

quota. It follows from 2.3.7 that the required assumption is

Assumption 2.3 a > 4δ.

2.3.3 Optimal choice of investment (and marginal cost) by the green firm given the

reaction function of the government.

The green firm’s net profit function is

Π(g) = π(g, q(g)) − I(g)

=
4

b
(δ − g)2 − i(g − g)2 (using (2.3.4) and (2.3.7)),

< 0 at g = δ.

Now

Π
′(g) = −

8

b
(δ − g) − 2i(g − g)

> 0 at g = δ.
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Unless the positive slope of Π at g = δ is reversed at a lower value of g, investment in R &

D is ruled out. Now

Π
′′(g) =

8

b
− 2i.

It follows immediately that R & D can take place only if Π is convex and, therefore, if

and only if Π > 0 at g = 0. This argument is summarized in

Proposition 2 The quota regime induces R & D with g = 0 provided the marginal cost of

green energy is sufficiently sensitive to R & D investment, that is, if (and only if) i < 4δ2

bg2 .

This is illustrated in the figure below.

Figure 4: Optimal Choice of g in the quota regime.

2.4 Welfare Analysis

We now compare social welfare under the tax and quota regimes. Under the tax regime,

since no R & D is induced and the green firm does not operate, welfare is simply the utility

of energy consumption less the total social damage from dirty energy consumption. (We can

ignore the term Y in 2.1.6 since it is constant.) This is consumer surplus given by the area

of △aδG in Figure 5.

For values of i greater than 4δ2

bg2 , there is no investment in the quota regime either, the

quota is set to internalize the externality, and energy consumption and welfare are identical

to what would prevail under the tax regime.

If i < 4δ2

bg2 , R & D is induced and the marginal cost of green energy falls to 0. Social

welfare w (without deducting investment in R & D) is now5

5In drawing the figure in this way, we are making use of the remark made in Section 2.3.2 that total

energy consumption is less than D(δ).
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Figure 5: Welfare Analysis of Tax and Quota Regimes

the area of quadrilateral aBEδ) + the area of quadrilateral BDIH.

Thus, gross welfare under the quota regime exceeds welfare under the tax regime by

△w = the area of the rectangle EFIH − the area of △DFG. (2.4.1)

Using 2.3.1 and 2.3.7,

the area of rectangle EFIH =
2δ2

b
. (2.4.2)

Using 2.3.2, 2.3.3, and 2.3.7,

the area of △DFG =
δ2

2b
. (2.4.3)

Therefore,

△w =
3δ2

2b
. (2.4.4)

Hence, a quota regime will offer higher net welfare than a tax regime if △w > ig2 that

is, if i < 3
2

δ2

bg2 . (If this condition holds, then the hypothesis of Proposition 2 will be satisfied

and R & D investment will occur.) This argument is summarized as

Proposition 3 A quota regime that induces R & D results in higher welfare than a tax

regime (that never induces R & D) provided the marginal cost of green energy is sufficiently

sensitive to R & D investment, that is, if i < 3
2

δ2

bg2 . If 3
2

δ2

bg2 < i < 4δ2

bg2 , then the R & D induced

by the quota regime is socially too expensive.
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2.5 The Role of an R & D Subsidy

Proposition 4 In a tax regime, an R & D subsidy is ineffective (has no impact on R & D).

Under a quota regime, an R & D subsidy is either ineffective, or, if effective, reduces welfare.

Proof : When the subsidy is s, the amount the green firm has to spend on R & D in order

to achieve a marginal cost g becomes (1− s)i(g− g)2. Thus, a subsidy reduces the effective i

for the green firm. It can have no effect in a tax regime (as long as s < 1 which we assume),

since any expenditure at all is sufficient to deter the firm from conducting R & D. In a quota

regime, it is clear from Proposition 2 that it can have an effect only if it moves the effective

i for the firm below the threshold 3
2

δ2

bg2 . At this threshold value of i, the firm is indifferent

between conducting R & D and not doing so. That is Π(0) = Π(g) = 0. Therefore, its gross

profit if it conducts R & D, π(0) must equal ig2, the social cost of R & D at the threshold

level of i.

Now welfare will be raised by inducing the firm to conduct R & D if and only if w(0) −

w(g) > ig2, that is, if and only if

w(0) − w(g) > π(0).

π(0) is equal to the area of the rectangle ADIH in Figure 5. But this is greater than

w(0)−w(g) by 2.4.1. Thus in a quota regime, if a subsidy is effective, it must reduce welfare.

!

3 The model with increasing marginal cost of dirty energy

Since fossil fuels have heterogeneous extraction costs that depend on the location and

quality of deposits, they can be expected to have an increasing marginal cost of extraction.

Accordingly we now assume the supply curve of dirty energy has a positive slope. We show

that it is possible for the tax regime to induce R & D, and that a welfare improving R & D

subsidy is possible under both tax and quota regimes.

3.1 Structure of the model

We assume that

the marginal cost of producing ed = ced (3.1.1)

The supply curve of dirty energy implied by equation (3.1.1) can also be written as:

Sd(P ) =
P

c
(3.1.2)
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Thus, c denotes the slope of the dirty technology’s marginal cost. Recall that the marginal

benefit of energy is a− be while the marginal cost of dirty energy when there is an emissions

tax of t is t + ced.

Let

P ∗
d (t) =

ac + bt

b + c
(3.1.3)

denote the equilibrium price of dirty energy when there is no green energy produced and

there is an emissions tax of t.

We assume that the initial marginal cost of the green technology g is too high for it to be

socially optimal to have any production of green energy. (Later we show that the alternative

assumption leads to qualitatively similar results).

Assumption 3.1

P ∗
d (t = δ) < g

The equilibrium quantity of dirty energy when there is no green sector and there is an

emissions tax of t is

e∗d(t) ≡ Sd(P
∗
d (t) − t) =

a − t

b + c
. (3.1.4)

The model under these assumptions is summarized in Figure 6.

Figure 6: Diagrammatic representation of Assumptions 1 to 4

3.2 Quota Regime

As before, we solve the game by backward induction.
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3.2.1 Response of firms given that R & D investment has been made and a quota chosen

by government

Figure 7: Choice of green energy output when P ∗
d (t = 0) ≤ g ≤ P ∗

d (t = δ)

If g > P ∗
d (t = δ), it is clear that the optimal quota is e∗d(t = δ) and the green firm is shut

out of the market.

Now consider the case P ∗
d (t = 0) ≤ g ≤ P ∗

d (t = δ). As in Section 2, the green firm

chooses its output to maximize its profit given the residual demand curve for energy after

the dirty sector has produced q.6 Thus, the green firm’s optimization problem is identical

to that in Section 2. So optimal green energy production, total energy production, the price

of energy, and the gross profit of the green firm are given by (2.3.1), (2.3.2), (2.3.3) and

(2.3.4) respectively. (Refer to figure 7).

Next, consider the case g < P ∗
d (t = 0). It is straightforward to show that in the ab-

sence of government intervention, profit maximization by the green firm would lead to an

energy price P = 1
2
[P ∗

d (t = 0) + g] and dirty energy production ed = 1
2c

[P ∗
d (t = 0) + g].

To avoid a proliferation of cases, we assume below that the marginal damage δ from dirty

energy is high enough that the government never finds it optimal to set a non-binding quota

q > ed = 1
2c

[P ∗
d (t = 0) + g]. Hence, in this case also, optimal green energy production, total

energy production, the price of energy, and the gross profit of the green firm are given by

(2.3.1), (2.3.2), (2.3.3) and (2.3.4) respectively.

6It is clear that the quota must be binding on the dirty sector, since g ≥ P ∗

d
(t = 0) and it cannot be

optimal for the government to set q ≥ D(g).
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3.2.2 The government’s choice of quota, after observing the green firm’s choice of g and

taking the green firm’s reaction function as given.

We have already noted that when g > P ∗
d (t = δ), then the optimal quota is e∗d(t = δ).

