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ABSTRACT

The fluctuation–dissipation theorem (FDT) states that for systems with certain properties it is possible to

generate a linear operator that gives the response of the system to weak external forcing simply by using

covariances and lag-covariances of fluctuations of the undisturbed system. This paper points out that the

theorem can be shown to hold for systems with properties very close to the properties of the earth’s

atmosphere.

As a test of the theorem’s applicability to the atmosphere, a three-dimensional operator for steady

responses to external forcing is constructed for data from an atmospheric general circulation model

(AGCM). The response of this operator is then compared to the response of the AGCM for various heating

functions. In most cases, the FDT-based operator gives three-dimensional responses that are very similar in

structure and amplitude to the corresponding GCM responses. The operator is also able to give accurate

estimates for the inverse problem in which one derives the forcing that will produce a given response in the

AGCM. In the few cases where the operator is not accurate, it appears that the fact that the operator was

constructed in a reduced space is at least partly responsible.

As an example of the potential utility of a response operator with the accuracy found here, the FDT-

based operator is applied to a problem that is difficult to solve with an AGCM. It is used to generate an

influence function that shows how well heating at each point on the globe excites the AGCM’s Northern

Hemisphere annular mode (NAM). Most of the regions highlighted by this influence function, including the

Arctic and tropical Indian Ocean, are verified by AGCM solutions as being effective locations for stimu-

lating the NAM.

1. Introduction

Comprehensive general circulation models (GCMs)

are often the tool of choice for answering questions that

involve estimating the large-scale response of the cli-

mate system to a specific external forcing. But for ques-

tions that involve finding the response to many differ-

ent forcing functions, GCMs are not practical, and in

the extreme case in which the response to an infinite

collection of forcing distributions is required, GCMs

cannot provide the needed results. For example, they

cannot be used to find the maximum response to a

forcing of unit amplitude. In this paper, we test a tool

for dealing with situations where the responses to a

large, or infinite, class of external forcings is needed.

The tool we will consider is made possible by the

fluctuation–dissipation theorem (FDT), which was ob-

tained in different variations by Nyquist (1928), Callen

and Welton (1951), Kraichnan (1959), Kubo (1957),

and Deker and Haake (1975). This theorem states that

by observing the natural fluctuations of a system with

certain properties a linear operator can be constructed

that gives the response of the system to an external

stimulus of sufficiently weak amplitude. The power of

this theorem stems from the fact that though it gives a

linear response function, its applicability is not re-

stricted to linear systems. Rather its application is con-

fined to forcings that are weak enough for the response

to be a linear function of forcing. Leith (1975) pointed
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out that in one of the theorem’s forms, the earth’s cli-

mate system has properties that approximately satisfy

the conditions of the theorem.

Past efforts to apply the FDT in the Leith form to

earth’s climate have not always been successful. North

et al. (1993) and Cionni et al. (2004) tested this idea by

comparing predictions of one-dimensional FDT opera-

tors to the solutions of an AGCM, but the results were

not promising from a quantitative standpoint. North

pointed out that this might be because some of the

conditions of the FDT are not strictly met by an

AGCM. However, as noted in Majda et al. (2005) and

Dymnikov and Gritsun (2005), and explained in section

2, an alternative statement of the theorem from that

presented by Leith contains conditions that are more

closely satisfied by the climate system. This fact calls

into question whether North and Cionni et al.’s unsat-

isfying results occurred because of properties of the

climate system.

We hypothesize, as North et al. (1993) speculated,

that more accurate operators will result if the FDT is

used to construct multivariate operators. Indeed, the

need for a multivariate approach can be seen in the

results of Fig. 1. This figure shows the time-averaged

globally averaged temperature response of an AGCM

to a steady, localized, external heat source on the equa-

tor. (Figure 1 is also discussed in section 3.) As de-

scribed more fully in section 3, the AGCM has been

integrated 24 times. In each integration the external

source has the same structure and amplitude but a dif-

ferent longitudinal position. In a one-dimensional ap-

plication of the FDT, the response to each of these heat

sources is necessarily identical, but in the AGCM, the

response varies widely depending on forcing location.

This is because the response depends not only on the

forcing of the global mean but also, as a result of vari-

ous dynamical wave–wave interactions, on the spatially

nonuniform component of the forcing. Only in a mul-

tivariate setting can such interactions be represented.

Bell (1980) demonstrated some success in a multivari-

ate application of the FDT to a barotropic setting. More

progress was made by Dymnikov and Gritsun (2001)

and Gritsun (2001) who applied the FDT to a two-level

quasigeostrophic model. Furthermore, in preliminary

results Gritsun et al. (2002) have shown promising re-

sults that indicate that the construction of multivariate

FDT operators for a primitive equation system is fea-

sible.

