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 39	

The eruption of Samalas in Indonesia in 1257 ranks among the largest sulfur-rich eruptions of 40	

the Common Era with sulfur deposition in ice cores reaching twice the volume of the Tambora 41	

eruption in 1815. Sedimentological analyses of deposits confirm the exceptional magnitude (Me 7, 42	

VEI 7) of the Samalas eruption with ≥40 km
3
 of dense magma expelled and a plinian column 43	

estimated to reach 43 km. However, the climatic response to the Samalas event is debated since 44	

climate model simulations generally predict a stronger and more prolonged surface air cooling of 45	

Northern Hemisphere (NH) summers than inferred from tree-ring based temperature 46	

reconstructions. Here, we draw on historical archives, ice-core data and tree-ring records to 47	

reconstruct the spatial and temporal climate response to the Samalas eruption. We find that 1258 48	

and 1259 experienced some of the coldest NH summers of the past millennium. However, cooling 49	

across the NH was spatially heterogeneous. Western Europe, Siberia and Japan experienced 50	

strong cooling, coinciding with warmer-than-average conditions over Alaska and Northern 51	

Canada. We suggest that in North America, volcanic radiative forcing was modulated by a 52	

positive phase of the El Niño Southern Oscillation. Contemporary records attest to severe 53	

famines in England and Japan, but these began prior to the eruption. We conclude that the 54	

Samalas eruption aggravated existing crisis, but did not trigger the famines.  55	

 56	

Despite the exceptional magnitude of the 1257 Samalas volcanic eruption
1–4

, the apparent lack of 57	

strong and widespread cooling in climate proxies, with the exception of Western Europe
5
, has puzzled 58	

scientists for almost two decades
6–8

. This conundrum is emphasized since for some lesser magnitude 59	

events, e.g. the 536 “unknown”
9–11

, 1600 Huaynaputina
12

 and 1815 Tambora
13,14

 eruptions, abundant 60	



historical evidence exists for persistent dust veils and widespread NH climatic cooling
11,15,16

. This 61	

absence of evidence of strong cooling in 1258 even called into question the ability of tree-ring width 62	

proxies to detect the short-term cooling
8,17–19

 associated with the largest volcanic eruptions and the skill 63	

of climate models to predict the magnitude and persistence of volcanic cooling if they do not 64	

incorporate aerosol microphysical modules
16,20

. 65	

Historical evidence for a strong cooling in 1258 66	

Here, we shed light on the climate forcing associated with the 1257 Samalas eruption through the 67	

analysis of an extensive compilation of mediaeval texts, drawn from the Monumenta Germaniae 68	

Historica, the Rerum Britannicarum Medii Aevi Scriptores and the Recueil des historiens des Gaules et 69	

de la France (Text S1). A total of 35 narrative sources (Table S1) attest to significant and widespread 70	

climate anomalies across Western Europe in the spring, summer and autumn of 1258 (Fig. 1). Notably, 71	

such abundant and detailed documentation in mediaeval archives is reserved for extreme 72	

meteorological events: the only comparable episode, reported in more than 30 sources (Text S1), 73	

relates to an extremely cold winter in Europe in 1233/34
21

.  74	

 75	

Without exception, all chronicles surveyed report cold, incessant rainfall and unusually high cloudiness 76	

in 1258, which prevented crops and fruits from reaching maturity. The Norman Notes of Coutances 77	

provides a good example: “There was no summer during summer. The weather was very rainy and cold 78	

at harvest time, neither the crop harvest nor the grape harvest were good. Grapes could not reach 79	

maturity; they were green, altered and in poor health”. This prefigures abundant descriptions of 80	

impacts on crops of the “Year Without a Summer” in 1816, a year after the Tambora eruption
14,22,23

. 81	

 82	
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Figure 1. Spatial extent of weather and optical anomalies observed in Europe in 1258. All sources are listed 
in Table S1. 