When 0 ≤ g ≤ P ∗
d (t = δ), the gross welfare function is

w(q, g) = a(
a + bq − g

2b
) −

b

2
(
a + bq − g

2b
)2 − δq −

δq2

2
− g(

a − bq − g

2b
) (3.2.1)

The marginal social benefit from tightening the quota is, as in Section 2, the reduction in

social cost when dirty energy is replaced by green energy, while the marginal welfare loss

arises from the reduction in net welfare from energy consumption. So the optimal quota

satisfies

cq + δ − g =
1

2
[
a − bq − g

2
] (3.2.2)

provided it is not optimal to set a zero quota, which we assume. The required assumption,

as in Section 2, is

Assumption 3.2 a − 4δ > 0

For g < P ∗
d (t = 0), we make the following assumption which ensures that it is optimal

for the government to set a quota that is binding for the dirty sector7:

Assumption 3.3 b−2c
2(b+c)

a − 4δ < 0

Given assumption 3.2 and 3.3, it follows from 3.2.2 that the government’s reaction

function is:

q(g) =

{

e∗d(t = δ) if g > P ∗
d (t = δ)

a+3g−4δ

b+4c
if g ≤ P ∗

d (t = δ)
(3.2.3)

As in Section 2 the optimal quota falls when g falls.

There is an important respect in which this model differs from the model with a constant

marginal cost of dirty energy. In the flat supply curve case, it was seen that for every g < δ,

the optimal choice of q was such that e(g, q) < D(δ). To be precise, e(g, q(g) was a increasing

function of g that is, de
dg

> 0. However, with increasing marginal cost,

7This is proved in the Appendix A.
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Figure 8: Government’s reaction Function

de

dg
=

∂e

∂g
+

∂e

∂q
.
dq

dg

= −
1

2b
+

1

2

3

(b + 4c)

=
(b − 2c)

b(b + 4c)

Thus, if c > b
2
, then energy consumption rises as g falls. This has implications for welfare

analysis and the role of an R & D subsidy.

3.2.3 Optimal choice of investment (and marginal cost) by green firm subject to the

reaction function of government and it’s own reaction function in period 2

As before, the firm never chooses g ∈ [P ∗
d (t = δ), g). This is because while such cost

reduction from g is costly, it does not allow the firm to operate in the market in the second

period. In the range[0, P ∗
d (t = δ)), the net profit function is (obtained by substituting

the government’s reaction function into the profit function (2.3.4) and subtracting the

investment cost):

Π(g) =
4

b(b + 4c)2
[ac + bδ − (b + c)g]2 − i(g − g)2

=
4(b + c)2

b(b + 4c)2
[P ∗

d (t = δ) − g]2 − i(g − g)2 (3.2.4)
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Figure 9: Optimal Choice of Marginal Cost

As before, the green firm’s maximization problem has a corner solution (proof in the

Appendix B):

g =

{

0, if i ≤ 4(ac+bδ)2

b(b+4c)2g2

g, if i ≥ 4(ac+bδ)2

b(b+4c)2g2 .
(3.2.5)

This is depicted in Figure 9.

3.2.4 The Role of an R & D Subsidy

We remarked above that total energy output will be greater when there is a green firm

than in its absence if and only if the marginal cost of dirty energy is sufficiently steep relative

to the marginal benefit of energy, that is, c > b
2
. If this is not the case, then for i below the

threshold, g = 0 and the quota, energy output, and the energy price will be as depicted in

Figure 10.

By an argument similar to the one made in 2.5 with reference to Figure 5, we can conclude

that an R & D subsidy would be welfare-reducing if it had any effect.

On the other hand, if c > b
2
, then for i below the threshold, the situation would be as

depicted in Figure 11.

π(0) is given by the area of the rectangle AFED. Gross welfare when there is R & D and

g = 0 is

w(0) = aKBJ + KFED.
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Figure 10: Case A: Role of Subsidy

If there is no R & D, then

w(g) = △aIJ.

So the increase in welfare from conducting R & D minus the increase in profits from

conducting R & D is

{w(0) − w(g)}− π(0) = △IFL −△ALB.

Now △LIF > △ALB if and only if c > 5
4
b (proof in the Appendix C). At the threshold

value of i, the increase in profit from R & D is zero. Thus, if c < 5
4
b, there can be no welfare

improving subsidy. This argument has been summarized in proposition 5

Proposition 5 If c < 5
4
b, then there can be no welfare-improving subsidy to R & D in

the quota regime. If c > 5
4
b, then an R & D subsidy can improve investment and wel-

fare if the marginal cost of green energy is sufficiently sensitive to R & D, that is for

i ∈ [ 4(ac+bδ)2

b(b+4c)2g2 ,
3(ac+bδ)2

2b(b+c)(b+4c)g2 ].

3.2.5 Relaxing assumption 3.1

Suppose we relax assumption 3.1. We allow the initial marginal cost of green technology

to be too high for it to be introduced in the absence of government policy intervention, but

low enough for it to be socially optimal to have some green production of energy. The results

of this changed situation can be summarized in:
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Figure 11: Case B: Role of Subsidy

Proposition 6 Let P ∗
d (t = 0) ≤ g ≤ P ∗

d (t = δ). Then with all other assumptions of section

3 remaining unchanged, the quota regime induces the maximum possible R & D with g = 0

provided that the marginal cost of green energy is sufficiently sensitive to R & D investment,

that is, if (and only if) i ≤ 4(b+c)(ac+bδ)
b(b+4c)2g

. For values of i greater than 4(b+c)(ac+bδ)
b(b+4c)2g

, the optimal

choice of g by the green firm increases smoothly (at a decreasing rate) with i. The optimal

choice of g is strictly less than g for all finite values of g.

If c < 5
4
b, then there can be no welfare-improving subsidy to R & D in the quota regime.

If c > 5
4
b, then an R & D subsidy can improve investment and welfare if i ≥ 4(b+c)(ac+bδ)

b(b+4c)2g
.

Proof : In Appendix D. !

3.3 Tax Regime

As before, we solve the game by backward induction:

3.3.1 Response of firms given that investment has been made and a tax chosen by

government.

In the last stage, the firm chooses its price P to maximize its profit function

π(g, t) =

{

π+ = (P − g)D(P ), if P ∈ [g, t)

π++ = (P − g) [D(P ) − S1(P − t)] , if P ∈ [t, P ∗
d (t)]
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Figure 12: Optimal Choice of g when P ∗
d (t = 0) ≤ g ≤ P ∗

d (t = δ)

Suppose g > P ∗
d (t = δ) so that the marginal cost of the green firm is greater than the

marginal social cost of dirty energy at e∗d(t = δ). It is clear that the optimal tax level is δ

and the green firm is shut out of the market. The price of energy will be P ∗
d (t = δ).

Now consider the case g ∈ (P ∗
d (t = 0), P ∗

d (t = δ)]. In this case, the price reaction function

is as follows:

Figure 13: Price as a function of tax, for a particular marginal cost above P ∗
d (t)

The government never chooses a tax lower than tL = (b+c)g−ac

b
, the highest tax level at

which the green firm does not find it optimal to operate in the energy market. At the tax
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level tL, the green firm’s marginal cost is just equal to the post-tax price attained in its ab-

sence i.e. P ∗
d (t = tL). Total energy produced is e∗d(t = tL). For tax levels less than tL, energy

consumption (the whole of which is dirty energy) rises. However e∗d(t = tL) > e∗d(t = δ)

where e∗d(t = δ) is the level of dirty energy produced at which the marginal social cost

equals marginal social benefit. Thus increased production of dirty energy starting from a

level greater than e∗d(t = δ), ensures that the addition social costs of increased production

outweigh the addition gains from increased production. Thus tax levels less than tL are never

optimal.

Figure 14: Diagram explaining the choice of prices under a tax regime

Suppose the government chooses a tax higher than tL but lower than tH where tH refers

to the lowest possible tax level at which the green firm’s profit maximizing level of price is

such that the dirty firms are driven out of the market. This is denoted by t# in Figure 14.

