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Climate remains an important driver of post-European
vegetation change in the eastern United States
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The influence of climate on forest change during the

past century in the eastern United States was evalu-

ated in a recent paper (Nowacki & Abrams, 2014)

that centers on an increase in ‘highly competitive

mesophytic hardwoods’ (Nowacki & Abrams, 2008)

and a concomitant decrease in the more xerophytic

Quercus species. Nowacki & Abrams (2014) con-

cluded that climate change has not contributed sig-

nificantly to observed changes in forest composition.

However, the authors restrict their focus to a single

element of climate: increasing temperature since the

end of the Little Ice Age ca. 150 years ago. In their

study, species were binned into four classifications

(e.g., Acer saccharum – ‘cool-adapted’, Acer rubrum –
‘warm-adapted’) based on average annual tempera-

ture within each species range in the United States,

reducing the multifaceted character of climate into a

single, categorical measure. The broad temperature

classes not only veil the many biologically relevant

aspects of temperature (e.g., seasonal and extreme

temperatures) but they may also mask other influ-

ences, both climatic (e.g., moisture sensitivity) and

nonclimatic (e.g., competition).

Understanding the primary drivers of forest change

is critically important. However, using annual tem-

perature reduces the broad spectrum of climatic

influence on forests (e.g., Jackson & Overpeck, 2000;

Jackson et al., 2009) to a single variable. Tsuga canad-

ensis illustrates one example of the complex interac-

tion between trees and temperature. In the southern

part of its range, Tsuga canadensis growth is weakly,

but positively correlated with early growing-season

temperature. However, this relationship becomes

stronger and shifts to later in the season toward the

northern part of its range (Cook & Cole, 1991). More-

over, Tsuga canadensis growth is significantly and

negatively correlated with just May temperatures

during the current growing season in the northeast-

ern United States (Cook, 1991; Cook & Cole, 1991;

Vaganov et al., 2011), while in the southeastern Uni-

ted States it is strongly and negatively correlated

with summer (June–August) temperatures (Hart et al.,

2010). Trees can also be sensitive to diverse and often

interacting climate variables at various stages of their

life cycles (Jackson et al., 2009). Interactions between

precipitation and temperature are clearly important

(Harsch & Hille Ris Lambers, 2014; Martin-Benito &

Pederson, accepted), and often lead to counterintui-

tive responses. For example, some plant species that

would have been expected to move north and ups-
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lope with increasing temperature have in fact moved

south during periods of warming, both recently and

in the Holocene (Webb, 1986; Jackson & Overpeck,

2000; Crimmins et al., 2011; Harsch & Hille Ris Lam-

bers, 2014).

We argue here that moisture availability has strongly

influenced forest dynamics and suggest that elimina-

tion of climate as a driver of recent forest change in

eastern North America is premature. Important to this

discussion is the fact that our current reference point,

the late 20th century, is among the wettest periods since

1500 CE over much of the eastern United States (Peder-

son et al., 2013) (Fig. 1).

Multiple lines of evidence indicate that moisture

availability has been and continues to be a critical factor

in forest dynamics of eastern North America. Early

growing-season moisture availability is critical for seed-

ling germination and establishment, particularly for

fall-dispersed species, with spring drought events often

filtering species based on germination phenology (De

Steven, 1991). Mature trees can persist in the canopy for

decades to centuries in the face of significant tempera-

ture increases, inhibiting replacement by other trees

and imparting substantial inertia (Davis & Botkin, 1985;

Loehle, 2000). Severe and repeated drought has been

shown to increase tree mortality and open the canopy

(Clinton et al., 1993; Parshall, 1995; Pedersen, 1998;

Jackson & Booth, 2002; Klos et al., 2009; Shuman et al.,

2009; Booth et al., 2012; Cavin et al., 2013; Pederson

et al., 2014). Responses of mesic forests to changes in

effective moisture span multiple time scales. For exam-

ple, dendroecological and forest inventory data reveal

tree growth and forest compositional responses from

years to decades (e.g., Pederson et al., 2012; Gustafson

& Sturtevant, 2013), and parallel trends in Holocene

water-level and pollen records reveal that forest com-

position closely tracked effective moisture changes over

centuries to millennia (e.g., Booth et al., 2012; Marsicek

et al., 2013). The similarities of findings across time

scales support the importance of moisture as a control

on forest processes whether they apply over decades or

millennia. Drought-induced mortality creates opportu-

nities for canopy accession by understory trees, includ-

ing species that were not canopy dominants before the

drought.