Reports of poor quality grapes and late harvests (Fig. 1) span Western Europe from Burgos (Spain) to 83	

Prague (Czech Republic), but quantitative information on grape harvest dates (GHD) could only be 84	

retrieved for France. In Alsace-Lorraine, Richer of Senones reports that grapes were still green and as 85	

“hard as stone” on 8 October 1258 and that the harvest was postponed until the end of October (i.e., 86	

circa day 305 of the year; doy), as winemakers were hoping for improved weather conditions in 87	

autumn (Methods and Text S2). In Paris, the Annales Clerici Parisiensis point to a GHD start on doy 88	

312 (Fig. 2a, Fig 3b), whereas in Burgundy, the start of GHD was estimated to doy 302 (Methods and 89	

Texts S2, S3). If compared with existing GHD series from Alsace-Lorraine (1700-2005), Ile-de-France 90	

(1478-1977) and Burgundy (1354-2006), we find that these are by far the latest dates ever observed, 91	

and that grape harvest started 7 (doy 298), 16 (doy 312), and 6 (doy 296) days later than in the 1816 92	

“year without a summer”. Using Extreme Value Theory, we find that the return period of the 1258 93	

GHD exceeds 1000 yr for the three regions (as compared to circa 100 yr for 1816) and that it reaches 94	

infinite values if known volcanically-influenced years are excluded from the analyses. This suggests 95	

that their occurrence is exceedingly unlikely to be related to interannual climate variability (Methods 96	

and Text S3). We caution, however, that the GHD approach does not account for possible changes in 97	

grape varieties or in agricultural and/or anthropogenic practices over time. As such, the return periods 98	

here are merely indicative of the unusual character of the grape growing season – which is controlled 99	

by maximum April-September temperatures
24

 – over Western Europe in 1258 (Fig. 2b).  100	

 101	
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Figure 2.	Grape harvest dates in France (1258-2006). a, Continuous records of days of year (doy) on which 

GHD occurred for Ile-de-France (purple), Alsace (orange) and Burgundy (green) between 1350 and 2006. Data 

are complemented by newly discovered sources for the years 1258, 1279, and 1294. The green star indicates the 

estimated 1258 GHD in Burgundy (Text S3). The most delayed grape harvest of the last 800 years occurred in 

1258. See Table S1 for a list of all sources. b, GHD for Ile-de-France, Alsace, and Burgundy are significantly 

correlated with April–September mean air temperatures of the Paris-Montsouris, Strasbourg and Dijon 
meteorological stations. 



The likely volcanic origin of the extreme cooling is reinforced by two accounts attesting the presence 102	

of a persistent dust veil (Text S4) over Europe in 1258. In Germany, the Annals of Speyer reveal that 103	

this year was commonly referred to as a munkeliar (Fig. 3a), meaning dark year or year of fog in 104	

contemporary German. The presence of a dense dust veil is corroborated by a detailed testament of a 105	

very dark (Danjon L=0; Methods, Text S4), total lunar eclipse
25

 on 12 November 1258 in the Annales 106	

Ianuenses (Genoa, Italy). It complements the previously known dark lunar eclipse described in the 107	

Chronicle of John de Taxster (England) for 23 May 1258 (ref. 5). Beyond Europe, only a very limited 108	

number of contemporary narrative sources have hitherto been surveyed for evidence of climate 109	

anomalies. The Mirror of the East (Azuma Kagami, Kamakura, Japan) is an exception
26

 and reports a 110	

wet and cold summer accompanied by heavy rain and strong winds, which reportedly destroyed 111	

paddies and gardens in several provinces. 112	

Magnitude of NH summer cooling inferred from proxy records 113	

 114	

Complementary information is provided by paleoclimate archives. We have used a tree-ring network 115	

covering the period 1000–2000 CE to quantify and map climatic anomalies induced by the Samalas 116	

eruption and, in particular, for those regions of the NH which remain unrepresented by mediaeval 117	

archives (Fig. S1, Table S2). All of the 25 chronologies span the 13
th

 century and are significantly 118	

correlated with summer (JJA) temperatures (Fig. S2). A JJA NH temperature reconstruction (40–90°N 119	

over land) was generated using a nested approach containing 12 nests that account for the decrease in 120	

the number of regional chronologies back in time. Each nest passed all verification tests (R
2
 and RE for 121	

the calibration period, as well as r
2
 and CE for the verification period, see Methods and Table S3) for 122	

the period 1805–1972. The most replicated nest (1230-1972, n=25) accounts for 41% of the variance in 123	

the instrumental data with RE=0.37 and CE=0.34, demonstrating the robustness of the reconstruction 124	

for the 13
th

 century. To quantify cooling with respect to contemporary climatology, the reconstruction 125	

was filtered with a 30-yr running mean (see Methods). We find that the cumulative distribution 126	

functions for all major volcanic eruptions and non-volcanic years differ in a statistically significant 127	

manner (Kolmogorov-Smirnov test, p<0.001) (Fig. 4a). Extreme average surface cooling occurred in 128	

