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Climate projections and downscaling techniques: a discussion
for impact studies in urban systems

Marek Smid and Ana Cristina Costa

NOVA IMS, Universidade Nova de Lisboa, Lisbon, Portugal

ABSTRACT

Urban systems are not only major drivers of climate change but also
the impact hotspots. In the context of the planet currently
undergoing a process of greenhouse warming, and
simultaneously predominantly urban based ever continuing
population growth, our agglomerations became vulnerable to
chain reactions triggered by climate related hazards. Hence, the
reliable and cost-effective assessment of future impact is of high
importance. While the climate community has invested significant
effort to provide downscaling techniques yielding localized
information on future climate extreme behaviours, these methods
do not remain widely exploited in the process of urban planning.
In this work, we discuss the underlying reasons and main
challenges of the applicability of downscaling procedures in the
real process of urban planning. This paper attempts to help
bridge the gap between the communities of urban planners and
climatology. In the beginning, we summarize the rationale for
such cooperation, supporting the argument that the scale
represents an important linkage between urbanistic and climate
science in the process of designing an urban space. Secondly, we
introduce the main families of downscaling techniques and their
application on climate projections, also providing the references
to profound studies in the field. Thirdly, special attention is given
to previous works focused on the utilization of downscaled
ensembles of climate simulations in urban agglomerations. Finally,
we identify three major challenges of the wider utilization of
climate projections and downscaling techniques, namely: (i) the
scale mismatch between data needs and data availability, (ii) the
terminology, and (iii) the IT bottleneck. The practical implications
of these issues are discussed in the context of urban studies.
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1. Introduction

In the warming world, we are witnessing an urban population boom and an increasing

number of megalopolis areas (Yang, 2007). Projections indicate that by 2050 urban

systems will be home to 66% of the global population, representing 6.3 billon urban dwell-

ers (United Nations [UN], 2014). Urban systems act as important economic hubs and, as
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such, they provide its inhabitants with higher quality of life, including health, cultural and

psychological aspects (Murray, 2011). Urbanized areas are not only major drivers of

climate change (CC), but are simultaneously hot spots of CC impact, and many of the

world’s agglomerations are located in areas highly exposed to multiple hazards (Akbari,

Konopacki, & Pomerantz, 1999; Haigh & Amaratunga, 2012). CC impacts on urban

systems may cause the stagnation of the state or entire country (Malakar & Mishra,

2017). Climate change has major economic consequences in the form of reduction in

labour productivity, disruption of transport systems and significant losses in energy pro-

duction and its supply chains (Confalonieri et al., 2007). Mortality due to natural disasters

is highest in developing countries, while overall economic damage is greatest in developed

regions (Kousky, 2014). However, economic development significantly decreased disaster

damage (Choi, 2016).

All the above-mentioned illustrates the importance of CC impact assessment in urban

contexts. While impact assessments are commonly based on the output of state-of-the-art

GCM-RCM simulations (Regional Circulation Models nested within General Circulation

Model) providing information at scales varying between 12.5 and 50 km, the process of

urban planning operates with finer scales exploiting detailed knowledge of neighbourhoods

sometimes even at sub-street level. The GCM-RCMs are numerical coupled models describ-

ing atmosphere, oceans, land surface, sea ice and interactions among those earth systems.

Those models remain essential tools to assess climate change (Fowler, Blenkinsop, &

Tebaldi, 2007). However, their coarse resolution and inability to resolve sub grid scale

features limits their usability. A large portion of impact studies operates on scales finer

than common resolution of global or even regional model outputs (Wilby et al., 2004).

The strong need for higher resolution climate data for impact assessment is a long time

well-known issue (e.g. Cohen, 1996; Kim, Chang, Baker, Wilks, & Gates, 1984). This inter-

est originated in the recognized discrepancy of course resolution GCMs (hundreds of kilo-

metres) and the scale of interest of impact studies (an order or two orders of magnitude

finer scale) (Hostetler, 1994). The impact applications are highly sensitive to local climate

variation, and as such they require information proportional to the point climate obser-

vations. The fine-scale variations are parametrized in lower resolution models. The

requirement of fine-scale information emerges particularly in regions of complex topogra-

phy (Giorgi et al., 2001; Mearns et al., 2003; Wilby et al., 2004). Describing areas where

information is needed in more detail, authors typically provide examples such as

coastal areas, river mouths, islands or mountain regions. Until today, urban systems are

not explicitly mentioned on such lists, even though they fulfil the requirements of the

above definition (considering the term ‘topography’ in a broader sense).

When choosing an appropriate adaptation strategy, scale interdependency should be

considered. Certain approaches (e.g. green roofs) provide micro-scale benefits, where

most of the advantage is given to selected stakeholders concentrated in the vicinity of

building rooftops. On the contrary, urban planners should be aware of synoptic and

global climate change because this may significantly narrow down the portfolio of appli-

cable micro-scale solutions (Georgescu et al., 2015). For instance, in urban systems period-

ically exposed to dust storms, the effect of installation of highly reflective roofs will be

significantly lowered by the decrease in albedo due to fine particle deposition (Getter &

Rowe, 2006). Moreover, climatological impacts occurring at a larger scale may unexpect-

edly influence a metropolitan system. For example, high reflectivity can detrimentally
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influence a hydrology cycle in an urban area and as such cause a decrease in regional-scale

precipitation (Bala & Nag, 2012). Georgescu et al. (2015), clearly states that not all adap-

tation and mitigation measures should be given an equal weight across all spatial scales. In

addition, there is still demand for deeper analysis, tool development and coordinated

efforts, which should rise from the collaboration between global climate and urban com-

munities and related disciplines.

GCM-RCM outputs are still insufficient for the analysis of many regional and local

climate aspects, such as extremes. GCMs of very high resolution would indeed improve

the simulations of regional and local aspects (Christensen, Carter, Rummukainen, & Ama-

natidis, 2007), but they remain unreachable due to the enormous computational cost

(Fowler et al., 2007), which leads to the accommodation of downscaling techniques (Rum-

mukainen, 2010).

The main aim of this paper is to contribute to closing the gap between various involved

urban expert stakeholders – the communities of urban planners, climatologists, and policy

makers. By providing the pointers towards appropriate tools and information sources we

hope this work might serve as a shortcut to anyone new in the field of future climate

impact assessment at a local scale. We also summarize crucial aspects and discuss some

practical bottlenecks, which are seldom addressed in scientific literature, thus assisting

with an initial phase to everyone facing the challenge of long-term urban adaptation

planning.

The paper is organized as follows: in the Introduction, we recapitulate the problem

background and the growing importance of CC impact on urban systems. Furthermore,

tendencies towards fine scale, but simultaneously long term adaptation and mitigation

planning are covered, thus justifying the utilization of climate projections and their deriva-

tives delivered by downscaling techniques. In Section 2 we provide a general overview of

the main broad families of downscaling techniques, including references to extensive

works in the field. Their discussion focuses on the methods of statistical downscaling

due to their utility, and the pros and cons of individual approaches are also discussed.

In Section 3 emphasis is given to recent advancement in urban studies incorporating

climate projections illustrating the variety of current approaches. The Discussion

section is devoted to the applicability of climate data to urban planning practice, including

a discussion on three practical bottlenecks of the wider utilization of downscaling tech-

niques in impact assessment in context of urban space, namely scale mismatch, terminol-

ogy and IT issues.

2. Downscaling of climate projections

Principally any data can be refined by downscaling techniques (Rummukainen, 2010).

Coarse GCM output might be satisfactory, for example when the variation within a

single grid cell is low or in case of global assessment. The main advantage of information

directly obtained from GCM is the certainty that physical consistency remains unattached

(Mearns et al., 2003). GCMs are valuable predictive tools, but they cannot account for fine-

scale heterogeneity and reflect on features like mountains, water bodies, infrastructure,

land-cover characteristics, convective clouds and coastal breezes. Bridging this gap

between the resolution of climate models and regional and local scale processes represents

a considerable challenge. Moreover, the uncertainties that characterize the GCMs/RCMs
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are generally aggravated when these models are downscaled, which is the crucial step for

identifying the city-specific impacts and, consequently, to identify vulnerabilities. Hence,

the climate community put significant emphasis on the development of techniques for

downscaling (Fowler et al., 2007).