For canopy trees, moisture is widely documented as

an important control of tree growth (Davis, 1912; Dou-

glass, 1920; Lyon, 1936; Fritts, 1962; Cook, 1991; Stahle

& Cleaveland, 1992; Orwig & Abrams, 1997; Rubino &

McCarthy, 2000; Tardif et al., 2006; Kardol et al., 2010;

Leblanc & Terrell, 2011; Anning et al., 2013; Brzostek

et al., 2014; Clark et al., 2014; Voelker et al., 2014). Even

trees in mesic settings show growth responses to mois-

ture variability at interannual to decadal timescales

over the last 200 years (Pederson et al., 2012). For

mesophytes like Acer rubrum or Liriodendron tulipifera,

growing-season moisture is the most important climatic

driver of growth (Hart et al., 2012; Martin-Benito &

Pederson, accepted). In comparison to Quercus, grow-

ing-season moisture is generally more important for the

growth of mesophytic species (Pederson et al., 2013;

Brzostek et al., 2014; Clark et al., 2014; Maxwell et al.,

2014; Martin-Benito & Pederson, accepted with minor

revision). Moisture may be the strongest climate-related

driver of forest dynamics not only in eastern North

America, but in most regions of the globe (Allen et al.,

2010).

In their evaluation of forest change in the transition

from the Little Ice Age to the present, Nowacki &

Abrams (2014) focus exclusively on an inferred

increase in annual temperature. However, multiple

paleoclimatic records indicate an increase in moisture

availability during this same transition that could be

as ecologically important as warming (Stahle et al.,

1988, 2013; Stahle & Cleaveland, 1992; Cook et al.,

2010; Hubeny et al., 2011; McEwan et al., 2011; Peder-

son et al., 2013; Newby et al., 2014). The long-term

trend of increased moisture has persisted to the pres-

ent in most areas (Fig. 1b); for example, regional-scale

water table levels in the northeastern United States are

at their highest since the 1950s (Weider & Boutt, 2010).

The North American Drought Atlas (Cook & Krusic,

2004) shows that 1930–2005 is one of the wettest peri-

ods since 1500 CE over much of the eastern United

States (Fig. 1a). The frequency of moderately to extre-

mely wet years (PDSI value ≥ 2) is unusually high

during this 75 year period despite significant droughts

in the central region (1930s, 1950s, and 1980s), the

1960s drought in the Northeast, and recent drying in

the Southeast (Fig. 1b).

Fig. 1 Panel (a): Probability density functions of PDSI over the last 500 years (Cook & Krusic, 2004; Pederson et al., 2013). Purple = dis-

tribution since 1930; Gray = long-term distribution. PDSI values > 2 are significantly different from the 20th century mean of 0. Upper

MRV = Upper Mississippi River Valley; Northeast = eastern NY State and western New England; Lower MRV = Lower Mississippi

River Valley; Carolinas = Coastal North and South Carolina. Panel (b): A stack of 500 years of reconstructed PDSI for each region ana-

lyzed above. Each curve is an adaptation of the annual reconstruction smoothed with an 11 year spline. The long-term mean is set at

the 20th century mean of zero. The year 1930 is denoted by the light-gray, vertical line. Periods above the 20th century mean are filled

blue and indicate wetter conditions. Periods below that line are filled red and indicate drier conditions.
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A long-term, broad-scale increase in moisture should

favor species with physiological affinities for moisture.