1259, reaching –1.2°C, making it the third coldest summer since at least 1200 CE, whereas 1258          129	

(-0.7°C), 1601 (–1.2°c), 1453 (–1°C), and 1816 (–1.2°C) rank as the 16
th

, 2
nd

, 7
th

, and 1
st 

coldest years 130	

in the series, respectively. If JJA temperature anomalies are summed for the two years after an eruption 131	

ba

Figure 3.	Original contemporary manuscript from the annals of Speyer describing the dust veil and climate 

anomalies observed in 1258 CE. a, The text in Latin says: “The same year, wine, wheat and other fruits were greatly 

altered and this year was also commonly referred to as munkeliar”. The use of the Middle High German expression 

munkeliar, rather than its Latin equivalent (annus obscuritatis or annus caliginis), suggests that the exceptional 

persistence and intensity of insolation dimming was not only omnipresent but unusual enough for commoners to give 

it a proper name (Source: Speyrer Kopialbuch. Generallandesarchiv Karlsruhe GLA 67 Nr. 448 fol. 39v). b, 

Contemporary illustration of wine harvesting as illustrated in the Martyrology of the Saint-Germain-des-Prés Abbey 

(Source: National Library of France, Paris, Ms lat. 12834, fol. 69v). 



(Fig. 4b), the Samalas eruption is seen to be associated with the strongest cooling anomaly of the last 132	

millennium. 133	

	134	

Figure 4. Tree-ring reconstructions of NH extra-tropical land (40–90° N) summer temperature anomalies 135	

since 1000 CE. a, Summer (JJA) temperature anomalies following the 1257 Samalas eruption in 1258 (red) and 136	

1259 (blue) as compared to cumulative distribution functions (cdf) for all major volcanic eruptions (i.e., 1109, 137	

1453, 1601, 1641, 1695, 1783, 1809, 1816, 1835, 1884, and 1912; black) and for all non-volcanic years (red) since 138	

1000 CE. b, same as in a, but for groups of two consecutive years following major eruptions. c, Spatial extent of 139	

the JJA temperature anomalies induced by the Samalas (cooling shown for 1258 and 1259), unknown (1453), 140	

Huaynaputina (1601), and Tambora (1816) eruptions. For details see Methods. 141	

Spatial heterogeneity of NH summer cooling 142	

 143	

The 25 chronologies were grouped into 11 clusters to estimate regional variability of summer cooling 144	

induced by the Samalas eruption, and complemented with three annually-resolved, summer season 145	
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stable oxygen isotope δ
18

O series from Greenland ice cores (GRIP, Crete, DYE3). The spatial extent of 146	

each cluster was defined via spatial fields of correlation between each proxy record and mean JJA 147	

temperatures of the Berkeley Earth Surface Temperature (BEST) dataset
27

 (Fig. S2). Based on this 148	

approach, Greenland ice cores provide information on temperature in Eastern Greenland and Iceland. 149	

The JJA gridded temperature reconstruction (3486 1°×1° grid points with a CE>0.1, Fig. S3) is given 150	

for 1258, 1259, 1453, 1601, and 1816 (Fig. 4c).  151	

 152	

For all these years, volcanic forcing induced pronounced cooling over Siberia and, to a lesser extent, in 153	

Western Europe. Less consistent patterns are observed in Alaska and on the Western Pacific Coast. In 154	

1258, Western Europe, the Canadian Rockies, Central Asia and Siberia were the most severely affected 155	

with a reconstructed cooling between –1.4 and –2°C (wrt 30-yr climatology). The extremely cold 156	

conditions prevailing in Siberia and Central Asia are further corroborated by the presence of frost rings, 157	

which have previously been recognized as a response to severe cooling associated with volcanic 158	

forcing of climate
28 

(Table S4).  159	

 160	

In contrast, the Greenland ice core cluster (–0.1°C, rank 408) and tree-ring records from Quebec 161	