There is no consensual and unique classification scheme to be applied in attempts to

comprehensively review and summarize the downscaling techniques. In many studies

(e.g. Fowler et al., 2007; Khan, Coulibaly, & Dibike, 2006; Trzaska & Schnarr, 2014),

the methods are categorized into two main groups: Dynamical downscaling and Statistical

downscaling. Dynamic downscaling is based on RCMs or fine spatial-scale numerical

atmospheric models, such as Limited Area Models (LAM) (Feser, Rockel, von Storch,

Winterfeldt, & Zahn, 2011; Fowler et al., 2007). Statistical downscaling is based on

observed relationships between climate at fine and coarse resolutions that are used to

transform global climate models’ output to finer resolution. Alternatively, Mearns et al.

(2003) distinguish three groups of approaches: High resolution GCMs; Nested LAM

and RCMs; and Empirical/Statistical and statistical/dynamical methods. Within the

group of Statistical downscaling, many approaches can be distinguished and classified

according to different criteria. For example, Wilby et al. (2004) provide background infor-

mation and guidance on the application of some Statistical downscaling methods, but also

listed alternatives to downscaling techniques (thus somehow excluding those from the

family of downscaling methods) including spatial interpolation of grid points (sometimes

named ‘unintelligent downscaling’), climate sensitivity analysis (frequently addressed as

bottom-up approach), spatial/temporal analogues using historical data and simple

change factor (known as Delta method). Giorgi et al. (2001) provide a survey of statistical

downscaling techniques focusing on studies published between 1995 and 2000.

2.1. Dynamical downscaling

In a nutshell, dynamical downscaling represents a group of methods originally used in

numerical weather forecasting (Rummukainen, 2010). The first studies establishing the

foundation of regional modelling are Dickinson, Errico, Giorgi, and Bates (1989) and

Giorgi and Bates (1989). Since then, the field has undergone massive development (e.g.

Christensen et al., 2007; Feser et al., 2011; Giorgi et al., 2001; Hong & Kanamitsu, 2014;

Xue, Janjic, Dudhia, Vasic, & De Sales, 2014; Yuqing et al., 2004). Dynamical models

address data and physical processes equivalent to GCMs, but at finer scales, and

provide results only for selected limited regions of the globe (Trzaska & Schnarr, 2014).

RCMs utilize the same physical-dynamical definitions of the key climate processes as

GCMs. Atmospheric fields representing the output of a global model (e.g. surface pressure,

wind, temperature and humidity) are loaded into vertical and horizontal boundaries of the

RCM. Administering of boundary conditions represents a major challenge of dynamical

downscaling (Rummukainen, 2010). The physics-based equations and locally specified

data are used to gain regional climate outputs (Trzaska & Schnarr, 2014). The unresolved

inner-cell variabilities are pushed to RCM output rather than fully taken into account. All

the inner-cell fine scale processes are approximated in a procedure called parametrization

(Rummukainen, 2010).

Two major streams are recognizable in dynamical downscaling. In the first, the resol-

ution is increased over the entire domain of the atmospheric global model (e.g.
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Christensen et al., 2007). The second strategy is based on the utilization of a global model

with variable grid cell size (Fox-Rabinovitz et al., 2008; Lal, McGregor, & Nguyen, 2008).

This technique maintains a coarse grid over the majority of the globe, but increases the

resolution within a particular area of interest (Rummukainen, 2010).

The earlier RCMs resolution used to vary between 100 and 50 km, and at its best 25 km

grid cells (Rummukainen, 2010). The more recent development proved that RCMs are

capable of delivering high resolution results (20 km or less) (Leung, Mearns, Giorgi, &

Wilby, 2003; Mearns et al., 2003). Consequently, increasing resolution also entails increas-

ing computational cost and data volume. RCMs also require a high level of expertise to

interpret the results. Moreover, the RCM experiments require high frequency (e.g. 6

hours) GCM fields supply for boundary conditions. These data are not usually stored

due to mass-storage demand (Mearns et al., 2003). Due to these practical limitations,

the regional dynamical downscaling models remain out of reach for a vast majority of

researchers. Accordingly, the emphasis in this paper is given on the application of statisti-

cal downscaling techniques.

2.2. Statistical downscaling

Statistical downscaling, also known as ‘Empirical/statistical’ or ‘Statistical/dynamical’

downscaling (Mearns et al., 2003), is based on the perspective that regional climate is

mainly conditioned by two factors: the large-scale climate and the local/regional features

such as topography, land-sea distribution or land use (Fowler et al., 2007; Mearns et al.,

2003; von Storch, 1999; Wilby et al., 2004). The large scale climate variables are used as

‘predictors’ to regional or local variables named ‘predictands. Fowler et al. (2007)

expressed the essence of the idea of statistical downscaling as the following descriptive

equation:

R = F(X)

where R represents the local climate variable which is subject to downscaling, X is the set of

large climate variables, and F is a function which relates R and X being validated by the use

of point observations or/and gridded reanalysis data. This equation represents the most

common form, but other relationships have been used, such as relationships between pre-

dictors and the statistical distribution parameters of the predictand (Pfizenmayer & von

Storch, 2001), or the frequencies of extremes of the predictand.

Statistical downscaling allows one to simultaneously simulate multiple outputs such as

precipitation, maximum and minimum temperatures, solar radiation, relative humidity

and wind speed (e.g. Parlange & Katz, 2000), which is of great importance, particularly

for impact studies (Wilby et al., 2004). It is also possible to downscale predictors indepen-

dently, but in such a case, it is crucial to ensure that inter-variable relationships remain

intact.

The performance of downscaling techniques depends on the choice of the regional

domain (Wilby & Wigley, 2000), which in practice is often not considered (Benestad,

2001), and also depends on the regionalization methods (Wilby et al., 2004). Gutiérrez,

San-Martín, Brands, Manzanas, and Herrera (2013) assessed the performance of statistical

methods commonly used for downscaling temperature (including Analogue methods,

Weather typing techniques, Multiple linear regression, and Regression conditioned on
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weather types) with respect to their robust applicability in climate change studies. These

authors established a new validation framework exploiting the anomalous warm historical

periods. Based on this framework the study concluded that regression methods are the

most appropriate in regard to climate change studies. Weather typing was found to under-

estimate the temperature in moderately warmer conditions and Analog methods, even

though best reproducing the observed distributions, significantly underestimate the temp-

eratures for warm periods in comparison with observed values.

Operational weather forecasting approaches, such as Perfect Prognosis (Perfect Prog;

von Storch, Zorita, & Cubasch, 1993) and Model Output Statistics (MOS; Wilks, 1995,

1999), may also be incorporated in statistical downscaling (e.g. Feddersen & Andersen,

2005). These approaches, also named statistical post-processing methods, have been suc-

cessful in correcting many deficiencies inherent to forecasts from numerical weather pre-

diction models (Marzban, Sandgathe, & Kalnay, 2006). Both groups of methods use large

multiple regression equations, taking advantage of the correlations between predictand

and regressors. The classification has its foundation in the character of the employed pre-

dictors (Maraun et al., 2010).

Perfect Prog was developed to exploit the deterministic nature of dynamical Numerical

Weather Prediction (NWP) models. Large scale observational data are often replaced by

the reanalysis products, and the MOS approach is also rooted in NWP (Glahn & Lowry,

1972). The main principle is to exploit statistical relationships between local observational

data and simulated output of the numerical model, in order to correct for RCMs errors

(Maraun et al., 2010). This approach allows for the impact of a particular dynamical

model to be directly reflected at different projections. A limitation of MOS models is

that the data set must contain both the historical records of the predictand and the corre-

sponding stored records of the forecast produced by the dynamical model.