Now the green firm has a role to play as the post-tax price attained in absence of the green

firm is higher than g. To drive out the dirty sector completely, the green firm has to set the

price marginally less than t. Since the tax is not very high, by choosing a price marginally

less than t, the green firm enjoys the entire market (which is quite high given the low price)

but the per unit margin is negative or positive but not very high. Thus the overall gain from

driving out the dirty firms is either negative or positive but low. The firm does better by

choosing a higher price optimally that reduces the demand it serves (and market share) but

increases the per-unit gains. This optimal price is P ∗, which is the equally weighted average

of g and P ∗
d (t). Profit is shown by the rectangle shaded in grey in Figure 14. As the tax
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moves higher towards tH , the price set by the firm rises and the demand served by the dirty

sector falls. This continues till tH , the tax level at which the optimal price P ∗ reaches a level

at which the dirty industry is driven out of the market.

Suppose a tax greater than tH but less than tM is set, where tM is the lowest possible

tax level at which the green firm can choose it’s monopoly price. In this situation the green

firm chooses P = t. By doing so it reduces demand but enhances the profit margin, but

profit still increases as price is still below monopoly price. Once the tax level reaches tM -

a level that is high enough to ensure that even the choice of monopoly price can drive the

dirty firms out, further increase in tax has no impact on price. The price stays unchanged

at PM(g) as the firm can never earn more than what it does under monopoly.

However it should be noted that the government never raises the tax above tH . Once the

tax reaches tH , the dirty sector is driven out. If the tax is increased further, the resultant

rise in price reduces energy consumption but no gain is achieved from reduction in emissions

as production of dirty energy has already reached zero. Thus if g ∈ [P ∗
d (t = 0), P ∗

d (t = δ)),

the relevant range from which the government chooses the tax is [tL, tH ].

Now suppose g < P ∗
d (t = 0). Then tL < 0. We assume that zero is the minimum tax that

can be set 8. Taxes higher than tH are ruled out for reasons discussed earlier. The relevant

range from which the government chooses a tax is [0, tH ] for this case.

Summarizing the results obtained in this section, we can say that for any g ≥ P ∗
d (t = δ),

P (g, t(g)) = P ∗
d (t = δ) and energy consumption is as follows: ed = e∗d(t = δ) and eg = 0.

For g ∈ [0, P ∗
d (t = δ)),

P (g, t(g)) =
1

2
[g + P ∗

d (t) (3.3.1)

e(g, t(g)) =
1

2
[e∗d(t) + D(g)] (3.3.2)

ed(g, t(g)) =
1

2
[e∗d(t) + S1(g − t)] (3.3.3)

eg(g, t(g)) =
1

2
[D(g) − S1(g − t)] (3.3.4)

8Unlike the situation where g > P ∗

d
(t = 0), a subsidy to the dirty sector might be welfare improving as

that reduces the loss arising out of the monopoly power of the green firm. However, we assume that once

the government decides on as tax as its instrument, it sticks to that in future and a non-negative tax is then

the only option available to the government.
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π(g, t(g)) =
b + c

4bc
[P ∗

d (t) − g]2 (3.3.5)

where S1(P ) denotes the supply curve of the dirty sector in absence of tax.

3.3.2 Optimal selection of t by government, which observes green firm’s choice of g and

takes the green firm’s reaction function as given.

It has already been argued that when g > P ∗
d (t = δ), the optimal tax is equal to δ.

When g ≤ P ∗
d (t = δ), the government chooses a tax from the interval (min{0, tL}, tH ] so as

to maximize welfare.

The corner solution at tL is ruled out as an infinitesimally higher tax ensures first-order

benefits from reduced emissions but the welfare loss from the fall in energy consumption is

second-order. The corner solution at tH is attained only when g ≤ gH where

gH =
δ(b + 2c)2 − ac2

(b + c)(b + 3c)

gH is the maximum cost level at which the optimal tax is such that green firm’s optimal

choice of price can drive out the dirty sector 9. If g > gH , we have an interior solution at a

level of tax that satisfies:

(a − be)
∂e

∂t
= (δ + ced)

∂ed

∂t
+ g

∂eg

∂t
(3.3.6)

where
∂ed

∂t
= −(

1

2(b + c)
+

1

2c
)

∂eg

∂t
=

1

2c

∂ed

∂t
+

∂eg

∂t
=

∂e

∂t

where the marginal social benefit from higher tax (reduction in social cost when dirty

energy is replaced by green energy) is equal to the marginal welfare loss (reduction in net

welfare due to reduced energy consumption) 10.

The intuition behind this non- monotonic shape of the tax curve (t as a function of g)

is the following: g > gH implies that the difference between the MSC of dirty and green

energy is not very large.Thus it is not optimal for the government to choose a high tax like

tH(g) that will allow the green firm to drive out the dirty sector. Instead a lower tax is

chosen, which allows both the sectors to survive. When g falls substantially i.e. g < gH , the

9Note that gH < δ.
10Proved in Appendix E.
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difference in the MSC of two firms becomes large to allow the choice of tH(g). 11

Now for g < gH , a reduction in marginal cost leads to a reduction in optimal tax. Thus

the optimal choice of policy has a dampening effect on the profitability of the green energy

firm. The situation is similar to the earlier model where the supply curve of dirty sector

was flat. Since the objective of this model is to explore situations different from the earlier

model, we rule out g < gH by making the following assumption 12:

Assumption 3.4 gH ≤ 0 that is δ(b + 2c)2 < ac2

Given assumption 3.4, we can solve equation 3.3.6 to get the government’s reaction

function:

t(g) =

{

ac−(b+c)g+2δ(b+2c)
b+4c

, if g ∈ [0, P ∗
d (t = δ)]

δ, if g > P ∗
d (t = δ)

(3.3.7)

Figure 15: Government’s reaction function: Tax as function of green firm’s marginal cost

3.3.3 Optimal choice of investment (and marginal cost) by the green firm subject to the

reaction function of the government and it’s own reaction function in period 2.

As before, the firm never chooses g ∈ [P ∗
d (t = δ), g) as such investments do not allow firms

to operate in the market in the second period. In the range [0, P ∗
d (g)), the net profit function

11Technical details are discussed in Appendix E.
12This assumption ensures that the slope of the supply curve is strictly positive. Thus we get results that

are qualitatively different from Section 2.2. Unlike in Section 2.2, the tax ensures R & D for low values of

i.
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is (obtained by sequentially substituting the firm’s second period reaction function and the

government’s reaction function into the profit function 3.3.5 and subtracting investment

cost):

Π(g) =
b + c

4bc
[
ac + bt

b + c
− g]2 − i(g − g)2

where, t =
ac − (b + c)g + 2δ(b + 2c)

b + 4c
(3.3.8)

Unlike section 2.2, the green firm’s maximization problem can have solutions at either

of the two corners: 0 or g

g =

{

0, if i ≤ (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2

g, if i ≥ (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2

(3.3.9)

Comparison between the optimal cost curves under the two regimes leads to the following

propositions:

Proposition 7 For i ∈ ( 4(ac+bδ)2

b(b+4c)2g2 ,
(b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
), a tax regime induces R & D while a quota

regime does not. For all other values of i, the two instruments are equivalent.

This is depicted in Figure 16. Proof of the above proposition (Proposition 7) discussed

in Appendix F.