(+0.5°C, rank 676), Alaska (+0.3°C, rank 617) and, to a lesser extent, Scandinavia (–0.5°C, rank 264) 162	

do not reveal pronounced cooling, suggesting that, in these regions, internal modes of climate 163	

variability outweighed the direct radiative effects of volcanic aerosol. The warm anomalies over Alaska 164	

in 1258-9 (Fig. 4c) could arise from a positive phase of the Pacific-North-Atlantic pattern, linked to 165	

ENSO (Fig. S4). Climate simulations and proxy records
 
indeed show increased probability for an El 166	

Niño event to occur in the first or second year after a large volcanic eruption
29–31

. This assumption is 167	

further confirmed by El Niño conditions inferred for 1258/59 from tree-ring and sediment proxies
29

. 168	

 169	

We also use tree-ring records and historical archives to investigate the persistence of volcanically-170	

induced cooling. Interestingly, Fig. 4c shows that several regions experienced maximum cooling only 171	

in 1259, i.e., two years after the eruption. In Quebec, for instance, the strong negative anomaly in 1259 172	

likely results from extremely cold conditions at the end of the previous growing season, as revealed by 173	

the presence of light rings in the latewood of 1258 (Table S4). This lag effect, known as autocorrelated 174	

biological memory
32

, is often observed in tree-ring width (TRW) series and reflects the influence of 175	

climatic and physiological conditions prevailing in the year prior to tree-ring formation (e.g., via needle 176	

generation, or the creation of carbohydrate reserves). In Siberia, however, biological memory cannot 177	

fully explain the temperature drop in 1259, because frost rings in the Yamal, Polar Ural, Altai, and 178	

Mongolian tree-ring chronologies (Table S4) as well as historical records documenting abundant 179	

snowfall in the Altai in July clearly confirm the extreme cooling experienced in these regions in 180	

summer 1259 (ref. 33). 181	

 182	

Based on the available data, the only regions to experience mild conditions in the summer of 1259 were 183	

the Pacific coast of North America (as identified in tree-ring records) and Western Europe, for which 184	

five historical sources were found (Text S6). In the Annales Wormatienses (Germany), it is stated that 185	

on the day of the Apostles Peter and Paul [29 June], the summer was hot and dry. From March to 186	

August, little or even no rain fell, however wine and all other fruits of the earth were abundant. Tree-187	

ring proxies and chronicles indicate a general reduction in all climatic anomalies by 1260 and 1261 188	

(Text S7), and thus provide strong evidence that the impacts of the eruption ceased after 3-4 yr (Fig. 189	

S5). This points to a more ephemeral effect on climate than suggested by computational models that 190	

exclude aerosol microphysics, which predicted a persistence of temperature anomalies over 191	

extratropical land of the order of –1°C until 1264 (ref. 34).  192	

 193	

The estimated hemispheric cooling following the Salamas eruption is comparable to that observed for 194	

1453, 1601, and 1816, although Samalas released substantially more sulphur to the atmosphere than the 195	

other volcanic events. This underlines the hypothesis that volcanic cooling does not increase linearly 196	

with the total sulphur yield of an eruption
20,35

. In addition, we confirm that the magnitude and 197	



persistence of cooling resulting from the 1257 event were much smaller and shorter, respectively, than 198	

predicted in PMIP3 simulations. The disparity is sufficiently great that the Samalas eruption can no 199	

longer be held responsible for a dramatic and persistent cooling of continental regions of the NH
8
. 200	

Evidently, the largest eruption of the Common Era only induced “years without summer” in certain 201	

regions, but not across the entire NH. This finding is consistent with observations in 1816, and points 202	

to the modulation of radiative forcing effects of volcanic aerosols by internal climate variability (e.g., 203	