2.3. Discussion

The choice of an appropriate method, or even deciding whether or not it is convenient to

apply a downscaling procedure, is often not straightforward (Mearns et al., 2003). Never-

theless, frequently, the global or continental scale information is implemented directly,

which negatively affects the resulting local scale impact maps (Trzaska & Schnarr,

2014). We acknowledge that the most cutting edge approach to provide future localized

climate information is to combine dynamical downscaling with further statistical advance-

ment and bias corrections, as Lemonsu, Kounkou-Arnaud, Desplat, Salagnac, and Masson

(2013) did when assessing the evolution of Parisian climate. However, these authors had

access to a luxurious retrospective dataset with high spatial–temporal resolution for evalu-

ation purposes. Moreover, their skills, expertise and the access to (funding, time and com-

putational power) resources were arguably outstanding. Those advantages are usually

associated with larger cities hosting universities and other institutions able to help with

such sophisticated planning. Smaller urban systems often struggle to obtain such

support, mainly in terms of expertise (Georgi et al., 2016). This is of high importance

since consistent long-term urban policy should be based on systematic local participation.

On the other hand, the major practical limitation of regional dynamical downscaling,

which is its high computational demand (Mearns et al., 2003; Fowler et al., 2007; Rummu-

kainen, 2010), is not so impactful in the case of empirical/statistical downscaling
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techniques. Furthermore, statistical downscaling allows to simultaneously simulate mul-

tiple outputs such as precipitation, maximum andminimum temperatures, solar radiation,

relative humidity and wind speed (e.g. Parlange & Katz, 2000), which is of great impor-

tance, particularly for impact studies (Wilby et al., 2004). This flexibility, together with

their reachability to wider urban stakeholder communities, determines the focus of this

paper in terms of practical bottlenecks discussed below. In the following, we outline the

strengths and weaknesses of statistical downscaling approaches.

The climate community invested significant effort to compare the methods of statistical

downscaling (e.g. Benestad, 2001; Dibike & Coulibaly, 2005; Huth, 1999; Khan et al., 2006;

Schoof & Pryor, 2001; Widmann, Bretherton, & Salathé Jr, 2003; Wilby & Wigley, 1997;

Zorita & Von Storch, 1999). Schoof (2013) provides a broad overview of statistical down-

scaling for studies on regional climate change, focusing on downscaling assumptions,

choices of predictors and predictands, and methodological approaches.

The strengths and weaknesses of distinct approaches of statistical downscaling are sum-

marized in Table 1. The basic assumption of stationarity is essential, but it also represents

the major theoretical weakness of statistical downscaling (Wilby et al., 2004). The concept

of stationarity assumes that the statistical relationship between the predictor and predic-

tand will not change in future climate (Fowler et al., 2007). However, there is evidence that

this may not occur (e.g. Fowler & Kilsby, 2002; Slonosky, Jones, & Davies, 2001). Statio-

narity of the predictor-predictand relationship can be tested using long records, or a

period of different climate characteristics can be used for model validation. Non-stationar-

ity is introduced by an incomplete set of predictors, which does not reflect the low fre-

quency behaviour, or has an inappropriate sampling or calibration period, or by real

changes in the climate system. However, in projected climate change, the circulation

dynamics may be robust to non-stationarities and the associated degree of non-stationar-

ity is relatively small (Hewitson & Crane, 2006).

When applied to a changing climate, another key assumption inherent to statistical

downscaling is that the predictors should ‘carry the climate change signal’ (Giorgi et al.,

2001). Selected predictors should be physically meaningful and reflect the processes

which subsequently control variability in the climate. The selected predictor variables

should also be those that are well represented by GCMs (Fowler et al., 2007). Appropri-

ately selecting variables is in the equilibrium between the relevance in the physical

climate reality and the accuracy with which the predictor is reproduced by the climate

model (Wilby & Wigley, 2000). Partial correlation analysis, step-wise regression or an

information criterion are examples of procedures that may be preliminarily applied in

order to identify the most promising predictor variables (Wilby, Tomlinson, & Dawson,

2003). Also, local knowledge and expert opinion are priceless information sources in

attempts to assemble the most effective set of predictors (Wilby et al., 2004).

When the statistical downscaling model is not able to consolidate land surface forcing,

meaning that the simulated regional climate is determined solely on the basis of free

atmospheric variables, the CC scenario will omit changes in land-surface feedback.

However, it is acknowledged that local land use management influences regional

climate, vegetation cover and runoff regimes (e.g. Chase et al., 2001; Kalnay & Cai,

2003; Reynard, Prudhomme, & Crooks, 2001).

Statistical downscaling methods tend to underestimate the variance and poorly rep-

resent extreme events. Therefore, the techniques that introduce additional variability
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are frequently utilized (Fowler et al., 2007). A method magnifying the variability by mul-

tiplication by a suitable factor is known as ‘Variance inflation’ (Karl, Wang, Schlesinger,

Knight, & Portman, 1990). The randomization method adds variability in the form of

white noise, and provided good results in returned values of surface temperature for

central Europe (Kyselý, 2002). A more sophisticated approach to add variability to

Table 1. Strengths and weaknesses of statistical downscaling methods with sample studies (adapted
from Wilby et al., 2004).

Strengths Weaknesses Sample studies

Weather typing
. Yields physically interpretable

linkages to surface climate.
. Versatile (e.g. can be applied to

surface climate, air quality,
flooding, erosion, etc.).

. Compositing for analysis of
extreme events.

. Requires additional task of
weather classification.

. Circulation-based schemes can
be insensitive to future climate
forcing.

. May not capture intra-type
variations in surface climate.

. Empirical Orthogonal Functions (EOFs)
(Goodess & Palutikof, 1998)

. Cluster analyses (Cheng, Auld, Li,
Klaassen, & Li, 2007; Cheng, Yu, Li, Li, &
Chu, 2009; Osca, Romero, & Alonso,
2013)

. Fuzzy methods (Bárdossy, Bogardi, &
Matyasovszky, 2005; Bárdossy, Stehlík, &
Caspary, 2002; Teutschbein, Wetterhall,
& Seibert, 2011)

. Analogue method (Zorita & Von Storch,
1999)

. Hybrid approaches (Enke,
Deutschländer, Schneider, & Küchler,
2005)

Weather generators
. Production of large ensembles

for uncertainty analysis or long
simulations for extremes.

. Spatial interpolation of model
parameters using landscape.

. Can generate sub-daily
information.

. Arbitrary adjustment of
parameters for future climate.

. Unanticipated effects to
secondary variables of changing
precipitation parameters.

. Markov chains (Camberlin, Gitau,
Oettli, Ogallo, & Bois, 2014; Kim, Kim, &
Kwon, 2011)

. Markov processes of second order
(Mason, 2004; Qian, Hayhoe, & Gameda,
2005)

. Markov processes of third order
(Dubrovský, Buchtele, & Žalud, 2004)

Regression methods
. Relatively straightforward to

apply.
. Employs full range of available

predictor variables.
. ‘Off-the-shelf’ solutions and

software available.

. Poor representation of observed
variance.

. May assume linearity and/or
normality of data.

. Poor representation of extreme
events.

. Regression-based and Generalized
Linear Models (GAM) (Bergant &
Kajfež-Bogataj, 2005; Hellström, Chen,
Achberger, & Räisänen, 2001; Korhonen,
Venäläinen, Seppä, & Järvinen, 2014)

. Principal Component Analyses (PCA)
(Kidson & Thompson, 1998; Sarhadi,
Burn, Yang, & Ghodsi, 2017)

. Artificial Neural Networks (ANN) and
machine learning algorithms (Dos
Santos, Mendes, & Torres, 2016; Joshi,
St-Hilaire, Ouarda, & Daigle, 2015)

. Canonical Correlation Analysis (CCA)
(Karl et al., 1990; Skourkeas, Kolyva-
Machera, & Maheras, 2013)

. Singular Value Decomposition (SVD)
(Chun, Sung, Woo-Seop, Oh, & Hyojin,
2016; Huth, 1999; Liu & Fan, 2012;
Zwiers & Von Storch, 2004)

. Kriging and other spatial
interpolation approaches (George,
Janaki, & Gomathy, 2016; Ramos, St-
Onge, Blanchet, & Smargiassi, 2016)
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statistical models is a variant of canonical correlation analysis called ‘Expanded downscal-

ing’ (e.g. Huth, 1999; Müller-Wohlfeil, Bürger, & Lahmer, 2000). Each of the abovemen-

tioned approaches have different drawbacks (Bürger & Chen, 2005). Variance inflation

does not adequately reflect spatial correlations. Randomization poorly transfers change

in variability that influences expected future change. Expanded downscaling is highly sus-

ceptible to the choice of statistical processes during its own application (Fowler et al.,

2007).