Figure 16: Optimal Cost as a function of i in both tax and quota regimes
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3.3.4 The role of an R & D subsidy

We know that at i = (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
,

Π(g) = Π(0)

i.e. π(0) = i.g2

By substituting g = 0 in the optimal tax and price function, we get

t∗(0) =
ac + 2δ(b + 2c)

(b + 4c)
> δ

P (t∗(0), 0) =
(ac + bδ)(b + 2c)

(b + c)(b + 4c)

=
(b + 2c)

(b + 4c)
P ∗

d (t = δ)

< P ∗
d (t = δ)

Figure 17: Diagram Explaining the role of subsidy

This situation is depicted in Figure 17. π(0) is given by the rectangle EGLK. Gross

welfare when there is R & D and g = 0 is

w(0) = ADJC + DKLG

If there is no R& D, w(g) = △ABC. Therefore,

w(0) − w(g) = JKLGB (Shaded in Grey)
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So the increase in welfare from conducting R & D minus the increase in profits from con-

ducting R& D is

{w(0) − w(g)}− π(0) = △FGB −△EFJ

Now △FGB > △EFJ if and only if 4c2 − bc − b2 > 0 i.e c > 1+
√

17
8

b. At the threshold

value of i, the increase in profit from R & D is zero. Thus if c < 1+
√

17
8

b, there can be no

welfare improving subsidy. Also note that i = (b+3c)(ac+bδ)2

2bcg2(b+c)(b+4c)
is the maximum level of i from

which a subsidy can reduce g from g to 0 and yet increase welfare 13. Thus we can summarize

the results of this subsection in

Proposition 8 If c < 1+
√

17
8

b, then a welfare-improving subsidy to R & D does not exist in

the tax regime. If c > 1+
√

17
8

b, then an R & D subsidy can improve investment and welfare if

i ∈ [ (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
, (b+3c)(ac+bδ)2

2bcg2(b+c)(b+4c)
]

3.3.5 Relaxing assumption 3.1

Suppose we relax Assumption 3.1. We allow the initial marginal cost of the green

technology (g) to be too high for it to be introduced in the absence of government policy

intervention, but low enough for it to be socially optimal to have some green production of

energy. The results of this changed situation can be summarized in:

Proposition 9 Let P ∗
d (t = 0) ≤ g ≤ P ∗

d (t = δ). Then with all other assumptions of Section

3 remaining unchanged, the tax regime induces the maximum possible R & D with g = 0

provided that the marginal cost of green energy is sufficiently sensitive to R & D investment,

that is, if (and only if) i ≤ (b+2c)2(ac+bδ)
bcg(b+4c)2

. For values of i greater than (b+2c)2(ac+bδ)
bcg(b+4c)2

, the optimal

choice of g by the green firm increases smoothly (at a decreasing rate) with i. The optimal

choice of g is strictly less than g for all values of g.

For i > 4(b+c)(ac+bδ)
b(b+4c)2g

, the tax regime induces more investment in R & D compared to the quota

regime (Figure 12).

If c < 1+
√

17
8

b, then there can be no welfare-improving subsidy to R & D in the tax regime. If

c > 1+
√

17
8

b, then an R & D subsidy can improve investment and welfare if i ≥ (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
.

Proof : Proof discussed in Appendix H. !

Thus, we see that the change in assumption g > P ∗
d (t = δ) does not change any of the

earlier results qualitatively. A tax continues to induce more R & D than a quota. The only

change is in the shape of the optimal g curve.

13Proof in Appendix G.
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3.4 Welfare Comparisons between the two regimes

Proposition 10 When c > 1+
√

17
8

, the tax regime leads to higher welfare for all values

of i for which it ensures g = 0. When c < 1+
√

17
8

, tax regime ensures higher welfare for

i < (b+3c)(ac+bδ)2

2bcg2(b+c)(b+4c)
, quota regime lead to higher welfare for i ∈ ( (b+3c)(ac+bδ)2

2bcg2(b+c)(b+4c)
, (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
)

and both regimes ensure equal welfare for i > (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
.

Proof : Proof discussed in Appendix I. !

4 Introducing Uncertainty

Until now we have assumed that a social planner (government) is a social welfare maxi-

mizer. In addition to that, it is assumed that the social planner of the current period and the

green energy firm believe with certainty that the social planner will act as a social welfare

maximizer even after R & D investment has been made. While such an assumption is quite

weak when the supply curve of dirty energy is flat, it becomes stringent when we assume

a positively sloped supply curve. When the supply curve is flat, the dirty firms never earn

rents irrespective of the stringency of the climate policy adopted by the government. In such

a situation, welfare maximization seems to be the only rational objective of a government.

However a positively sloped supply means that dirty sector rents could be negatively related

to the stringency of climate policy. Political economy models suggest that governments will

attach some weight to firm rents while choosing policy. The weight that a future government

assigns to firm rents is a parameter in its objective function. The current government and

the green firm do not know the value of this parameter with certainty.

For simplicity, we assume a binary distribution parameter values. Let us assume that

with probability p, the government in the second period acts as a benevolent social welfare

maximizer and with probability (1−p) it only cares about firm rents. Thus, we can say that

in period 2, the government chooses the welfare maximizing optimal policy with probability

p and with probability 1 − p it chooses the business as usual policy, i.e. there is no climate

policy.

Introduction of uncertainty in this way changes only the green firm’s optimal investment

problem. There is no change in the government’s ex-post choice problem and the green

firm’s optimal output decision. We assume that all other assumptions of section 3 remain

unchanged.
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In period 1, the firm chooses g so as to maximize the expected profit:

E[Π(g)] = p[π(g) − I(g)] + (1 − p)[πn(g) − I(g)]

= p.π(g) + (1 − p).πn(g) − I(g) (4.0.1)

where π is the profit under optimal climate policy, πn is the profit with no climate policy

and E denotes the expectation operator.

In a situation of no climate policy, a green firm with a marginal cost above P ∗
d (0) is shut

out of the market (and hence the gross profit of the firm is zero). If g < P ∗
d (0) , the green

firm maximizes profit by choosing a price equal to the equally weighted average of g and

P ∗
d (0). So when g ≤ P ∗

d (0), the price, output and profit are as follows:

P n(g) =
1

2

[

g + P ∗
d (0)

]

=
1

2

[ ac

b + c
+ g

]

en
g (g) =

1

2

[

D(g) − S1(g)
]

=
(b + c)

2bc

[ ac

b + c
− g

]

π
n(g) =

[

P (g) − g
]

eg(g)

=
(b + c)

4bc

[ ac

b + c
− g

]2

Substituting for π(g) and πn(g) is equation 4.0.1, we get the expected net profit function:

E[Π(g)] =



































































p.
[ 4(b+c)2

b(b+4c)2

[

P ∗
d (δ) − g

]2]
+ (1 − p).

[ (b+c)
4bc

[

P ∗
d (0) − g

]2]
− i(g − g)2,

if g ∈ [0, P ∗
d (0))

p.
[ 4(b+c)2

b(b+4c)2

[

P ∗
d (δ) − g

]2]
− i(g − g)2,

if g ∈ [P ∗
d (0), P ∗

d (δ))

−i(g − g)2,

if g ∈ [P ∗
d (δ), g]

The green firm’s maximization problem has a corner solution (proof in Appendix J):

g =

{

0, if i < 1
g2 [

4p(ac+bδ)2

b(b+4c)2
+ (1−p)a2c2

4bc(b+c)
]

g, otherwise
(4.0.2)
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We observe that as in the case with certainty, g is a step function of i. Only the threshold

at which the firm shifts from 0 to g has shifted down. The lower the value of p , lower is the

cut-off at which this shift happens.

Now we study the role of an R & D subsidy in a situation with uncertainty. Here we con-

sider the case where c < 5
4
b. This was the case in which a subsidy was always welfare reducing

in an environment of certainty. The intent is to show that uncertainty can reverse this result.

At i = 1
g2 [

4p(ac+bδ)2

b(b+4c)2
+ (1−p)a2c2

4bc(b+c)
],

E[Π(0)] > E[Π(g)]

or, p.π(0) + (1 − p)πn(0) − ig2 = 0

or, p.π(0) + (1 − p)πn(0) = ig2

Figure 18: Subsidy analysis in quota regime with uncertainty

Now E[π(0)] is given by the sum of p times the area of ABCD and (1−p) times the area

of LNRM . An R & D subsidy can be welfare improving only if at i = 1
g2 [

4p(ac+bδ)2

b(b+4c)2
+ (1−p)a2c2

4bc(b+c)
]

Ω(p) = p[w(0) − w(g)] + (1 − p)[wn(0) − wn(g)] − ig2 > 0

where wn(g) denotes gross welfare as a function of g when there is no policy.