There are some reasons to question just how accurate

a multivariate FDT operator will be. For example, even

the conditions presented in section 2 require that the

system being approximated have a quasi-Gaussian

probability distribution function (PDF). And, as Berner

and Branstator (2007) have documented, some vari-

ables in the AGCM we wish to approximate via the

FDT have non-Gaussian properties. This fact can pro-

duce difficulties for the FDT (Carnevale et al. 1991).

Moreover, the operator necessarily can only produce

the linear response to external stimuli, and it is not

apparent whether the response to external forcing with

amplitudes of interest are linear (Hoerling et al. 1997).

Perhaps most troubling is that the theorem requires the

estimation of covariances and lag-covariances of state

variables, and it is not clear whether this can be done to

required accuracies (Bell 1985).

For these reasons, we have undertaken a study to test

and apply the FDT in the climate response setting. One

would like to use it to construct operators for nature,

but we have decided it is prudent to instead apply it to

an AGCM. This has made it possible to carefully test

the resulting operator by comparing its responses to the

responses of the AGCM for the identical forcings.

These tests are described in section 4. A second benefit

of testing the FDT methodology in an AGCM setting is

that extensive datasets of system behavior can be gen-

erated thus making it possible to estimate the required

covariances and lag-covariances to unusually high ac-

curacy. However, even though we have four million

days of data for our AGCM, as explained in section 3,

we have been compelled to perform our calculations in

a reduced space in order for the covariances to be suf-

FIG. 1. Globally and depth-averaged temperature anomalies for

24 experiments in which a sinusoidal equatorial heating anomaly

with maximum value 2.5°C day�1 is placed at the indicated lon-

gitudes. (a) Solutions given by an AGCM. (b) Solutions given by

an operator based on the FDT.
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ficiently accurate. As the section 5 discussion of the

errors in our operator’s solutions makes apparent, re-

ducing the system state vector degrades the solutions in

some situations. Even so, we have found that the FDT

operator is remarkably accurate for most forcing func-

tions we have tested. This has allowed us, as a further

test of the method’s potential, to apply the FDT opera-

tor to answer a question that it is impractical for the

AGCM to address. This application, concerning stimu-

lation of the Northern Hemisphere annular mode, is

described in section 6, while a summary of our results

and their implications are presented in section 7.

2. Theory

The response operator that we will construct has the

same form as that proposed by Leith (1975). Based on

the results of Majda et al. (2005) and Dymnikov and

Gritsun (2005), we show in this section, it is, however,

possible to modify Leith’s derivation of this operator in

such a way that the conditions under which it applies

are arguably closer to those of a typical atmospheric

system than the conditions he assumed.

Suppose we wish to produce a response operator for

the model

du

dt
� F �u, ��, u | t�0 � u0. �1�

In this equation u is a state vector of length N, F is

some nonlinear operator independent of time, � is a

vector of model parameters, and t is time. Systems like

(1) can be obtained as a result of some Galerkin or

finite-difference method applied to a system of partial

differential equations like the Navier–Stokes equations

or the primitive equations.

We are interested in statistical characteristics of (1)

including its average state, its covariance matrix, etc.

Let u be the average state of system (1)

u � lim
T→�

1

T
�

0

T

u�t� dt. �2�

In general, there is no guarantee that this limit exists.

For some systems u can grow without bound as T → �.

Also, the average state could dependent on the initial

condition u(0). On the other hand, for typical atmo-

spheric modeling experiments, these problems do not

occur; the average state exists and it does not depend

on the particular trajectory. Generally speaking, this is

a consequence of the system being ergodic.

Suppose now that there is some additional external

forcing �f on the right-hand side of the system (1):

du�

dt
� F �u�, �� � �f, u� | t�0 � u�0. �3�

Perturbed system (3) will have its own average state u�

that can be different from that of the system (1). If

�u � u � u�, then �u depends in some fashion on the

external forcing:

�u � V ��f �.

The functional relationship V between �f and �u can

be nonlinear, but for small �f we can expect that it is

almost linear. This idea is equivalent to the assumption

of differentiability of V making it possible to use a Tay-

lor expansion for V (�f ). Denote the first order, linear

terms in this expansion as

�u 	 L�f,

where L � 
V /
(�f ). Note that in a similar way for small

enough forcing there should also be (other) linear re-

lationships between �f and any other statistical charac-

teristics of (1) that are smoothly related to �f. Knowl-

edge of the response operator L is very important for it

completely defines the sensitivity of the system to small

forcing. Moreover, if we know L (and therefore L
�1)

we can study various inverse problems (for nondegen-

erate L).