Generic weakness of statistical downscaling is high demand on available data. On the

other hand, the computational cost of statistical downscaling is relatively low. Therefore, it

may appear to be an advantageous alternative for projects where the computational

capacity, technical expertise or time represent significant restriction (Trzaska &

Schnarr, 2014). Statistical downscaling may be appropriate for impact studies in hetero-

geneous regions with complex topography and steep environmental gradient (e.g.

islands, mountains, land/sea contrast), or in cases where point scale information is

required (e.g. local flooding, soil erosion, urban drainage, etc.), or to produce large ensem-

bles and transient scenarios (Wilby et al., 2004).

3. Climate projections and urban studies

This section illustrates the variety of current approaches available to study potential

impacts of CC in urban systems, thus it provides a typological summary rather than

a comprehensive review of the field. The studies are organized from the point of

view of the scale and the complexity of deployed downscaling techniques with highlights

of unique features. We start with relatively simple studies utilizing the data from only

one weather station. Then we move to works assessing climate change in more than

one metropolitan system, but sometimes considering each city as a point feature.

Finally, we focus on complex studies deploying various techniques of statistical and

dynamical downscaling, exploiting a range of environmental indices and (apart from

the climate simulations) deploying sophisticated models of future evolution of urban

land cover.

The first group of urban studies commonly uses observational data from just one or few

measurement stations (weather or rain gauge stations) for validation purposes. These time

series are used to correct bias in dynamically simulated GCMs or RCMs in order to obtain

more reliable projections of urban climate. This approach is widely used in hydrology and

the term downscaling frequently refers to temporal disaggregation of the data (e.g.

Hingray & Haha, 2005; Huang & Lu, 2015; Willems & Vrac, 2011).

Sunyer, Madsen, and Ang (2012) considered future scenarios for a location north of

Copenhagen (Denmark) using simulated data from a set of RCM projections of the

ENSEMBLES project (Van der Linden & Mitchell, 2009) with spatial resolution of

25 km. This study compares five statistical downscaling methods: two regression

models and three weather generators. The regression methods exploit the different statisti-

cal properties, namely changes in mean and changes in mean and variance. The Weather

Generators (WGs) are a Markovian chain model, a semi-empirical model and a Neymar-

Scott Rectangular Pulses (NSRP) model. The paper by Sunyer et al. (2012) is also out-

standing for its highlights of the importance of the limitations and advantages of different

downscaling techniques.
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Somewhat related is a study of Onof and Arnbjerg-Nielsen (2009), but with focus given

solely to WGs. The rainfall generator in this method is composed of two features: the

storm structures are captured by the hourly generator and then the disaggregator provides

hourly information at finer temporal scales. Another difference from Sunyer et al. (2012)

lies on the method of transformation of the areal information (RCM output) to the point

scale. Here, the areal information is represented by a grid-squared product of the Danish

Meteorological Office with a resolution of 10 km. For each gauge, the RCM cell containing

the gauge and the eight neighbouring cells are considered. Than the mean and standard

deviation over those nine grid-squares are used in the fitting of the hourly generator.

This strategy was also applied by Willems and Vrac (2011). These authors used two

sets of methods. One of them was the direct usage of climate models output with compu-

tation of quantile perturbations on extreme events. The study tested the assumption that

the same perturbations remain constant for finer temporal scales. The second group of

methods belong to the family of Weather typing approaches, which account for low accu-

racy of daily precipitation in current climate models by considering that change in precipi-

tation is not only a function of change in atmospheric circulation but it also depends on

temperature rise.

Recently, Batista, Gonçalves, and da Rocha (2016) assessed the impact of future heat in

the metropolitan region of São Paulo (Brazil) based on the Indoor Perceived Equivalent

Temperature (IPET) index. The IPET was computed on the adjusted cutting-edge multi

model climate project CORDEX, which is an international initiative for downscaling

climate projections from different parts of the world. More specifically, Batista et al.

(2016) deployed CREMA (CORDEX REgCM4 hyper-Matrix experiment) simulations.

This study is unique considering the use of measurements from two weather stations

for validation purposes, which is justified by the varying wind conditions in the city.

Another group of studies focused on the impact of CC in urban systems by assessing

multiple metropolitan areas simultaneously. Such studies, apart from their conclusions

regarding specific cities, also allow for judgments at broader spatial domains (e.g. state

or regional). For example, a study by Martin, Cakmak, Hebbern, Avramescu, and Trem-

blay (2012) assessed the potential temperature-related mortality under climate change for

fifteen Canadian cities. This study shares some aspects with previously mentioned works,

namely the strategy of the eighth neighbouring grid-cells centred at the observations’

locations – in this case the airports. A distinctive feature of this work is the linkage

between temperature and mortality, which was possible due to the cooperation between

the authors and the Public Health Agency of Canada that provided the mortality data.

Fallmann, Wagner, and Emeis (2017) analysed various climate indices for eleven urban

areas in Central Europe. This work used climate simulations of a non-hydrostatic Weather

Research and Forecasting (WRF) model with the Advanced Research WRF-ARW

dynamic solver version 3.1.1. of 7 km grid cell resolution. The E-OBS dataset (Haylock

et al., 2008) was used for validation purposes. Another highlight of the study by Fallmann

et al. (2017) is that it provides some hints on the technical / IT execution of the exercise,

which is seldom addressed in scientific literature.

A very different study by Huang and Lu (2015) assessed the effect of Urban Heat Island

(UHI) on climate warming in the Yangtze river delta in China, which covers many metro-

politan areas. The analyses were based on measurements from forty-one meteorological

stations that uniformly covered the study area with data from 1957 to 2013. The
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authors provide the warming rates and estimates of the UHI contribution to observed

warming. Another aspect of this study is the classification of the cities into levels according

to population size and subsequently derived conclusions within those categories.

Another study for China region using climate simulations in the context of urban

systems is the work of Li, Gu, Bi, Yang, and Liu (2015). The authors projected heat-

related mortality for cardiovascular diseases and respiratory diseases. The interesting

feature to be highlighted is that this work targets the specific causalities within those

disease categories instead of the total heat-related mortality. On the other hand, the limit-

ation of this study might be the usage of the ensemble consisting of only five GCMs (the

rule of thumb recommends at least ten models). However, Li et al. (2016) have improved

the study by utilizing thirty-one downscaled climate models for the same area. More

importantly, they included the trend of aging population in the estimate of future heat-

related mortality. Consequently, this study provides the first evidence of the synergy in

hybrid question of global warming and population aging in China.

Completely unparalleled is a study by Früh et al. (2011). Firstly, the RCMs runs were

used as input for a dynamical model to obtain data at urban scale (horizontal resolution

varies from 500 m at the outskirts to 50 m at the city centre), and then the microscale

simulations covering thirty-year time slices (past and future) were delivered via the

Cuboid method. This method considers the assumption that it is possible to reduce the

problem into three degrees of freedom: the 2-m air temperature, the 2-m humidity and

10-m wind speed. This approach is related to the family of envelope models used in

Ecology. Only a small set of meteorological conditions are being simulated and the specific

day characteristics are derived by means of interpolation. According to Früh et al. (2011),

this pragmatic approach provides approximated results but significantly decreases the

computational cost.

A complex study by Hayhoe et al. (2004) assessed CC impacts on a medium size area of

interest in California (USA), where one of the four locations considered for extreme heat

analyses is located in the city of Los Angeles. This study used one lower (B1) and one

higher (A1fi) Special Report on Emission Scenarios (SRES), which bracket a large pro-

portion of various future emission scenarios. Dynamical models were statistically down-

scaled to a grid of 1/8° (∼13.5 km) by a still popular downscaling method based on

probability density functions. This approach belongs to the family of empirical-statistical

downscaling techniques. Furthermore, simple regression was used to downscale to the

locations of selected weather stations. The observed monthly regression relations were

then applied to future projections to ensure that the approximated information on

future climate shared the same weather statistics. Hayhoe et al. (2004) also reported

that the extrapolation beyond the range of observed values were rarely needed because

the simulated climate behaviour involves higher occurrence of warm days rather than

an increase in expected absolute maxima. This study represents one of the most

complex CC impact assessments in terms of impacted sectors: extreme heat, heat

related mortality, snowpack, runoff, water supply, agriculture and general vegetation dis-

tribution. The most relevant conclusions in an urban context are about extreme heat and

related mortality, but the authors also provide insights on future precipitation, snowpack,

runoff, water supply, agriculture and vegetation cover.