ENSO, NAO)
23

. Our reconstructed patterns of spatially heterogeneous temperature anomalies provide 204	

crucial constraints for the evaluation of climate model performance for the 1257 Samalas event and 205	

other high sulphur yield eruptions in the tropics. 206	

 207	

 208	

Complex societal response to the Samalas eruption 209	

 210	

It has been posited that a cluster of volcanic eruptions in 536, 540 and 547 may have played a crucial 211	

role in the rise and fall of several polities, pandemics and human migration
11

. Several sources point to 212	

severe food shortages and subsistence crises in parts of Europe (Kingdom of France, Kingdom of 213	

England, Holy Roman Empire, Iberian Peninsula) in 1258 and 1259, although they were less 214	

widespread and shorter than the famines of 1195-1197, 1233-1235 or 1315-1319 (ref. 36,37), which 215	

cannot be associated with volcanic events. The most severe socio-economic consequences reported at 216	

the time of the Samalas eruption are from England, where the 1258 famine caused by two consecutive 217	

years of bad harvests (1256-57), high prices and speculation may have killed about 15,000 people in 218	

London alone
38

. Likewise, the Shôga famine (Japan, 1257–1260) was possibly amplified by adverse 219	

climatic conditions in 1258 and 1259 (ref. 26). In both cases, we conclude that volcanic forcing of the 220	

climate following the Samalas eruption played a role in aggravating these crises, but should not be 221	

considered as the trigger for the famines or related social unrest. This emphasizes the complexity of 222	

identifying causal connections between individual cases of volcanically induced climate anomalies and 223	

major societal upheavals
39

. 224	

  225	

Methods 226	

 227	

Analysis of historical sources. We exhaustively reexamined 180 annals and chronicles (original and edited 228	

manuscripts, Table S1, Figs. 1-2), written in the 13
th

 century to document the climatic impacts of the Samalas 229	

eruption. Sources were mostly in Latin and to a lesser extent in the vernacular (Old French, High Middle German, 230	

and Old Castillan). From this corpus, 59 narrative sources were from Western Europe and report weather and 231	

phenological (crop and grape harvest dates) observations for the years 1257, 1258, 1259, 1260 and 1261 (Table 232	

S1). Particular attention was also paid to historical reports of optical phenomena attesting to the presence of 233	

volcanic aerosols in the stratosphere
25

 (e.g., dimming of the Sun, dark total lunar eclipse, Text S4). The reliability 234	

of eclipse observations was further assessed through the catalogue of five millennia of lunar eclipses (1999 BCE – 235	

3000 CE)
40

. The darkness of the moon was rated according to the Danjon scale
41

 ranging from L=0 (very dark) to 236	

L=4 (very bright copper-red or orange). The focus was clearly on first-hand information derived from 237	

contemporary sources, and dates in chronicles were screened systematically for errors by cross-checking 238	

information with other manuscripts.  239	

 240	

Analysis of grape harvest dates. Mediaeval grape harvest dates (GHD) obtained from Saint-Denis and Senones 241	

Abbeys were added to GHD series available for the French regions of Alsace and Ile de France
24

. Mediaeval dates 242	

were first converted to Gregorian calendar by adding 7 days to Julian calendar and then expressed as day of the 243	

year (doy). Correlation analyses were performed against April-September temperatures from Paris-Montsouris 244	

(1676-1977) (ref. 42), Dijon (1951-2006) and Strasbourg (1950-2005) (https://climexp.knmi.nl/) to assess the 245	

suitability of GHD as a temperature proxy (Fig. 2). Missing values were calculated on the basis of inter-series 246	

similarity, allowing estimation of the 1258 GHD in Burgundy. For all three series, extreme GHD were selected as 247	

the 10% latest dates. The three estimated datasets as well as a composite record were fitted using the discrete 248	

version of the Generalized Pareto Distribution (GPD), leading to four estimates of the 1258 GHD return period. 249	

Also, the analysis was duplicated, excluding the sample of years corresponding to known large volcanic eruptions 250	

from the GPD fitting, providing estimates of the 1258 GHD return period under unperturbed climate conditions 251	

(Text S3). 252	

 253	

Tree-ring chronology selection and assessment. We compiled an extensive database of tree-ring width (TRW 254	

and maximum latewood density (MXD) chronologies from the International Tree-Ring Database (ITRDB) and 255	

published papers from NH tree-line sites located between latitudes 39 and 73°N (Table S5). For each individual 256	



chronology, we carefully tested its sensitivity to June-August (JJA) temperatures (Fig. S2) and excluded series 257	

with an ambiguous climate response. The remaining 25 chronologies (13 TRW and 12 MXD) all include the 13
th