To approximate L we need to somehow calculate

L �

� limT→�

1

T
�

0

T

u��t� dt

��f
. �4�

To this end it is useful to assume (1) and (3) have

stationary PDFs � and ��, respectively, so that u and �u

can be calculated from

u � �u��u� du, �u � �u����u�� du� � �u� du. �5�

With the alternative expression for average states we

can rewrite (4) as

L �

��u�����f � du�

��f
. �6�

So calculating L reduces to evaluating 
/
�f.

Unfortunately, for most atmospheric systems, there

exists a major problem with this approach for calculat-

ing L. Indeed, it is well known that most atmospheric

systems are chaotic, but the attractors of chaotic sys-

tems have very complicated fractal structure. As a re-

sult, the integration in (6) has to be taken over a fractal

set rather than the entire phase space. Furthermore, the
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measure itself becomes singular because of the attrac-

tor fractality. Since both the integration domain (i.e.,

the attractor) and measure depend on forcing and are

singular, it is not clear how one calculates the derivative

in (6). Some results in this direction were obtained by

Ruelle (1999), but his results are limited to the class of

Anosov systems, and they are not very practical (Majda

et al. 2005).

Fortunately, there is an elegant approach for dealing

with this situation (Zeeman 1988). The idea is to add

Gaussian white noise to the right-hand side of the

model so that the PDF is no longer defined on a fractal

set. By making this noise weak, the statistics of the

model should not be affected in any substantial way.

There are physical justifications for such a regulariza-

tion. First it can be argued that noise of this kind is

actually representing unresolved physical processes,

processes that are sometimes replaced by stochastic pa-

rameterizations (see Palmer et al. 2005). Also, any com-

puter realization of the system (1) will automatically

include small pseudorandom noise as a result of round-

off. Some of the above effects can be approximated as

Gaussian white noise.

Introducing this stochastic regularization into (1) we

have

du�

dt
� F �u�, �� � ���t�, u� | t�0 � u�0. �7�

In this equation � is a small positive number and 
(t) is

a stochastic process that is Gaussian and white in time

and has a covariance matrix 2E for identity matrix E.

For the system (7), u in (5) is now a well-defined aver-

age state. Indeed, as discussed in Risken (1984), a sys-

tem of the form (7) with Gaussian white noise forcing

has a Fokker–Planck equation for its PDF ��

d��

dt
� div�F �� � � ����, �8�

where � is the Laplacian operator. Results of various

papers (Zeeman 1988; Shirikyan 2004; Hairer and Mat-

tingly 2004) suggest that for a wide class of systems,

including the 2D Navier–Stokes equation, (8) has a

unique stationary solution. We will restrict our atten-

tion to systems that have this property. For the per-

turbed system (3) we can get a similar expression

d���

dt
� div��F � �f ���� � � �����. �9�

The change in the average state of the regularized

systems can now be expressed according to (5), so the

response operator in (6) is now well defined. As the

PDF is now defined for the complete phase space, we

can move the derivative in (6) inside the integral and

calculate 
��/
�f using the Fokker–Planck equation

theory. As a result [details can be found either in

Risken (1984) or in Majda et al. (2005)], we get a gen-

eral fluctuation–dissipation theorem

�u�t� � L�t��f � �
0

t

�u�t � ��{B�u�t��}T� du d��f,

�10�

where B is calculated according to (11) and we dropped

index � for notational simplicity:

B � � �1	����. �11�

For large t we obtain the stationary response of the

system average state to the forcing �f. Similar fluctua-

tion–response relations can be obtained not just for the

mean response but for any arbitrary system character-

istic and for time-dependent forcing (Risken (1984)).

The original proof for (10) belongs to (Deker and

Haake 1975) and an alternative derivation was sug-

gested by Dymnikov (2002).

It is important to note, again, that derivation of (10)

requires 1) the existence of a unique stationary solution

� of the corresponding Fokker–Planck equation, and 2)

small enough forcing perturbation for the first-order

theory to be valid. As discussed by Deker and Haake

(1975), Falcioni et al. (1990), and Carnevale et al.

(1991), the same Eq. (10) can also be obtained for de-

terministic systems (without � noise) provided that they

obey 1) and 2) and have a smooth invariant measure.

To complete our calculation we need to somehow

calculate ��. For large systems with unknown PDF �,

this is a great problem. The natural idea is to approxi-

mate � by some standard distribution and thereby ar-

rive at an approximate formula for L. The PDFs of

atmospheric systems are typically close to normal ones.