Even though the study by Lee, Park, Lee, and Kim (2016) is not urban specific, it used

RCM simulations and has several unique aspects. The authors computed the Probable
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Maximum Precipitation (PMP) deploying data from 64 weather stations dispersed all over

South Korea, which were interpolated into a 5 km × 5 km grid by inverse distance weight-

ing. The bias included in RCM simulation was corrected by the quantile-mapping method.

First, the major storm events on the record were identified assuming that their associated

precipitation efficiency was maximal. The storm efficiency is a function of perceptible

water (total mass of water vapour in vertical column of the atmosphere). However, the

direct measurement of this quantity is very challenging and perceptible water is also

not a common variable provided by RCMs. The first unique feature of this study is the

overcoming of the issue of lacking perceptible water information by exploiting the corre-

lated relationship with surface dew point temperature. Second, this article provides a very

detailed and intelligible explanation of a cutting edge bias correction method.

Kusaka, Masayuki, and Takane (2012) evaluated future heat stress in the world´s largest

metropolitan system – Greater Tokyo. This sophisticated study deploys the dynamical

WRF model with 3 km horizontal spacing. The boundary forcing is created by averaging

the ensemble of three different GCMs. To express estimated future heat stress this study

uses the concept of Wet-Bulb Globe Temperature (WGBT). WGBT is an empirical heat

index developed to control heat-related causalities in military training, and supposedly

it correlates better with heat stroke occurrence than simple air temperature. Another

simple but interesting indicator of future heat stress used by Kusaka et al. (2012) is the

frequency of Heat-induced Sleeping Discomfort (HSD) nights. Another highlight of this

work is an approach to account for the complexity of the urban system. The WRF

model is coupled to a single layer Urban Canopy Model (UCM), which considers the

urban geometry, green fraction and anthropogenic heat emission with diurnal variation.

There are many studies confirming that land cover has a significant impact on climate

(e.g. Fallmann et al., 2017; Huang & Lu, 2015; Solecki & Oliveri, 2004). Some works proved

its impact on rather local scales (Cui & Shi, 2012; Früh et al., 2011; Hu & Jia, 2010; Wolters

& Brandsma, 2012; Zhang, Gao, Wang, & Chen, 2010). Other studies provided evidence of

climate being influenced by urbanization and related land cover changes on regional or

even global scale (e.g. Batista et al., 2016; Da Rocha, Reboita, Dutra, Llopart, &

Coppola, 2014; Llopart, Coppola, Giorgi, Da Rocha, & Cuadra, 2014). On the other

hand, a global study by Peng et al. (2012), considering 419 large cities, states that no

relation has been confirmed between the size of the metropolitan system or population

density and the UHI effect. Rather than that, those authors emphasized the importance

of urban design and urban vegetation cover within the city.

One of the most complex approaches for downscaling urban climate data involving

land use modelling is the work of Solecki and Oliveri (2004). As a part of the New York

Climate & Health Project, these authors describe a procedure to downscale CC scenarios

in urban land use models. The land use models considered in this study are part of the

SLEUTH programme (Clarke, Hoppen, & Gaydos, 1997), which deploys a probabilistic

cellular automata protocol, and consists of two core components: the Land Cover Delta-

tron Model (LCDM) is nested within an Urban Growth Model (UGM). An alternative to

those mostly not user friendly cellular automata models was recently introduced by

Bununu (2017).

Finally, Lemonsu et al. (2013) used a very sophisticated approach to investigate the

evolution of Parisian climate. This study was conducted as part of the EPICEA project

(French acronym for Pluridisciplinary study of the impacts of climate change at the

12 M. SMID AND A. C. COSTA

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

d
ad

e 
N

o
v
a 

d
e 

L
is

b
o
a]

 a
t 

0
4
:1

5
 2

7
 D

ec
em

b
er

 2
0
1
7
 



scale of Parisian region). The aforementioned authors combined dynamical downscaling

with the quantile-quantile (q-q) correction method. The long term urban climate simu-

lations were calculated by the SURFEX land surface modelling system. The analyses

were done for a 48 km × 48 km study area with a spatial resolution of 1 km. The land

use/land cover scheme followed the CORINE classification. For evaluation purposes,

the high spatial–temporal resolution (8 km, hourly) retrospective dataset (1958–2008)

generated by the SAFRAN system was utilized. This study by Lemonsu et al. (2013)

assessed possible aspects of future climate in winter and summer seasons separately by

exploiting a wide range of climate indices, and provided information on the UHI effect

as well.

4. Discussion

Climate change is expected to have significant impacts on urban systems and built infra-

structure (Chapman, Howden-Chapman, & Capon, 2016; Hunt & Watkiss, 2011; Rosenz-

weig, Solecki, Hammer, & Mehrotra, 2011), such as energy systems (Spandagos & Ng,

2017), water supply and wastewater treatment (Howard, Calow, Macdonald, &

Bartram, 2016; Wang et al., 2016), transportation systems (Dulal, Brodnig, & Onoriose,

2011; Kwan & Hashim, 2016; Peterson, McGuirk, Houston, Horvitz, & Wehner, 2008),

public health and human comfort (Araos, Austin, Berrang-Ford, & Ford, 2016; Batista

et al., 2016; Li et al., 2015; Molenaar, Heusinkveld, & Steeneveld, 2016).

What climate-related challenges does the city face? Where are adaptation policies and

actions the most urgently needed? Those are key questions faced by decision makers but

the answers often lead to short or medium term solutions. Actions like establishing a plan

for the mobile dams’ deployment belong to coping measures and are based on the experi-

ences of past extreme events. Incremental adaptation represents another approach, when

the already existing solutions are improved step by step considering the future evolution of

the climate conditions. Coping and incremental adaptation measures certainly have their

value but do not grant the functionality in the long term future. In extreme cases, these

approaches might lead to a scenario where the urban system is locked-into an unsustain-

able situation (e.g. the capacity of already existing dykes or conventional sewerage system

is not ever-increasable). On the other hand, urban systems last for decades and certain fea-

tures such as valuable heritage remain for centuries. Hence, broader and systematic

approach to address long term adaptation planning is needed. Transformative adaptation

combines coping and incremental strategies, while addressing the root of causes and

acknowledging the future potential magnitude of various risks. Transformative adaptation

aims to multipurpose solutions and, as an integral part of urban planning turns challenges

to opportunities and boosts overall quality of life.

Adaptation to climate change is currently becoming an integral part of urban planning

and infrastructure development at city and district levels. While the short and medium

term perspective is usually considered, long-term planning often remains omitted by man-

agers and decision makers. There are several reasons for the lack of long term adaptation

planning and action. Firstly, for example in European cities, administrators operate with

reduced budgets and high unemployment resulting from economic crises. Globally, while

some cities already experienced dramatic impacts of CC, others view the matter as a

distant future challenge, thus their focus is on more urgent problems. In fact, in scientific
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literature the evidence of the current lack of appropriate policy targeting the urban climate

can be found (Hughes, 2017). Moreover, even though integrated long-term transformative

adaptation strategy makes the action more affordable, these investments are rewarding

after a long time beyond political mandates. Long term adaptation planning operates

with periods of approximately 50–100 years and represent a difficult challenge owing to

the uncertainty associated with future climate, as well as because of the socioeconomic

evolution of complex urban environments (Georgi et al., 2016).

4.1. Linking climate data and urban planning

Climate information should be considered in the planning practice of different sectors,

such as cultural heritage protection, disaster risk reduction, food security, public health,

energy, transport, tourism, water resources and coastal management. However, rec-

ommendations on how to incorporate climate data into the urban planning process

often remain rather holistic. A few major entities (e.g. WMO – World Meteorological

Organization, IPCC – Intergovernmental Panel on Climate Change, FAO – Food and

Agriculture Organization of the United Nations), among other authors (e.g. Akbari

et al., 2016; Davoudi, Crawford, & Mehmood, 2009), provide general information on

adaptation and mitigation planning. For example, the Implementation Plan of the

Global Framework for Climate Services (WMO, 2014) provides some insights, but they

are still general as they typically reflect the purpose of the actions or they are limited to

a few urban systems.