For p = 1,which is the case with no uncertainty, we know from the earlier section that

Ω(p) = w(0) − w(g) − ig2 < 0 . For p = 0, which is the situation with no climate policy, we

know from Figure 18,
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p[w(0) − w(g)] + (1 − p)[wn(0) − wn(g)] = wn(0) − wn(g)

= [aSWH + SMRN ] − [△aEH −△EKJ ]

= WEMRN + △EKJ

> LMRN

> π
n(0)

= i.g2 where i =
1

g2 [
4p(ac + bδ)2

b(b + 4c)2
+

(1 − p)a2c2

4bc(b + c)
]

This implies that Ω(0) > 0. Since Ω(p) is a linear function of p, ∃ p̂ ∈ (0, 1) such that

Ω(p) is positive below p̂ and negative thereafter. Using exactly similar reasoning, it can be

shown that introduction of uncertainty expands the parameter space that supports welfare

enhancing subsidy. The discussion in this section can be summarized in form of the following

proposition:

Proposition 11 Suppose the parameters b and c are such that there can be no welfare-

improving subsidy in the absence of uncertainty in a quota regime. If p is the probability of

having an ex-post optimal climate policy, there exists p̂ ∈ (0, 1) such that for p < p̂, an R

& D subsidy is welfare-improving for values of i > 1
g2 [

4p(ac+bδ)2

b(b+4c)2
+ (1−p)a2c2

4bc(b+c)
]. Similarly, the

introduction of uncertainty expands the parameter space that supports a welfare-enhancing

subsidy in a tax regime.

5 Conclusion

Technological innovation in the energy sector is clearly of central importance in any strat-

egy to avoid too much climatic change. In this respect, the climate problem is distinct from

many environmental problems in that it is probably more feasible to replace existing tech-

nologies entirely rather than find better ways to abate pollution using existing technologies.

Accordingly, we have departed from most of the literature on innovation in environmental

economics and modeled the incentive to conduct R & D to lower the cost of such replace-

ments. We have done this in a context in which the government is unable to commit to the

future level of any policy instrument (although it is committed to the choice of instrument),

an assumption that is necessary, given the fairly long delays to be expected between the

decision to conduct R & D and the arrival of the resulting technology in the market. An

important finding is that when the marginal cost curve of the existing dirty technology is

flat, then an emissions tax is ineffective in inducing R & D, but an emissions quota with

tradeable permits can be effective (Propositions 1 and 2). In this case, under our maintained

assumption of the perfect appropriability of the fruits of R & D, an R & D subsidy was
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shown to be ineffective or welfare-reducing if effective (Proposition 4).

We noted that since existing carbon-emitting technologies are based on mineral deposits

with heterogeneous extraction costs, there can be no doubt that the marginal cost of dirty

energy is increasing in output, although we may not know how steeply. If the marginal

cost curve of dirty energy is increasing sufficiently steeply, the results mentioned above are

reversed. We have shown in Section 3 that both the emissions tax and the emissions quota

can induce R & D and that an R & D subsidy can be a welfare-improving policy in con-

junction with either an emissions tax or an emissions quota. Whether the tax or the quota

regime gives rise to higher welfare under these circumstances depends on the sensitivity of

the marginal cost of green energy to R & D investment.

Since increasing marginal extraction costs give rise to rents, it is to be expected that

rentiers will lobby to protect their rents. This introduces uncertainty about whether there

will be any climate policy when the results of R & D are realized. It was shown in Section 4

that in the presence of such uncertainty, a subsidy to R & D, because it takes effect in the

present rather than the future, becomes a more attractive policy instrument.

What do these results imply for the choice of instruments in climate policy making? The

likelihood that the marginal cost of dirty energy is increasing, together with the undoubted

presence of uncertainty about whether there will be a meaningful climate policy in the future

lead us to emphasize the results in Sections 3 and 4 that indicate a beneficial role for R &

D subsidies. Notice also that we did not model the possibility that the marginal cost of

the green technology can fall below that of the dirty technology. In an earlier version of the

paper we showed that in this case an R & D subsidy is welfare-improving if the effectiveness

of R & D investment 1/i is in an intermediate range. These considerations, together with

the public good aspects of research and development that were not modeled in this paper,

suggest that R & D subsidies should form part of the policy mix.14

What about the choice between an emissions tax and a quota? Either could lead to

greater welfare (assuming a sufficiently steep supply curve of dirty energy) depending on

parameter values (Proposition 10). However, Propositions 7 and 9 tell us that a tax regime

leads to a lower marginal cost of green energy than a quota regime, unless i is small enough,

in which case both induce the maximum possible R & D. If we believe that the public good

aspects of R & D are sufficiently important, then these propositions make the emissions tax

seem more attractive than the emissions quota with tradeable permits.

14(Acemoglu et al., 2010) explore the implications of positive externalities in R & D in a dynamic setting.
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APPENDICES

A Appendix for section 3.2.2:

Derivation of the government’s reaction function

Differentiating Equation 3.2.1 with respect to q, we get

∂w

∂q
=

a

4
−

bq

4
+

3g

4
− δ − cq (A.1)

∂w

∂q

∣

∣

∣

q=0
=

a

4
+

3g

4
− δ (A.2)

To rule out corner solution at q = 0: a + 3g − 4δ > 0 ∀g ≥ 0 ⇒ a − 4δ ≥ 0. This is

Assumption 3.2. For P ∗
d (t = δ) ≥ g ≥ P ∗

d (t = 0), the upper bound on the quota is e∗d(t = δ).

dW

dq

∣

∣

∣

e∗
d
(t=δ)

=
a

4
−

b

4

a − δ

b + c
+

3

4
g − δ − c

a − δ

b + c

=
3

4
[g − P ∗

d (t = δ)] < 0

For g < P ∗
d (t = 0), the upper bound on the quota is the emission level achieved in the

absence of a climate policy that is qF (g).

dW

dq

∣

∣

∣

qF (g)
=

a

4
+

3g

4
− δ − (

b

4
+ c)

1

2c
[

ac

b + c
+ g]

= (
a

4
− δ −

a(b + 4c)

8(b + c)
−

g

8c
(b − 2c)

If b > 2c, dW
dq

∣

∣

∣

qF (g)
is decreasing in g. To ensure that the quota is below qF (g) for all

values of g, we need dW
dq

∣

∣

∣

qF (g)
evaluated at g = 0 to be negative, that is, b−2c

2(b+c)
a − 4δ < 0.

This is Assumption 3.3.

If b < 2c, dW
dq

∣

∣

∣

qF (g)
is increasing in g. To ensure that the quota is below qF (g) for all

values of g, we need dW
dq

∣

∣

∣

qF (g)
evaluated at g = P ∗

d (t = 0) to be negative , which is always

true. Note that when b < 2c , the inequality in Assumption 3.3 is satisfied.
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B Appendix for section 3.2.3:

The green firm’s choice of g has a corner solution in the

quota regime

Differentiating Equation 3.2.4 with respect to g,

dΠ

dg
= −

8(b + c)

b(b + 4c)2
[P ∗

1 (δ) − g] + 2i(g − g)

dΠ

dg

∣

∣

P ∗

1
(δ)

= 2i(g − P ∗
1 (δ)) > 0 (B.1)

Now suppose the net profit curve is concave in the range [0, P ∗
1 (δ)). Given inequality

(B.1), P ∗
1 (δ) maximizes net profit in this range. We know that net profit is negative at

P ∗
1 (δ). Thus g is the global optimum when the profit function (3.2.4) is concave.

If the net profit curve is convex in the range [0, P ∗
1 (δ)), there are two candidates for

optimum in the range [0, P ∗
1 (δ)): 0 and P ∗

1 (δ). We know that net profit is negative at P ∗
1 (δ).

Thus g and 0 are the two candidates for global optimum.