So we can approximate � by a Gaussian distribution

�G � �0 exp��C
�1(0)u,u]/2, where �0 is a normalizing con-

stant and C(�) � Cu,u(�), the lag-� covariance matrix

of u. For the sake of simplicity we assume that u � 0,

but all our results will in fact be true for u � 0 as

well. Substituting �G into the Eq. (11) we have B(u) �

�(1/�G)��G � C
�1(0)u and get the final formula

L�t� � �
0

t

C���C�1�0� d�. �12�

It should also be pointed out that for non-Gaussian

systems with second order nonlinearity, the quasi-

Gaussian approximation should work especially well.
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According to the theorem of Majda et al. (2005), (12)

holds for such a system with accuracy O(t2).

Though (12) is the same expression as Leith’s (1975),

we made different assumptions in our derivation of it.

He assumed he was dealing with a system that obeys

the conditions of Kraichnan’s (1959) theorem; that is, 1)

it has at least one quadratic invariant, 2) it has an in-

compressible phase volume, and 3) it is forced by a

weak source. Under these conditions, the system PDF

is necessarily Gaussian. However, typical atmospheric

systems have a contracting phase space and do not have

any exact quadratic invariant. Consequently, the Kraich-

nan theorem is not valid, and so it is unclear why one

should use (12) as an approximate formula for the sys-

tem response operator.

In the approach just presented, we assumed a system

with 1) a weak stochastic regularization, 2) a Fokker–

Planck equation with a unique stationary solution, and

3) a weak forcing anomaly. From results of Shirikyan

(2004) and Hairer and Mattingly (2004) it follows that

the two-dimensional Navier–Stokes equation with sto-

chastic forcing has a Fokker–Planck equation with a

unique stationary solution, and we know of no counter

examples for other atmospheric-like systems. We have

already argued the stochastic term we impose for regu-

larization has a physical basis. As a result, for systems

with Gaussian PDFs we get (12) exactly. If the PDF is

quasi-Gaussian we still have the general Eq. (10) for the

response and (12) now becomes its approximation.

Therefore, our assumptions appear to be more real-

istic and less restrictive than those Leith needed when

applying Kraichnan’s (1959) fluctuation–dissipation

theorem. Moreover, Eq. (10) is valid for any nonnormal

distribution �. Thus, further generalization of our ap-

proach to other moments and to nonnormal distribu-

tions is possible by substituting correct expressions for

� into (10) and (11), respectively. Moreover, one can

even try to eliminate the requirement of small pertur-

bations either by calculating higher-order corrections

for (10) (in �f ) or by considering general nonlinear

fluctuation–dissipation relations as in Boffetta et al.

(2003).

It should be pointed out that the concept of the fluc-

tuation–dissipation theorem considered in our paper is

different from the concept of fluctuation–dissipation re-

lation (FDR) used in a number of papers devoted to

linear inverse modeling (e.g., Penland 1989; Penland

and Sardeshmukh 1995; Winkler et al. 2001). The FDR

is simply the Lyapunov equation AC(0) � C(0)AT �

Q � 0 for the linear stochastic system du/dt � Au �

�(t), where Q is a covariance matrix of stochastic forc-

ing �(t), and thus relates the dynamics, covariance sta-

tistics and driving noise for such a system. It is a direct

consequence of applying the stationary Fokker–Planck

Eq. (8) to a linear system (Risken 1984; Penland and

Matrosova 1994).

Just like the FDR, the FDT relates dynamical char-

acteristics of a system to its statistics, however, it de-

scribes a different property of a system. It gives formu-

lae for response operators of statistical characteristics

of the system to external perturbations. Probably a bet-

ter name for this theorem would be fluctuation–

response relation, but we prefer to use the original

name suggested by Leith (1975) and Deker and Haake

(1975).

3. Construction of the operator

As explained in the introduction, our study is based

on applying the FDT to an atmospheric general circu-

lation model, namely, the model known as Community

Climate Model, version 0 (CCM0) of the National Cen-

ter for Atmospheric Research. As described in Wil-

liamson (1983) CCM0 is a moist primitive equation

model with a package of physical parameterizations

that was state-of-the-art when it was formulated. CCM0

uses spherical harmonics in the horizontal with a rhom-

boidal truncation at total wavenumber 15 and nine dis-

crete sigma levels in the vertical to represent the model

prognostic variables (vorticity, divergence, tempera-

ture, log surface pressure, and specific humidity). All

together, the model state vector has 18 352 compo-

nents.

For our investigation CCM0 has been integrated a

total of four million days with fixed, January boundary

conditions. The state vector has been stored every half

day, and it is these values, produced during this control

integration, which we have used to calculate the cova-

riances required for construction of the response op-

erator from (12). This has involved calculating the

lagged-covariances in (12) at half-day intervals and

then using a simple trapezoidal quadrature to estimate

the integral in that expression with t set to 30 days.