Indeed, many of the traits used to characterize the fire

sensitivity of mesophytic species are traits that make

them vulnerable to drought (Abrams, 1990, 1996; Bond

& Midgley, 2001; Hallik et al., 2009). Liriodendron tulipif-

era experienced higher mortality than Quercus during

the short, but severe 1980s drought in the southeastern

United States (Elliott & Swank, 1994). Conversely, the

strong response of mesophytic species to moisture

would confer a competitive advantage over Quercus

during times of sufficient moisture.

Nowacki & Abrams (2014) assert that global-change

forecasts largely predict reduction and contraction of

mesophytic species and increase and expansion of

drought-tolerant species and that so far, observed

trends are opposite. They also identify the need for

such models to include better ecophysiological

requirements and disturbance to improve their pre-

dictive power and relevance. We agree on the latter

count, and note that many such improvements are

already being implemented (Iverson et al., 2011; Mat-

thews et al., 2011; Xu et al., 2012; Gustafson & Sturte-

vant, 2013; Brandt et al., 2014). In addition, Gustafson

& Sturtevant (2013) find that drought-induced mortal-

ity can be detected in the region from forest inven-

tory data. Other considerations are required for the

lack of predicted habitat loss for mesophytic species.

First, the southeastern United States has experienced

little warming outside of the cool season (Melillo

et al., 2014). In fact, temperatures from 1971 to 2000

during the growing season were cooler vs. 1911–1940
over a most of the eastern United States (fig. 3 in

McEwan et al., 2011). If warming had occurred dur-

ing the growing season, we might have expected

greater change in the Southeast because the growth

of broadleaf species are more limited by high sum-

mer temperatures than populations to the north

(Martin-Benito & Pederson, accepted). Warmer win-

ters and a lack of warming during the growing sea-

son would have likely benefited, not aggravated, the

growth of mesophytic species in the southern portion

of the eastern United States (Martin-Benito & Peder-

son, accepted). Second, physiological drought and

extreme events are projected to become increasingly

frequent and severe across the eastern United States

by middle of the 21st century (Melillo et al., 2014).

Third, these projected droughts and extreme events

have been largely absent since the 1930s (Fig. 1).

Finally, the long-lived nature of trees ensures that

even as climate is expected to shift to favor drought-

tolerant species (Melillo et al., 2014), large-scale

changes will be delayed in the absence of major dis-

turbance events. Therefore, conditions promoting an

increase in drought-tolerant species may eventually

overtake the increase in mesophytic species, but it

might not occur until later in the 21st century. Mod-

eling responses of mesophytic species to future

droughts is challenging given that many calibrations

are based on observations during one of the wettest

periods of the past several centuries (Fig. 1a).

Regardless, it is important to include moisture in

analyses of past, current, and future trends in vegeta-

tion composition.

Forest dynamics in a changing climate will be

influenced by multiple interacting factors (McEwan

et al., 2011). We agree with Nowacki & Abrams

(2014) that altered disturbance regimes, largely insti-

tuted by humans, have been an important driver of

compositional change in eastern forests (cf. Foster &

Aber, 2004), even predominating in the century fol-

lowing land clearance and agricultural abandonment.

Changes in land use and moisture are both necessary

to explain past and ongoing changes, but neither is

independently sufficient. Given the varied influences

of temperature, it is premature to rule it out as an

influence for past changes, and it will certainly play

a role in the future as growing-season temperature

increases impart moisture stress to trees, from seed-

lings to adults. Humans are altering forests in an

environment of changing temperature, precipitation,

and natural disturbance regimes, and these, in turn,

are interacting with newly arriving or spreading

pests and pathogens. A multivariate approach that

includes quantitative measures and examines interac-

tions across multiple scales should aid understanding

of the past and future evolution of forests. Future

analyses of climate as a driver of forest change

should include a spectrum of ecologically meaningful

and independent measures of climate variation that

are relevant to the establishment, growth, and mortal-

ity of trees.
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