 258	

century; they were grouped into 11 regional clusters based on correlation matrices (r>0.3, p-value<0.05). All 259	

clusters document the Samalas eruption with an expressed population signal or EPS never <0.85.   260	

 261	

Tree-ring based NH temperature reconstruction. Each cluster was standardized using standard (i.e., negative 262	

exponential), RCS
43,44

 and Signal-Free RCS
45

 standardizations that preserve low-frequency (that is, multi-decadal) 263	

temperature changes. We then transferred this record into JJA temperature anomalies (wrt 1961–1990) through a 264	

bootstrap linear model using principal component analysis calibrated against JJA land surface temperature 265	

anomalies (1805–1972) from the BEST dataset
27

. The calibration and validation process was repeated 1,000 times 266	

using a bootstrap method to assess the robustness of the transfer function. To test the quality of the fit of each 267	

individual run, we used coefficient of determination statistics (R
2
 for the calibration and r

2
 for the verification 268	

periods), whereas the RE (reduction of error) and CE (coefficient of efficiency) statistics served to test the 269	

predictive capacity of the transfer function. Calibration and validation statistics are illustrated for each nest with 270	

their 2.5 and 97.5 percentiles (Table S3) and the reconstruction is given with its 95%-confidence intervals (Text 271	

S5). To account for the decreased number of chronologies back in time, we used a nested approach (12 nests) to 272	

obtain the longest possible reconstruction. The final reconstruction was developed by splicing all the nested time 273	

series after adjustment of mean and variance of each nested reconstruction segment to the best replicated nest 274	

(1230–1972). This approach is known to stabilize the variance of the final reconstruction but to increase the error 275	

variance. Calibration and validation statistics (R
2
=0.39–0.45, r

2
=0.35–0.38; reduction of error RE=0.36–0.39, 276	

coefficient of efficiency CE=0.34–0.37; see Table S3) were used to evaluate the reliability of the reconstruction. In 277	

Fig. 4b, reconstructed temperature anomalies are presented as deviations from the climate mean climatology 278	

smoothed with a 15-yr time window on either side of the volcanic eruptions dated to 1257, 1452, 1600, and 1815. 279	

For example, in the case of Samalas, a background was calculated by averaging the window 1243-1257 and 1259-280	

1273. The anomaly is then created by subtracting this background from the 1258 reconstructed temperature. As for 281	

GHDs, the 10% lowest values were fitted using the continuous GPD to evaluate the return period of the cooling 282	

induced by the Samalas and by other big eruptions. Analysis was done for the 1258 and 1259 annual values, as 283	

well as for anomalies cumulated over two years (Fig. 4). 284	

 285	

Regional reconstructions. To account for the spatial variability of volcanic cooling, the 25 tree-ring chronologies 286	

were grouped into 11 clusters. In addition, to extend the analysis to other unrepresented regions we included a 287	

cluster of three stable isotope series from Greenland ice cores (GRIP, Crete, DYE3), all statistically significantly 288	

related to summer temperature conditions over Eastern Greenland and Iceland
46

. The spatial extent of each cluster 289	

was defined via the spatial field of correlations between each proxy record and mean JJA temperatures of the 290	

BEST dataset (Fig. S2). We then applied linear regression analysis (for clusters with only one chronology) or a 291	

bootstrap linear model using principal component analysis (for clusters with multiple chronologies) in order to 292	

calibrate cluster series to JJA gridded temperature anomalies (wrt 1961–1990) from the BEST dataset. Full period 293	

calibration was performed separately for each of the 12 clusters over the period 1901–1990 while the robustness of 294	

this association was tested through cross-validation procedures for the period 1901–1945 and 1946–1990 (Fig. S3). 295	

Only grid points with a CE>0.1 were used for the spatial representation of temperature anomalies.  296	

 297	

Data availability. The data used to perform our analysis as well as our results can be accessed at: 298	

https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/climate-reconstruction  299	

 300	
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