Though we have a very long dataset, we have found

that it is not adequate for calculating L to sufficiently

high accuracy if the AGCM’s states are represented in

terms of their full dimensionality. This fact can be un-

derstood from the detailed analysis of the numerical

accuracy of (12) carried out by Martynov and Nechep-

urenko (2004). For our purposes it is sufficient to rec-

ognize that if we rewrite (12) as L � MK�1 where M �

�t
0 C(�) d� and K � C(0), then the estimated value of L

resulting from a finite dataset will be

L� � �M � �M��K � �K��1, �13�
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where �M and �K are errors in M and K produced by

sampling shortcomings. Hence, to second order

L� � L � L�KK�1 � �MK�1. �14�

If M and K are based on large samples of length T, then

according to the central limit theorem their errors, �M

and �K, will be proportional to 1/�T, as will be L�.

From this we see that the shorter the dataset the greater

the errors in L� will be. Furthermore, as the analysis of

Martynov and Nechepurenko (2004) shows, and as sug-

gested by the division by C(0) in (14), the smaller the

eigenvalues of C(0), the larger will be the errors in L�.

Given these considerations it is not surprising that we

have found that a much more accurate response opera-

tor results if we reduce the dimensionality of the state

vectors used in its construction [and increase the small-

est eigenvalue of C(0)]. When choosing a reduced space

we have taken several factors into account. First, as

much as possible, we have retained dynamically rel-

evant variables and structures reasoning that at a mini-

mum the response operator must explicitly represent

the dynamically important features of the large-scale

anomalous structures whose response we seek. Second,

we have attempted to retained directions that are

needed to represent the forcing functions we wish to

use. Third, we have sought to remove structures with

small variance. This last goal is exacerbated by the pres-

ence of near linear dependencies in our dataset (result-

ing from, e.g., geostrophy and the near barotropic na-

ture of prominent atmospheric patterns).

Applying these principles, we have formed a reduced

basis in the following way:

1) We have excluded divergence, log surface pressure,

and water vapor from the state vector. The latter

choice was forced on us by the absence of moisture

information in the stored AGCM datasets, though

the success of our calculations reported in the fol-

lowing sections suggests that either moist processes

are not important for the situations we have applied

our response operator to or the influence of mois-

ture is implicitly represented in the variables we re-

tained. In tests in which divergence was retained in

the state vector, our results markedly degraded be-

cause its inclusion led to much smaller eigenvalues

in C(0), probably because of the functional relation-

ship between divergence and our retained variables

implied by midlatitude quasi geostrophy.

2) At each model level, we have calculated EOFs of

streamfunction and found that for each level the

first 100 EOFs explain between 0.90 and 0.95 of the

variance. Based on this we have deleted all but the

first 100 EOFs from each level. We have not re-

duced the dimensionality of temperature because

some of the thermal forcing functions we wished to

employ project onto trailing EOFs.

3) We have calculated three-dimensional multivariate

EOFs of the remaining 900 � 4464 degrees of free-

dom. When doing this we have normalized each

streamfunction field by the standard deviation at its

model level and each temperature field by one-third

of its standard deviation at its model level. This em-

phasis on temperature was to enhance our ability to

represent the structure of thermal forcing functions

well. The leading 1800 of these three- dimensional

EOFs form the basis in which C(0), C(t) and L have

been calculated.

4. Validation

a. Response skill

We have tested the FDT operator’s reaction to vari-

ous forcing configurations of interest. These were or-

ganized into forcing suites of 24 steady localized forcing

functions, each with the same horizontal and vertical

structure and latitudinal placement but different longi-

tudinal positions. In all suites the horizontal structure

of each forcing consisted of a steady heat source that

decreased linearly from a central point until it vanished

at a distance of 1500 km. In some suites the vertical

structure was A sin(��), where � is the AGCM’s ver-

tical coordinate. We refer to this as sinusoidal heating.

In others the vertical structure was zero except at the

lowest three levels, where it had the values 1.616A in

the layer centered at � � 0.811 and 3.232A in layers

centered at � � 0.926 and 0.991. In this way, vertically

integrated forcing was the same for both types of ver-

tical structure. We call this low-level heating. In each

suite the 24 forcing functions has been placed at longi-

tudes 0°, 15°E, . . . , 165°W.

For each experiment the AGCM was integrated for

either 10 100 days (in the case of equatorial forcing) or

40 100 days (in the case of midlatitude forcing) with the

same fixed boundary conditions used in the control in-

tegration, and anomalous solutions were found by sub-

tracting the control average state from the experimen-

tal state averaged over all but the first 100 days of the

experiment. As we have seen the FDT operator esti-

mates the linear response of the system. To produce an

estimate of the AGCM’s linear response, that is the

response it would have to vanishingly small forcing, we

have repeated each forced experiment but with the sign

of the forcing reversed and then have used one-half the

difference of the solution pair for the AGCM response

throughout our study.