We know that net profit is zero when g = g. The net profit at g = 0 is as follows:

Π(0) =
4(ac + bδ)2

b(b + 4c)2
− ig2

The firm chooses g = 0 if Π(0) ≥ 0 and g otherwise.

i =
4(ac + bδ)2

b(b + 4c)2g2

is the level of i at which the firm is indifferent between choosing 0 and g. Below this threshold,

the firm chooses 0 and g otherwise.

C Appendix for section 3.2.4:

Derivation of conditions for a welfare improving subsidy in

the quota regime

Here we show that △LIF > △ALB (in Figure 11) implies c > 5
4
b. Note

P (q(g), g) =
2(ac + bδ) − (b − 2c)g

b + 4c
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Consider Figure 11. This figure corresponds to the situation where b < 2c.

MSC1(q(0)) = c.{
a − 4δ

b + 4c
} + δ

=
ac + bδ

b + 4c

=
1

2
P (q(0), 0)

where MSC1(q(0)) is the marginal social cost of producing q(0) of energy, using the dirty

technology.

P ∗
d (δ) − P (q(0), 0) =

(2c − b)(ac + bδ)

(b + c)(b + 4c)
> 0

Area of △ALB =
1

2
AL.AB

=
1

2
[P (q(0), 0) − MSC1(q(0))].[S1(P (q(0), 0) − δ) − q(0)]

=
1

2c
(
ac + bδ

b + 4δ
)
2

Area of△IFL =
1

2
FL.[Perpendicular distance from vertex I]

=
1

2
[D(P (q(0), 0)) − S1(P (q(0), 0) − δ)].[P ∗

d (δ) − P (q(0), 0)]

=
(ac + bδ)2(2c − b)2

2bc(b + c)(b + 4c)2

Therefore, △LIF > △ALB if b < 4
5
c. Thus if c < 5

4
b, there can be no welfare-improving

subsidy.

If c > 5
4
b, then

{w(0) − w(g)}− π(0) > 0

or, w(0) − i.g2 > w(g) where i =
4(ac + bδ)2

b(b + 4c)2g2

Thus at the right hand neighborhood of 4(ac+bδ)2

b(b+4c)2g2 , even an infinitesimal subsidy can increase

both welfare and investment. Now,

w(0) − w(g) = BDEF

= AFED + △IFL −△ALB

=
3(ac + bδ)2

2b(b + c)(b + 4c)
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Thus 3(ac+bδ)2

2b(b+c)(b+4c)g2 is the highest level of i from which a subsidy that ensures g = 0 is welfare

improving.

D Appendix for section 3.2.5: Proof of Proposition 6

The firm chooses g ∈ [0, g] to maximize net profit which is given by Equation (3.2.4).

FOC:
dΠ

dg
= −

8(b + c)

b(b + 4c)2
[P ∗

d (δ) − g] + 2i(g − g)

SOC:
d2

Π

dg2
=

8(b + c)2

b(b + 4c)2
− 2i

From the FOC, it is evident that the net profit curve is negatively sloped at g = g and

hence g can never be optimum. The net profit curve is convex that is d2
Π

dg2 > 0 for

i <
4(b + c)2

b(b + 4c)2

while the net profit curve is negatively sloped at g = 0 that is dΠ

dg

∣

∣

∣

g=0
if

i <
4(b + c)(ac + bδ)

b(b + 4c)2g

Equating the FOC to 0, we get the interior solution as

g =
big(b + 4c)2 − 4(b + c)(ac + bδ)

bi(b + 4c)2 − 4(b + c)2

Thus the optimal choice of g is given by:

g =

{

0, if i ≤ 4(b+c)(ac+bδ)
b(b+4c)2g

big(b+4c)2−4(b+c)(ac+bδ)
bi(b+4c)2−4(b+c)2

, if i ≥ 4(b+c)(ac+bδ)
b(b+4c)2g

(D.1)

If s is the rate of subsidy on investment, the net profit function is:

Π(g) =
4

b(b + 4c)2
[ac + bδ − (b + c)g]2 − i(1 − s)(g − g)2

=
4(b + c)2

b(b + 4c)2
[P ∗

d (δ) − g]2 − (1 − s)i(g − g)2 (D.2)

FOC:
dΠ

dg
= 0
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or, −
8(b + c)

b(b + 4c)2
[P ∗

d (δ) − g] + 2(1 − s)i(g − g) = 0 (D.3)

Initially s = 0 and we assume that the optimum g is greater than zero 15. Differentiating

(D.3), with respect to s, we get:

∂g

∂s
=

2bi(b + 4c)2(g − g)

8(b + c)2 − 2bi(1 − s)(b + 4c)2
< 0 (D.4)

as
∂2

Π

dg2
=

8(b + c)2

b(b + 4c)2
− 2i(1 − s) < 0

Now, social welfare as a function of g(s) is as follows:

w(g(s)) = Y + a.e −
b

2
e2 −

c

2
e2

d − δed − geg (D.5)

where:

ed = q

eg =
a − bq − g

2b
e = ed + eg

q =
a + 3g − 4δ

b + 4c

dW

dg
=

3[(b + c)g − (ac + bδ)]

b(b + 4c)
+ 2i(g − g)

Substituting from equation (D.3),

dW

dg

∣

∣

s=0
=

[(b + c)g − (ac + bδ)]

b(b + 4c)

[8(b + c)

b + 4c
− 3

]

=
[(b + c)g − (ac + bδ)]

b(b + 4c)2

[

5b − 4c
]

A marginal subsidy is welfare improving if c > 5
4
b and welfare reducing if c < 5

4
b

Now holding i constant at a particular level greater than 4(b+c)(ac+bδ)
b(b+4c)2g

, W (g, i) is a smooth

and continuous function of g. Now,

dW

dg

∣

∣

g=g
=

3((b + c)g − (ac + bδ))

b(b + 4c)
< 0 as g < P ∗

d (δ)

d2W

dg2
=

3(b + c)

b(b + 4c)
− 2i

15If initial g is zero, then a subsidy is ineffective as marginal cost is already at it’s lowest possible level
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W (h, i) is globally concave or convex depending on the value of i and is negatively sloped

at g. If a marginal subsidy is welfare reducing, it means that W (g, i) curve is positively

sloped in the neighborhood of the no-subsidy equilibrium value of g. Given the above two

observations, the curve should be positively sloped for all values of g to the left of no-subsidy

equilibrium value of g. Thus if a marginal subsidy is welfare reducing, so is a subsidy of

higher magnitude.

E Appendix for section 3.3.2:

Derivation of Government’s Reaction Function under Tax

Regime

Expanding Equation 3.3.6, we get:

∂w

∂t
=

ac + 2δ(b + 2c) − (b + c)g − (b + 4d)t

4c(b + c)
(E.1)

∂w

∂t

∣

∣

∣

tL

=
(2b + c)(ac + bδ − (b + c)g)

2bc(b + c)
> 0 as g < P ∗

d (δ)

∂w

∂t

∣

∣

∣

0
=

ac + 2δ(b + 2c) − (b + c)g

4c(b + c)
> 0 as g < P ∗

d (δ) +
(b + 4c)δ

b + c

Thus corner solutions at min{0, tL} is ruled out.

∂w

∂t

∣

∣

∣

tH
=

δ(b + 2c)2 − ac2 − (b + c)(b + 3c)g

2c(b + c)(b + 2c)

The corner solution at tH is attained only when ∂w
∂t

∣

∣

∣

tH
> 0 that is g < gH = δ(b+2c)2−ac2

(b+c)(b+3c)
.

If g > gH , we solve the first order condition, by equating E.1 to zero, to get an interior

solution at t∗(g) where

t∗ =
ac − (b + c)g + 2δ(b + 2c)

b + 4c

F Appendix for section 3.3.3: Proof of Proposition 7

Differentiating Equation 3.3.8 with respect to g,

dΠ(g)

dg
=

(b + c)

2bc
[
ac + bt

b + c
− g][

b

b + c

dt(g)

dg
− 1] + 2i(g − g) (F.1)

where
dt(g)

dg
= −

b + c

b + 4c
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Substituting, we get:

dΠ(g)

dg
= −

2(b + c)(b + 2c)2

bc(b + 4c)2
[P ∗

d (t = δ) − g] + 2i(g − g) (F.2)

d2
Π(g)

dg2 =
2(b + c)(b + 2c)2

bc(b + 4c)2
− 2i (F.3)

Note that:
dΠ(g)

dg

∣

∣

∣

g=P ∗

d
(t=δ)

> 0 (F.4)

If the net profit curve is concave, inequality (F.4) ensures that in the range [0, P ∗
d (g)],

g = P ∗
d (g) gives the lowest net loss. Thus the only choice of g that can give non-negative net

profits is g. Thus g is the global optimum.