Eliasson (2000) investigated if, how and when knowledge about the climate is used in

the urban planning process. The study showed that the use of climatic information was

unsystematic and that climatology had a low impact on the planning process. Carter

et al. (2015) discuss the use of weather data and climate projections by urban planners

from Greater Manchester (UK) for adaptation planning. Those authors also stress practi-

cal limitations in the data that are constraining its wider use, such as the need to provide

simpler messages with an accompanying narrative to explain what CC means locally.

Lorenz, Dessai, Forster, and Paavola (2017) explored the usability and adoption of

climate projections within local adaptation planning in England and Germany. Their con-

clusions regarding the English context raised the question to what extent the discussion on

the usability of climate projections at a local level is sensible at the moment. Lorenz et al.

(2017) also concluded that Germany makes substantial use of past and present climate

data for spatial planning, but the strictly regulated nature of planning prevents the use

of climate projections, due to their inherent uncertainties.

How exactly can uncertain probabilistic information be included in a decision support

system? A basic concept, still widely used in engineering, considers the climate variability

but only with constant properties through time, and based on the severity of the past

events. This stationarity assumption is still a common practice when designing new infra-

structures (Klein Tank, Zwiers, & Zhang, 2009). Therefore, the capacity to endure

extremes is accounted for up to a magnitude that might not realistic at locations where

that assumption is not met. In fact, urban planners often take into account spatially

course projections of climate events and then apply general adaptation measures across

the whole metropolitan area (e.g. the utilization of certain thickness of insulation of elec-

tric wires or the usage of pipes with specific diameter or/and of certain material when the
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replacement takes place). Such adaptation measures are not location-specific. Hence, they

may be effective but not efficient. Instead (or additionally), urban planners could use loca-

lized climate projections to prioritize projects according to areas with strongest future

impacts (i.e. the conjunction of hazards exposure and vulnerabilities). Detailed climate

projections could assist with major infrastructures development to ensure their safety.

For example, industries with high potential to contaminate water resources and soil

could be located in areas of low risk of extreme climate impacts. Urban planning

should give a greater emphasis to the locations exhibiting higher impacts on the vulnerable

part of society, such as children, elderly and low income communities. Furthermore, close

attention should be given to land-use planning to prevent new urbanization in high-risk

areas (including high-risk areas in distant future).

The important reason why the localized climate information is being incorporated to

urban planning rather slowly is that data providers and data users need to interact

better. It can also be due to the uniqueness of each urban system, or because climate adap-

tation is still somewhat new in the policy making agenda (Carter et al., 2015). Climate

experts often do not have a mandate to influence the decision-making process, while

urban decision makers need assistance with data handling and interpretation. In urban

space, various programmes, institutes and private stakeholders typically address individual

aspects of adaptation planning, but the coordination between them is generally week

(WMO, 2014). Due to the novelty of this agenda, the interaction between stakeholders

should have a form of long-term bidirectional communication to allow for feedback

and further adjustments. Moreover, Schoof (2013) suggested to establish new expert pos-

itions within decision-making bodies. Those climate professionals would help to increase

the utility of localized climate projections.

To successfully tackle the impacts of CC in urban systems, climate projection data with

a suitable spatial scale are vital. For example, while water management studies require an

inter-regional approach, UHIs or stormwater related challenges are by their nature local

(Georgi et al., 2016). Local stakeholders often have very fine scale information regarding

vulnerabilities to changing climate, while at the same time local decision makers have a key

responsibility to deliver space-specific adaptation measures to address the environmental,

social and economic implications of CC (Carter et al., 2015).

Currently, we are witnessing two parallel tendencies. The first one is a push towards

localized city/district level planning (Georgi et al., 2016), and a second one is a need for

long-term adaptation planning (Davoudi et al., 2012). The lack of information that can

be used as a basis for impact studies addressing these two requirements represents a

certain gap. Different communities are mentioning this gap, each of them from their

own perspective. The environmentalist community often refers to a gap in knowledge

(e.g. Martins & Ferreira, 2011) and urban planners state that cities do not have skills

and expertise, whilst decision makers address the shortage of financial resources to

bridge this gap by consultancy (Georgi et al., 2016). However, the two above-mentioned

requirements are bounding this gap.

The usual approach to dealing with uncertainties in future projections of climate

change and its impacts is to consider a range of possible future scenarios under different

Representative Concentration Pathways (RCPs) (e.g. RCP 4.5 or RCP 8.5) described by

Van Vuuren et al. (2011). The temporal scope of most of the impact studies based on

such CC projections is the end of the century. These studies are particularly useful for
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long-term sustainable development planning, because it must account for vulnerability to

extreme weather events, disaster management and adaptation, particularly in developing

countries (Mirza, 2003). Nevertheless, Vautard et al. (2013) argue that the medium term

future period of 2050 corresponds to the societal demand of climatic projections useful for

adaptation purposes. Regardless of the time scope of the climate projections (2050 –

medium term future; 2100 – distant future) or the range of possible future scenarios,

important is the need for downscaling scenarios and projections at spatial scales that

are relevant for adaptation policies, particularly at city scale.

Carter et al. (2015) advocate that, for effective adaptation, decision makers should

develop responses to recent trends in weather and climate, as well as to future projections.

Those authors support this claim on a detailed case study of CC impacts and urban adap-

tation responses linked to spatial planning in Greater Manchester (UK). Research methods

employed included downscaling climate projections, spatial analysis with Geographic

Information Systems, land use modelling, energy balance modelling, social network analy-

sis, participatory workshops, scenario development, among other approaches. We agree

that their conclusions and recommendations are relevant to cities in general.

Another successful multidisciplinary approach is the Rotterdam Climate Initiative

(http://www.rotterdamclimateinitiative.nl), which aims to have reduced CO2 emissions

by 50% and to have made the region 100% climate proof by 2025. Four potential

climate scenarios are used for all climate research and policy-making in the Netherlands,

such as the urban CC adaptation plans (City of Rotterdam, 2013). For example, two

extreme climate scenarios are used to determine the upper and lower limits for the rise

in sea level and the normative river flow, as well as to analyse flood protection measures.

One of the scenarios assumes 1°C temperature rise on earth in 2050 compared to 1990 and

no change in air circulation patterns, and the other one assumes 2°C temperature rise,

milder and wetter winters due to more westerly winds and warmer and drier summers

due to more easterly winds. These CC scenarios are also linked to two socioeconomic scen-

arios. This combination has led to four delta scenarios looking ahead to 2050 and 2100.

The Rotterdam Climate Change Adaptation Strategy is based on these delta scenarios

(City of Rotterdam, 2013).

4.2. Mismatch between data needs and data availability

In localized long-term future climate impact assessment, there is no alternative to deploy-

ment of climate projections. Swart et al. (2014) emphasized the need to enclose the gap in

available climate simulations data by calling for making the projections more precise.

Moreover, Olazabal et al. (2014) highlight the problem of the lack of knowledge on specific

local future climate conditions. The quantitative knowledge relevant to local priorities is

pivotal in urban planning, urban design and the adaptation strategy implementation pro-

cesses. Space-specific information can be used for the development of map-based inter-

faces, which is very effective in communication. This is important because local level

tools and decision support systems foster citizens’ participation, and allow them to

embrace the change and tackle the adaptation as a positive opportunity rather than an

issue solely bringing additional costs.

Evidence based knowledge of previous events, general climate change information,

localized climate projections and vulnerability assessment of exposure features represents
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the main components of urban adaptation strategy. While local and regional governments

have very fine scale information on urban systems and their vulnerability at their disposal,

data with the adequate spatial scale regarding future climate behaviour, as simulated by

GCM/RCM models, are often lacking to address its relation with various aspects of

urban systems.

This mismatch between data needs and data availability is schematically depicted in

Figure 1, which also illustrates the magnitude of the need for applying downscaling tech-

niques to the already available GCM/RCM data. The discrepancy between features A and

B (Figure 1) express the general mismatch at spatial and temporal scales. Ideally, A and B

would overlap.