When comparing FDT to AGCM responses we have
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employed two measures. One is pattern correlation,

which is the scalar product of two states divided by their

Euclid norms. The other is the amplitude ratio, which

we defined as the FDT operator response norm divided

by the corresponding AGCM response norm. When

calculating these quantities for a specific field (say tem-

perature at � � 0.991) we have used a physical (grid)

space representation. When calculating them for com-

plete 18 variable states we have transformed them to

the 1800-dimensional EOF basis and calculated scalar

products and norms in this EOF space.

One situation we have examined in detail is the re-

sponse to tropical midtropospheric heating, which has

relevance to topics ranging from seasonal forecasting to

climate change. To this end, we have generated a suite

of AGCM solutions with sinusoidal heating at the equa-

tor with A set to 2.5°C day�1. To summarize the three-

dimensional structure of responses in this suite, we dis-

play the case-averaged AGCM response at � � 0.991,

0.664, 0.336, and 0.094 for streamfunction (Fig. 2a) and

temperature (Fig. 2c). Before averaging each solution is

longitudinally shifted so that the heating is at 180°E.

The main features of these averaged solutions corre-

spond well with standard theory including the tropical

quadrapole with its first internal mode vertical struc-

ture and the barotropic wave train that arches into mid-

latitudes of the winter hemisphere.

When we have forced the FDT operator with the

FIG. 2. Mean anomalous response of 24 experiments in which a sinusoidal 2.5°C day�1 heat source is placed at different longitudes

on the equator. Before averaging the anomalous response of each experiment is longitudinally shifted to 180°E. Responses are plotted

at � � 0.094, 0.336, 0.664 and 0.991. (a) Streamfunction for AGCM. (b) Streamfunction for FDT operator. (c) Temperature for AGCM.

(d) Temperature for FDT operator. Contour intervals are 7.5 � 105 m2 s�1 for streamfunction and 0.3°C for temperature. (In this and

all figures, shading is only an aid in distinguishing regions of high amplitude.)
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same 24 forcing functions and averaged the solutions in

the same way, we have found the match to the AGCM

solutions is very close (Figs. 2b,d) with the equatorial

quadrapole, arching midlatitude wave train and con-

trasting tropical and midlatitude vertical structures not

only being reproduced qualitatively but even quantita-

tively both in terms of structure and amplitude. The

only prominent discrepancy between the two patterns is

the absence in the FDT solution of the zonally symmet-

ric sine latitude stratospheric feature found in the

AGCM.

From many previous studies (e.g., Geisler et al. 1985;

Branstator and Haupt 1998) we know that individual

solutions in this suite may be very different from the

average picture of Fig. 2. On an individual basis, too,

those produced by the FDT operator are very similar to

the corresponding AGCM solutions. For example Figs.

3a–d show streamfunction at � � 0.336 (�0.336) and

temperature at � � 0.991 (T0.991) for the AGCM and

FDT solutions for forcing at (0°, 135°E) while Figs.

3e–h show the same fields for forcing at (0°, 90°W).

Both near the surface and throughout the troposphere,

for both streamfunction and temperature, the FDT so-

lutions have structures that are a close match to those

from the AGCM. This is true even though those struc-

tures and amplitudes sometimes vary dramatically from

case to case, as in Fig. 3. In fact as indicated in Fig. 4a,

pattern correlation scores for �0.991 (dashed line), �0.336

(dashed line with triangles), T0.991 (dotted line), T0.336

(dotted line with triangles), and all 18 variables com-

bined (solid line), are greater than 0.7 for every case.

The amplitude of the AGCM solutions also varies a

great deal from case to case, as the examples of Fig. 3

demonstrate. As can be seen by the bar chart in Fig. 4a,

which shows the amplitude ratio for each case in the

suite, FDT operator solutions also capture this aspect

of the solutions though they have a bias toward over-

amplification.

One verifying field that is of special interest is global

mean temperature since it served to motivate our study.

The solid line in Fig. 1, which is alluded to in the intro-

duction, represents the global mean temperature re-

sponse for each case in the equatorial, sinusoidal heat-

ing suite. The dashed line in that figure shows the global

mean response as estimated by the FDT operator for

these same cases. The skill of the FDT operator is ob-

vious as is the benefit gained by carrying out the com-

putation in three-dimensions; a one-dimensional opera-

tor would have repeated the same solution for all 24

cases.

A second situation that is of interest is equatorial

low-level heating. In our AGCM we have found that

when we produce a suite of equatorial cases with low-

level heating profiles and A set to 2.5°C day�1, the

responses are rather similar to the solutions with sinu-

soidal forcing. The only marked departures are in the

bottom three levels near the imposed heating, where

low-level heating produces temperature anomalies of

the same sign as the forcing. Both in terms of translated

means (not shown) and individual responses (Fig. 4b),

the FDT operator reproduces these solutions almost as

accurately as it reproduced the equatorial sinusoidal

heating cases, though in a few cases pattern correlations

below 0.7 are attained. The one measure that is mark-

edly worse is the amplitude ratio, with the FDT solu-

tions often being too strong.