If the net profit curve is convex, then in the range [0, P ∗
d (g)], there are two candidates for

optimum: 0 and P ∗
d (g). We know that at g = P ∗

d (g), net profit is negative. Thus we are left

with just two candidates for global optimum : 0 and g.

g is the optimal choice if i is greater than the level of i at which:

Π(0) = 0

or, i =
(b + 2c)2(ac + bδ)2

bcg2(b + c)(b + 4c)2
(F.5)

The green firm’s maximization problem can have solutions at either of the two corners:

0 or g. The optimal cost function is :

g =

{

0, if i ≤ (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2

g, if i ≥ (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
.

(F.6)

Let iT and iQ be the threshold levels at which the optimal cost curves in tax and quota

regime jump from g = 0 to g = g.

iT =
(b + 2c)2(ac + bδ)2

bcg2(b + c)(b + 4c)2

iQ =
4(ac + bδ)2

b(b + 4c)2g2

Thus,
iT

iQ
=

(b + 2c)2

4c(b + c)
> 1

Thus, the optimal cost curves have the shape given in Figure 16.
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G Appendix for section 3.3.4:

Derivation of conditions for a welfare improving subsidy in

tax regime

We show that for △FGB > △EFJ (in Figure 17) , we need 4c2 − bc− b2 > 0. Consider

Figure 17.

△EFJ =
1

2
.EJ.EF

=
1

2
.[P ∗(t∗(0), 0) − (δ + ced(t

∗(0), 0))].[
P ∗(t∗(0), 0) − δ

c
− ed(t

∗(0), 0)]

=
1

2
.
ac + bδ

b + 4c
.

ac + bδ

c(b + 4c)

=
1

2c
(
ac + bδ

b + 4c
)2 (G.1)

△FGB =
1

2
.FG.[Perpendicular distance of edge FG from B]

=
1

2
.[D(P ∗(t∗(0), 0)) −

P ∗(t∗(0), 0) − δ

c
].[P ∗

d (t = δ) − P ∗(t∗(0), 0)]

=
1

2
.
2(ac + bδ)

b(b + 4c)
.

2c(ac + bδ)

(b + c)(b + 4c)

=
2c

b(b + c)
(
ac + bδ

b + 4c
)2 (G.2)

Therefore, △FGB −△EFJ = (
ac + bδ

b + 4c
)2.[

2c

b(b + c)
−

1

2c
] (G.3)

Thus, △FGB −△EFJ is positive if 4c2 − bc − b2 > 0 that is c > 1+
√

17
8

b.

Thus we can have two cases:

• Case A: 4c2 − bc − b2 < 0

In this case, w(0) − w(g) < π(0) = { (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
}g2 < ig2 for all i > (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
.

Thus, w(0) − ig2 < w(g) for all i > (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2

• Case B: 4c2 − bc − b2 > 0

In this case, w(0) − w(g) > π(0) = (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
.
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Now,

w(0) − w(g) = Area of EKLG + Area of △FGB − Area of △EFJ

= P (t∗(0), 0).eg(t
∗(0), 0) + Area of △FGB − Area of △EFJ

=
(ac + bδ)2(b + 2c)2

bc(b + c)(b + 4c)2
+ [(

ac + bδ

b + 4c
)2.[

2c

b(b + c)
−

1

2c
]]

=
(b + 3c)(ac + bδ)2

2bc(b + c)(b + 4c)

= > π(0) as 4c2 − b(b + c) > 0

Thus, (b+3c)(ac+bδ)2

2bcg2(b+c)(b+4c)
is the highest level of i from which a subsidy that encourages R & D

can be welfare improving.

H Appendix for section 3.3.5: Proof of Proposition 9

The firm chooses g ∈ [0, g] to maximize net profit which is given by 3.3.8. The first and

second order conditions are obtained from F.2 and F.2 respectively. Substituting g = g in

F.2, we get dΠ(g)
dg

∣

∣

g
< 0. The net profit curve is convex if

i <
(b + c)(b + 2c)2

bc(b + 4c)2

and the curve is negatively sloped at g = 0 if

i <
(ac + bδ)(b + 2c)2

bcg(b + 4c)2

Thus if i < (ac+bδ)(b+2c)2

bcg(b+4c)2
, optimal g is 0. For values of i greater than this cut-off, we have an

interior solution that is obtained by settng the FOC to zero. The interior solution is:

g =
bcig(b + 4c)2 − 4(b + 2c)2(ac + bδ)

bci(b + 4c)2 − (b + 2c)2(b + c)

If s is the rate of subsidy on investment, the net profit function is:

Π(g) =
(b + 2c)2

bc(b + c)(b + 4c)2
[ac + bδ − (b + c)g]2 − i(1 − s)(g − g)2

=
(b + 2c)2(b + d)

bc(b + 4c)2
[P ∗

d (δ) − g]2 − (1 − s)i(g − g)2 (H.1)

dΠ

dg
= −

2(b + 2c)2

bc(b + 4c)2
[ac + bδ − (b + c)g] + 2(1 − s)i(g − g) (H.2)
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Initially s = 0 and we assume that the optimum g is greater than zero 16. Differentiating

the equation dΠ

dg
= 0, with respect to s, we get:

∂g

∂s
=

i(g − g)
(b+c)(b+2c)2

bc(b+4c)2
− (1 − s)i

< 0 (H.3)

as
d2

Π

dg2
= 2

(b + c)(b + 2c)2

bc(b + 4c)2
− 2(1 − s)i < 0 (H.4)

Now, social welfare as a function of g(s) is as follows:

w(g(s)) = Y + a.e −
b

2
e2 −

c

2
e2

d − δed − geg (H.5)

where: ed, eg and e are functions of g obtained by substituting the government’s optimal

choice of tax in Equations: 3.3.2, 3.3.4 and 3.3.3.

dW

dg
=

−(b + 3c)(ac + bδ − (b + c)g)

bc(b + 4c)
+ 2i(g − g)

Substituting from the first order conditon ( (H.2)),

dW

dg

∣

∣

∣

s=0
=

ac + bδ − (b + c)g

bc(b + 4c)2
(b2 + bc − 4c2) (H.6)

A marginal subsidy is welfare improving if c > 1+
√

17
8

b and welfare reducing if c < 1+
√

17
8

b

Now holding i constant at a particular level greater than (ac+bδ)(b+2c)2

bcg(b+4c)2
, W (g, i) is a smooth

and continuous function of g. Now,

dW

dg

∣

∣

∣

g=g
=

−(b + 3c)(ac + bδ − (b + c)g)

bc(b + 4c)
< 0

d2W

dg2
=

(b + 3c)(b + c)

bc(b + 4c)
− 2i

W (h, i) is globally concave or convex depending on the value of i and is negatively sloped

at g. If a marginal subsidy is welfare reducing, it means that W (g, i) curve is positively

sloped in the neighborhood of the no-subsidy equilibrium value of g. Given the above two

observations, the curve should be positively sloped for all values of g to the left of no-subsidy

equilibrium value of g. Thus if a marginal subsidy is welfare reducing, so is a higher amount

of subsidy.

16If initial g is zero, then a subsidy is ineffective as marginal cost is already at it’s lowest possible level
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I Appendix for section 3.4: Proof of Proposition 10

As g > P ∗
d (δ), the optimal cost curves are step functions in both regimes, as depicted in

16.

For i > (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
, that is when there is no R & D in both regimes, welfare is equal

to △ABC (in Figure 17) in both regimes.