Figure 1 can provide insights on questions like: Is the available data sufficient to address

a particular urban challenge? Is there a need to apply downscaling techniques, and if so,

what would the satisfactory spatial and temporal target resolution be? For example, there

is a great variation in the requirements on space and time resolution in hydrology. Water

management operates on broader areas at catchment scales, thus the common RCM

output with 50 × 50 km cell size might be feasible. Conversely, stormwater and urban

draining analyses require a much finer spatial and temporal scale, coming down to

point scale representing individual rain gauges. Similarly, on the temporal axis of

Figure 1, flash floods analysis calls for hourly and sub-hourly data. Overall, the needs

for urban hydrological studies are located in the right-bottom part of object B (Figure

1). For example, heat waves (in dependency on what kind of environmental index is

being used) are typically defined as certain days during which the temperature does not

drop under a certain threshold. Hence, daily temperature data would be effective for

such an assessment and subsequent adaptation planning. Additionally, the dotted lines

in Figure 1 represent examples of the mismatch between raw GCM/RCM output and

the needs of urban studies. The line marked as I illustrates the situation where cutting-

edge RCM simulations are available (e.g. EURO-CORDEX data with 12 × 12 km/day

Figure 1. Mismatch between data needs and data availability in urban systems (inspired by Bi et al.,
2017).
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resolution) and the UHI effect is of main concern. The longer line II depicts GCM/RCM of

50 × 50 km/6 hourly, and the subject to be analysed is a stormwater discharge. These

illustrative examples assist in reading Figure 1, where the length of lines I and II represents

the magnitude of the scale mismatch, which emphasize the current need for the deploy-

ment of downscaling techniques.

4.3. Climate change adaptation practices and scale interdependency

Grimmond et al. (2010) identify current capabilities to observe and predict urban atmos-

pheric processes across a range of spatial scales. In future urban climate assessment, there

is a need to not only estimate the climate behaviour, but also the socioeconomic evolution

of the urban system. Those two are bind since they are bidirectional inter-dependent.

Therefore, the modelling should also be coupled. Land use and land cover represent pro-

minent observable tokens of the socioeconomic situation. Generally, land use in the

context of complex urban fibre is a phenomenon occurring (and being managed) at

finer scale than typical GCM/RCM output, thus downscaling techniques have their

value for urban planning and design. Moreover, land-use changes are not considered in

RCMs, which are usually run with static vegetation (Rössler et al., 2017). For example,

when designing an urban square, decision makers having the localized information on

future climate conditions (including the influence of e.g. amount of sealed surface to

water run-off and UHI) may design the square differently. The positioning of circumfer-

ential buildings, the excessive water draining vegetation or shading trees can be added, tar-

geting the areas of likely future high exposure. Street design can incorporate the corridors

following the main local wind directions (Georgi et al., 2016). Such decisions are difficult

to be made based on coarse resolution decision making supporting materials, particularly

in a city context, where conditions might differ street by street (Ali-Toudert & Mayer,

2007).

Specific climatic conditions predefine effective adaptations. The strategies should be

harmonious within a large spatial sustainability context. Hence, for example, utilizing

non-native flora (aiming for local temperature reduction) with high water demand in

arid zones may result in the reduction of city water supply (Ruddell & Dixon, 2014).

According to Georgescu et al. (2015), the balance between localized cooling and water

scarcity in cities should be subject to further research.

Even individual buildings can have decadal or century-times scale impact. Decisions of

urban planners also have climate-related spatial impacts. Planning processes should con-

sider the limits on parallel or concurrent development resulting from scale interdependent

phenomena (Mills et al., 2010). Buildings relatively taller than surrounding constructions

would alter shading, near-surface temperature and the wind regime which consequently

influence the thermal comfort and the air quality in the area, particularly in the case of

cumulated impacts related to rapid development. The study of the Pearl River delta in

East China, serves as an example which documents the impact of the sum of rapid devel-

opment onto regional air quality (Lu, Chow, Yao, Lau, & Fung, 2010). Decision makers

should be aware of scale interdependency dimension of development in order to optimize

strategies across various spatial scales.

Both climate and land cover models carry large uncertainties. This uncertainty must be

kept in mind during the decision making. Hence, the action taken on the basis of localized
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future projections should favour the so called robust and low-regret measures. Those

measures are of relatively low cost and bring large benefits. For example, instead of

increasing the capacity of a sewerage system, which does not guarantee sufficient function-

ality under long-term climate change, the city may deploy a green infrastructure at a lower

cost. Such a solution also brings additional benefits and is more flexible, therefore it allows

the urban system to avoid locking itself in the unsustainable strategy (Georgi et al., 2016).

Moreover, due to the complexity and long-term nature of climate, the integration of a

monitoring, reporting and evaluation (MRE) system is vital (UNFCCC Secretariat,

2010). MRE does not only represent a procedure to systematize experience and extend

knowledge, but also provides an emphasis on learning. Hence, MRE allows for necessary

continuous adjustments in future decision making (Bours, McGinn, & Pringle, 2014).

4.4. Practical bottlenecks for geographers, urban planners or statistics

practitioners

Terminology represents the very first bottleneck for everyone new to the field of downscal-

ing of climate projections. von Storch, Zorita, and Cubasch (1991) might have been the

first ones to use the term downscaling and it has been widely used since then, but the

terms disaggregation and regionalization are also frequently used in Europe. In parallel,

the name refinement was proposed by Environment Canada (Hengeveld, 2000). Neverthe-

less, the downscaling concept has been increasingly utilized in Canada (Barrow, Maxwell,

& Gachon, 2004). ‘Statistical/empirical’ downscaling is commonly addressed by simplified

terms ‘statistical’ or ‘empirical’ downscaling, while ‘Dynamical downscaling’ can be

referred to as ‘numerical’ downscaling (Bi, Gachon, Vrac, & Monette, 2017).

Downscaling and climate modelling represent a multidisciplinary field, where

researchers from various backgrounds intersect their efforts, resulting in specific termi-

nology, which may be somewhat confusing. For instance, Polynomial Regression (also

called the Surface Trend Analysis) is a statistical technique. In the context of spatial

interpolation procedures, it is commonly classified as a deterministic technique, and

kriging approaches are classified as stochastic. Furthermore, the terms ‘statistical’ and

‘stochastic’ (frequently used as names of sub-classes in downscaling methodological

reviews) are not always considered as synonymous, even though both terms could be

seen as identical since they are referring to methods handling input modelling factors

as variables with certain probability distributions. In addition, recent development is

moving towards multi-step methodologies containing deterministic and stochastic com-

ponents. This evolution leads to the introduction of new terms like hybrid or semi-sto-

chastic approaches, which makes the efforts of initial exploration of various downscaling

methods even more challenging. Consequently, we present perhaps the most compre-

hensive graphic in Figure 2. Not all classification terms found in the literature are

included, but it is helpful when one tries to orient oneself in the main sub-categories

of statistical/empirical downscaling.

Wilcke and Bärring (2016) argue that many climate impact modellers are simply not

able to handle the data generated by GCM-RCM simulations. This topic is seldom dis-

cussed in urban climate scientific literature (e.g. Wilcke & Bärring, 2016; Rössler et al.,

2017). Here, we hypothesize that the underlying reason largely lies in certain entrance bar-

riers within the IT domain. Sometimes, one can find pointers, for example when Fallmann
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et al. (2017) state that calculations were carried out using Climate Data Operators (CDO)

tools. However, the comprehensive know-how is not that straightforward to find. This IT

bottleneck is possible to divide into two related areas. First, is the data structure / format,

and the second is the amount of data generated by GCM-RCMs (meaning both data

volume and large quantity of files).

Future climate projections data are commonly provided in NetCDF (Network

Common Data Form) format. This is a set of interfaces, libraries, self-describing,

machine-independent and array-oriented data formats supporting creation, access and

sharing of scientific data (Rew et al., 2011). NetCDF has its origin in the University Cor-

poration for Atmospheric Research (UCAR) consortium, under the Unidata programme.