Though estimating the response to midlatitude heat

sources is a difficult problem for AGCMs to do well, we

have carried out suites of experiments with heating

functions placed in midlatitude positions with the aim

of determining whether the FDT operator can estimate

our AGCM’s sensitivity to forcing latitude. For the case

of sinusoidal forcing at 40°N with A set to 5°C day�1,

AGCM responses are structurally very different from

the earlier equatorial cases. This can be seen in Figs.

5a,c, which show the mean, translated AGCM response

for streamfunction and temperature. Here, in contrast

to the equatorial case of Fig. 2, the response is confined

to midlatitudes of the Northern Hemisphere, it is

equivalent barotropic except near the forcing, and it

has a much more prominent zonally symmetric compo-

nent. The FDT mean response (Figs. 5b,d) captures all

of these features well. As the results of Fig. 4c indicate,

the FDT operator has skill for each individual case as

well. Only for amplitude and near surface temperature

are poor results occasionally achieved.

The last suite we have considered is for low-level

heating at 40°N. As the results in Fig. 4d indicate, the

FDT operator does much worse for some of these cases

than for any of the earlier situations. Particularly for

forcing over the northern ocean basins, FDT solutions

are not good estimates of the AGCM solutions both in

terms of structure and amplitude. On the other hand,

for other locations in this suite there is good correspon-

dence between the AGCM and FDT solutions. Section

5 will discuss why this may be true.

b. Inverse skill

For some purposes the inverse problem, in which one

determines the forcing that produces a specified re-

sponse, is of more interest than the response problem.

The high skill of the FDT operator we have found for

the response problem does not necessarily imply that it

will have similar skill for the inverse problem. How-
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ever, when we have tested the FDT operator’s ability to

estimate the anomalous forcing that produces a given

response in the AGCM, we have found that it is re-

markably accurate for this calculation as well.

Our tests of the inverse problem are based on the

same suites of AGCM forcing experiments used for

testing the FDT operator responses. For each AGCM

anomalous solution, �u, we have calculated

�f � L
�1�u �15�

and compared �f with the forcing that had been im-

posed in the AGCM experiment. As with the response

FIG. 3. Time-averaged anomalous response of (left) AGCM and (right) FDT operator to sinusoidal 2.5°C day�1 forcing at (top four)

(0°, 135°E) and (bottom four) (0°, 90°W). Fields shown are �0.336 and T0.991 as indicated. Contour intervals are 5 � 105 m2 s�1 for

streamfunction and 0.2°C for temperature.
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problem, this comparison is done using fields that have

been truncated to the basis of the FDT operator.

As an example of the skill of the FDT operator for

the inverse problem, we consider the case of Figs. 3a,c,

which is the AGCM response to sinusoidal heating at

(0°, 135°E). When we have used (15) to estimate the

forcing required to stimulate this pattern, the result

consists of a heating function that is concentrated in the

midtroposphere with a maximum near (0°, 135°E). Fig-

ure 6 shows this solution at � � 0.500. It has the same

circular distribution as the forcing that was actually

used to produce the Figs. 3a,c AGCM solution. Its am-

plitude is considerably weaker than the analytically

proscribed AGCM forcing (whose central value at this

level is 2.5°C day�1), but when one takes into account

the effects of truncation on the analytical forcing func-

tion, the amplitude of the estimated forcing is only

about 20% weaker than the true forcing. The estimated

forcing at other midtropospheric levels has a similar

structure and amplitude that is generally too weak. By

contrast, the inverse forcing near the surface and in the

stratosphere is very noisy and weak.

We have carried out a similar test of the inverse op-

erator for each case of each of the four forcing suites

FIG. 4. Pattern correlation between various anomalous fields in solutions of AGCM and FDT operator including �0.991 (dashed line),

�0.336 (dashed with triangles), T0.991 (dotted), T0.336 (dotted with triangles), and combined three-dimensional streamfunction and

temperature (solid), and also, amplitude ratio of these solutions (shaded bars). Pattern correlation scale is on lhs and amplitude ratio

scale is on rhs of diagram. (a) Sinusoidal equatorial heating cases. (b) Low-level equatorial heating cases. (c) Sinusoidal 40°N heating

cases. (d) Low-level 40°N heating cases. The x axis is indicating the locations of the heating centers.
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used earlier and find that the example of Fig. 6 is typi-

cal. Figure 7 summarizes these results in terms of the

multivariate average pattern correlation at each level

for each of the four suites. The FDT operator closely

reproduces the structure of the actual AGCM forcing in

the midtroposphere for the two sinusoidal suites but is

not very accurate in the stratosphere and near the sur-

face where the true forcing is weak. On the other hand,

in calculations not displayed here, we have found that it

does correctly estimate that forcing amplitudes are

weak at these levels. Similarly, the operator is very

skillful at estimating the forcing structure and ampli-

tude near the surface for cases in the low-level heating

suites. Of course at other levels it is not useful to mea-

sure the skill of the inverse in terms of a pattern cor-

relation since the analytical forcing at these levels is

zero.