For i < 4(ac+bδ)2

b(b+4c)2g2 , that is when g = 0 in both the regimes, a tax regime provides higher

welfare than a quota regime. Since the choice of g is same in both regimes, the R & D cost

is equal and hence comparing gross welfare is sufficient to make net welfare comparisons.

When g = 0, optimal quota is given by q(0) = a−4δ

b+4c
. Substituting q = q(0) and g = 0 in the

gross welfare function we get

w(g = 0)
∣

∣

∣

Quota
= a

(a + ba−4δ

b+4c

2b

)

−
b

2

(a + ba−4δ

b+4c

2b

)2

− δ

(a − 4δ

b + 4c

)

−
c

2

(a − 4δ

b + 4c

)2

=
a2(b + 3c) − 2bδ(a − 2δ)

2b(b + 4c)
(I.1)

When g = 0, optimal tax is given by t(0) = ac+2δ(b+2c)
b+4c

. Substituting t = t(0) and g = 0 ,

we obtain:

e(g = 0) =
1

2

[a − t(0)

b + c
+

a − 0

b

]

=
ab2 + 4abc + 2ac2 − b2δ − 2bcδ

b(b + c)(b + 4c)

ed(g = 0) =
1

2

[a − t(0)

b + c
+

0 − t(0)

c

]

=
ac2 − b2δ − 4bcδ − 4c2d

c(b + c)(b + 4c)

Substituting e = e(g = 0) and ed = ed(g = 0) in the gross welfare function, we get:

w(g = 0)
∣

∣

∣

Tax
= ae(g = 0) −

b

2
e(g = 0)2

− δed(g = 0) −
c

2
ed(g = 0)2

=
a2b2c + 5a2bc2 + 3a2c3 − 2abc2δ + b3δ2 + 4b2cδ2 + 4bc2δ2

2bc(b + c)(b + 4c)
(I.2)

Now,

w(g = 0)
∣

∣

∣

Quota
− w(g = 0)

∣

∣

∣

Tax
= −

(ac + bδ)2

2c(b + c)(b + 4c)
< 0 (I.3)

It follows that W (g = 0)
∣

∣

∣

Quota
< W (g = 0)

∣

∣

∣

Tax
.
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Now we consider the interior range of i i.e. 4(ac+bδ)2

b(b+4c)2g2 < i < (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
. We consider

two cases:

• Case (a): c > 1+
√

17
8

From earlier discussions we know that a investment tax that

changes optimal choice of g from 0 to g is welfare reducing in this case. Thus for any

i in the interval [ 4(ac+bδ)2

b(b+4c)2g2 ,
(b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
], g = 0 ensures higher net welfare than g = g.

Moreover, we know that both regimes give equal welfare for g = g. Thus in this interval

of i, a tax regime ensures higher net welfare than a quota regime.

• Case (b): c < 1+
√

17
8

At i = (b+2c)2(ac+bδ)2

bcg2(b+c)(b+4c)2
, a marginal investment tax that changes op-

timal choice of g from 0 to g is welfare improving in this case. w(0)−w(g)

g2 = (b+3c)(ac+bδ)2

2bcg2(b+c)(b+4c)

is the minimum value of i, from which a tax can improve welfare.

Suppose, (b+3c)(ac+bδ)2

2bcg2(b+c)(b+4c)
< 4(ac+bδ)2

b(b+4c)2g2 . This implies

(b + 3c)

2c(b + c)
<

4

(b + 4c)

or (b + 3c)(b + 4c) < 8c(b + c)

or 4c2 − bc + b2 < 0

This inequality cannot be satisfied by any real and positive value of b and c. Thus,
(b+3c)(ac+bδ)2

2bcg2(b+c)(b+4c)
> 4(ac+bδ)2

b(b+4c)2g2 .

Thus for i < (b+3c)(ac+bδ)2

2bcg2(b+c)(b+4c)
, the tax regime ensures higher welfare, where as for i >

(b+3c)(ac+bδ)2

2bcg2(b+c)(b+4c)
, the quota regime ensures higher welfare.

J Appendix for section 4: Proof of Proposition 11

If g ∈
[

P ∗
d (δ), g

]

, the firm makes net loss equal to the magnitude of investment, even

when optimal quota is chosen. This hold true even after introduction of uncertainty (sub-

stituting π(g) = 0 and πn = 0 in Equation (4.0.1)). Note that E[Π(P ∗
d (δ))] = −I(δ) < 0.

Since choosing g > P ∗
d (t = δ) is ruled out, the choice of g has to be from

[

0, P ∗
d (δ)

)
⋃

{

g
}

.

In the range
[

P ∗
d (0), P ∗

d (δ)
)

, the expected net profit function is:

E[Π(g)] = p.π(g) − I(g)

Using the logic used in the case with certainty, we can argue that no value of g above P ∗
d (0)

can be optimum. This is because

E ′[Π(g = P ∗
d (t = δ))] > 0
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ensuring that there cannot be an interior solution from
[

P ∗
d (0), P ∗

d (δ)
)

, irrespective of the

curvature of expected net profit curve. Thus the global equilibrium must always be from the

set
[

0, P ∗
d (0)

]
⋃

{

g
}

.

In the range [0, P ∗
d (0)],

E[Π(g)] = p.π(g) + (1 − p)πn(g) − I(g)

=
4p

b(b + 4c)2
(ac + bδ − (b + c)g)2

+
(1 − p)

4bc(b + c)
(ac − (b + c)g)2 − i(g − g)2

The first and second derivatives with respect to g is:

dE[Π(g)]

dg
= −

8p(b + c)

b(b + 4c)2
(ac + bδ − (b + c)g) −

(1 − p)

2bc
(ac − (b + c)g) + 2i(g − g)

d2e[Π(g)]

dg2 =
8p(b + c)2

(b + 4c)2
+

(1 − p)(b + c)

2bc
− 2i

The expected profit curve in this range is convex if

i <
4p(b + c)2

(b + 4c)2
+

(1 − p)(b + c)

4bc

Now,
dE[Π(g)]

dg

∣

∣

P ∗

d
(0)

= −
8p(b + c)

b(b + 4c)2
bδ + 2i(g −

ac

b + c
)

Thus the curve is upward-sloping in the left neighborhood of P ∗
d (0) if

i <
4pδ(b + c)2

(b + 4c)2[(b + c)g − ac]

Thus whenever the curve is concave, it is upward sloping at P ∗
d (0). Then the optimum in

this range is P ∗
d (0). When the curve is convex, the optimum for this range is one of the

two corner points: 0 and P ∗
d (0). Thus we now have three candidates for global optimum: 0,

P ∗
d (0) and g.

Claim 1 P ∗
d (t = 0) cannot be the optimum for any i > 0 and p ∈ [0, 1]

Proof : Let G∗
u and G∗

v be the values of i below which g = 0 gives lower net profits than

that obtained with g = P ∗
d (t = 0) and g = g respectively. Note that both G∗

u and G∗
v are

linear functions of p. Thus △u(p) = G∗
v − G∗

u is linear in p.
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Let p = 1. Whenever E[Π(P ∗
d )] = e[Π(0)], the net profit curve is convex in range

[0, P ∗
d (t = δ)] and hence eΠ(P ∗

d ) = eΠ(0) < 0. Hence G∗
v is to the left of G∗

u.

Let p = 0. Thus E[Π(P ∗
d ] < 0. Thus at i = G∗

u, E[Π(0)] < 0. Thus G∗
v will be to the left

of G∗
u.

Thus △u(0) < 0 and △u(1) < 0. Linearity of △u(p) in p ensures that △u(p) < 0∀p ∈ [0, 1].

!

Hence, the firm chooses 0 when E[Π(0)] > E[Π(g)] and g otherwise. Thus the optimal choice

of marginal cost is:

gQu(i) =

{

0, if i < 1
g2 [

4p(ac+bδ)2

b(b+4c)2
+ (1−p)a2c2

4bc(b+c)
]

g, otherwise
(J.1)
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