NetCDF is a successor of Common Data Format developed by NASA, but it is no longer

compatible (Rew et al., 2011). All above-mentioned entities represent supreme sources of

information. The various versions of NetCDF data can be encountered (NetCDF-3,

NetCDF-4/HDF5, NetCDF-4/HDF5 classic and 64-bit Offset format), which may easily

lead to confusion (Rew et al., 2011, Appendix C). Since March, 2011 the NetCDF-4/

HDF5 file format is standard and has been approved and recommended by NASA

Earth Science Data Systems (http://earthdata.nasa.gov/standards; accessed: 13/03/2017),

and NetCDF Classic and 64-bit Offset Format are standards recognized by the Open Geos-

patial Consortium (OGC; http://www.opengeospatial.org, accessed: 13/03/2017). In

general, NetCDF data is binary, self/describing and portable – meaning that all computer

platforms, regardless of their approaches towards integer storage, characters and floating

point numbers can access such data (Rew et al., 2011). A variable represents a multidimen-

sional array of values of the same type. The dimension specifies the variable shape,

common grid and coordinate system. An attribute holds the properties of data sets

(global attribute) or specific variable (e.g. units), but attributes cannot be multidimen-

sional (Rew et al., 2011). The other important role of attributes is the implementation

of conventions. Typically, it is a name of an attribute rather than the name of the variable

Figure 2. Main families of empirical/statistical downscaling (adapted from Bi et al., 2017).
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that is subject to standardization. The NetCDF Climate and Forest Conventions dictates

the organization of the data in the climate domain (Eaton et al., 2011).

The NetCDF-4/HDF5 represents the file format providing the most enhanced capabili-

ties. The deployment of HDF5 as storage layer removes many of the restrictions common

to the 64-bit offset and the classic NetCDF files. The model allows for user-defined data

types including more primitive types as strings, larger variable sizes and supports multiple

unlimited dimensions. Furthermore, the HDF5 storage layer allows for per-variable com-

pression, multidimensional tailing and dynamic scheme changes, meaning that there is no

need to copy data when adding a new variable. Finally, when reading and writing NetCDF-

4/HDF5 files, the parallel I/O (input/output) is supported, thus the computational per-

formance is significantly improved [7.3.4. Parallel I/O], which is of extraordinary impor-

tance when handling large multi-model ensembles of climate projections due to large

number of files.

The cost of the above-mentioned power and flexibility comes in software applicability.

Most of existing NetCDF software is only compatible with the classic data model and it is

not capable of handling the additional complexity [triangle/diagram reference]. This

brings the necessity of installation of multiple SW libraries, but the more important chal-

lenge, reported by NetCDF users, is the shortcoming of Windows platform support in

comparison with Linux (https://earthdata.nasa.gov/standards/netcdf-4hdf5-file-format;

accessed: 15/03/2017). Additionally, some of GCM/RCM simulations come on unconven-

tional grids (e.g. False North Pole rotated native grid for European domains of EURO-

CORDEX experiment). They can be easily re-rotated (https://www.earthsystemcog.org/

projects/cog/faq_data/; accessed: 17/03/2017), but not by tools commonly used by classical

geographers, urban planners or statistics practitioners. Somewhat extensive lists of SW

tools to conveniently handle NetCDF data can be found in https://www.unidata.ucar.

edu/software/netcdf/software.html (accessed: 23/03/2017).

Apart from data format, the second practical challenge of the deployment of the full

multi-model climate ensembles is simply the amount of data in terms of both-data

volume and large quantity of files generated by GCM/RCMs. We will use an example

to illustrate the data amount necessary to work within the context of climate projections.

Multiple variables such a precipitation, maximum and minimum temperatures, solar radi-

ation, relative humidity and wind speed are of interest for impact studies (Wilby et al.,

2004). Here, for simplicity, only one variable will be considered for illustration purposes.

We selected the EURO-CORDEX (Jacob et al., 2014) multi-model ensemble since it rep-

resents the cutting edge, fine scale set of climate simulations and it is openly available. Fur-

thermore, for the sake of simplicity, we are only considering a single climate scenario (e.g.

RCP 8.5), but note that in a real climate impact assessment exercise all the following

numbers would be multiplied by the number of required variables, and then the data

for each scenario would also be added. Searching the data internet portal (https://esg-

dn1.nsc.liu.se/projects/esgf-liu/; accessed: 03/10/2016) with the following specifications

returns approximately 620 files with 620 GB: CORDEX experiment, daily data, EUR-11

domain, historical plus RCP 8.5 runs, average temperature, time span between 1971

and 2100, and only 10 GCM/RCM models as a minimum number of ensemble members.

The data comes in the form of NetCDF-4/HDF5 files – each one containing a time slice

of 5 years covering the whole European domain. In Windows environment, users have an

option to add the files, one by one, to the basket as in a common e-shop. However, it is
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clearly convenient to migrate to the Linux environment already in this very first step.

Then, the automatic wget download is available and requires only basic knowledge of

shell scripting. This principle holds true for each subsequent step in data handling. For

example, when applying spatial and temporal subsetting with focus on a particular

urban system, the resulting data are not large in terms of bytes, but the number of files

remains. Luckily, the climate community invested significant efforts to provide the tools

for managing such a data (including e.g. merging files by time, so our 620 files potentially

become just 1). But, again, those tools are not common in the tool boxes of most classical

geo-practitioners.

To provide the directions to the reader searching for the right tools, we would like to

highlight some (reflecting just our personal preference). To understand the data structure,

time and space handling, and quick visualization purposes, Panoply software from NASA

(https://www.giss.nasa.gov/tools/panoply/) and Ncview by David W. Pierce (http://

meteora.ucsd.edu/~pierce/ncview_home_page.html; accessed: 03/10/2016) represent con-

venient starting points.We recommend the CDO tools (Schulzweida, 2017) for pre-proces-

sing and computingmany of traditionally used environmental indices.Working with CDO

within the Python environment is also an option (e.g. Anaconda Python distribution). The

‘extRemes’ R package (Gilleland & Katz, 2016) allows to build indices in an R environment

and contains few advanced indices (e.g. Russo, Sillmann, & Fischer, 2015). To calculate and

interpret climate change signals and time series from climate multi-model ensembles the

‘wux’ R package (Mendlik, Heinrich, & Leuprecht, 2016) is an interesting tool, and the

recent ‘spdownscale’ R package (Rasheed, Egodawatta, Goonetilleke, & McGree, 2017)

can be of priceless help when in need for statistical downscaling and bias correction.

Furthermore, somewhat related to the IT bottleneck, we would like to highlight a few

methodologies that have been proposed for reducing the computational cost. When com-

putational resources represent a constraint, the full multi-model climate ensemble can be

reduced to a few representative members, while preserving crucial statistical properties

(total spread / uncertainty) and simultaneously reducing structural bias in the resulting

subset (Mendlik & Gobiet, 2016). These authors proposed a straightforward three-step

procedure to achieve this utilizing commonly used statistical techniques: principal com-

ponent analysis and cluster analysis. Other related useful approaches are provided by

Wilcke and Bärring (2016) and Cannon (2015).

5. Summary

We introduced the rationale and problem background justifying the need for future

climate impact assessment targeting metropolitan areas from a multidisciplinary point

of view – climate, urban planning and policy making. The downscaling of climate projec-

tions generated by GCM/RCMs was briefly reviewed and discussed. Furthermore, focus

was given to recent developments in urban climate studies making use of downscaling

approaches. The reasons why fine-scale climate data is being incorporated to urban plan-

ning rather slowly are highlighted. A thorough review on the major challenges in the use of

climate change impact data for urban planning is provided. Moreover, some strategies to

deal with them are suggested.

Three major practical bottlenecks of using climate projections and their downscaled

derivatives in an urban context were covered, namely the terminology, the scale mismatch,
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and the IT aspects. In the literature, the call for multidisciplinary cooperation between the

communities of climate and urban planning can be found. However, we would like to

emphasize that specific IT expertise would be also required to successfully tackle the

task of future climate impact assessment at an urban scale.

In this paper, we attempt to bridge the gap between all involved expert stakeholders. By

highlighting the pitfalls and providing pointers towards appropriate tools and information

sources we hope this work might be useful to anyone new in the field of impact assessment

using localized future climate data, regardless of the background from which he or she will

tackle this multidisciplinary challenge.
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