5. Error characteristics

Though for most of the cases we have tested the FDT

gives skillful results, we saw in some cases there is little

correspondence between FDT solutions and AGCM

solutions. This was particularly true for many cases in

the 40°N low-level heating suite. Using additional

AGCM integrations we have confirmed that the case-

to-case variations in skill are not a result of sampling

shortcomings in our 40 000 day experiments. Under-

standing these variations is of interest because one

wonders whether the FDT approach is inherently inac-

curate for certain forcings or whether modifications to

our approach might improve the skill.

There are several ways in which our application of

the FDT may not meet the conditions of the theorem

thus leading to inaccuracies in the results. These in-

FIG. 5. Same as Fig. 2 but for sinusoidal 5°C day�1 heating at 40°N. Contour intervals are 1 � 106 m2 s�1 for streamfunction and

0.4°C for temperature.
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clude application to cases where the forcing is beyond

the linear limit or to a system whose statistics are not

normal. Even if the conditions are exactly met we can

also expect less than perfect skill because of approxi-

mations we have employed. In particular, the covari-

ances in (12) are only estimates based on finite samples,

and we have truncated the state vectors.

To study the sensitivity of our results to sampling, we

have divided our 4-million-day (4 Mday) dataset into

four 1-Mday segments and recalculated response op-

erators. The results obtained with these short operators

were almost the same as for the 4-Mday operator. (The

differences between corresponding values of pattern

correlations were less than 0.05). As a result, we can

conclude the low skill cases that we have noted are not

influenced by the finiteness of our dataset.

In work we do not have space to describe, we have

not been able to rule out nor have we found compelling

evidence to confirm that system nonnormalities are im-

portant factors in low skill cases. We have, however,

found that response nonlinearity is unlikely to be a sub-

stantial contributor in these cases. For if we repeat our

40°N low-level suite with the forcing amplitude reduced

to 2°C day�1, the resulting solutions are much too simi-

lar to the 5°C day�1 solutions for nonlinearities to ac-

count for the poor skill in the North Pacific and North

Atlantic cases. Indeed, variable-averaged pattern cor-

relations between strongly and weakly forced solutions

are greater than 0.8 in every case in this suite except for

the 165°E case.

On the other hand, we have found a solution char-

acteristic that is a good indicator of skill and which

helps explain why the FDT operator is inaccurate in

some cases. This characteristic is the amplitude of the

AGCM response. In the solid curve of the top panel of

Fig. 8 the large swings in FDT operator skill for the

40°N low-level heating suite are quantified in terms of

the pattern correlation of streamfunction anomalies.

The solid curve in the bottom panel of Fig. 8 shows the

amplitude of three-dimensional streamfunction in the

AGCM solutions. It indicates responses for forcing

over the North Pacific and North Atlantic have low

amplitude. These are approximately the same cases for

which poor FDT operator skill is found, and indeed the

correlation between these curves is greater than 0.80.

Correlations between pattern correlation and response

amplitude are also substantial in other forcing suites

and for other fields though the relationship is strongest

for the Fig. 8 suite. The dashed curves in Fig. 8 will be

discussed later in this section.

A correspondence between skill and response ampli-

tude is reasonable if one considers that our operator L

is the true linear response operator Ltrue plus an error

Lerror, and it is forced by the true forcing �ftrue plus

errors resulting from truncation �ferror. So FDT solu-

tions are

�u � �Ltrue � Lerror���ftrue � �ferror� � �utrue � �uerror.

�16�

If the amplitude of �uerror is more or less independent

of �f, then �u will be closer to �utrue for those forcings

for which the amplitude of �utrue is large.

FIG. 6. Forcing of T0.500 as given by the inverse of the FDT

operator for the AGCM solution in which sinusoidal 2.5°C day�1

heating was placed at (0°, 135°W). Contour interval is 0.05°C

day�1.

FIG. 7. Suite average (24 cases) of pattern correlations between

heating applied to AGCM and heating derived from the inverse

FDT operator. Averages are given at each model level for suites

of sinusoidal equatorial heating (solid) and sinusoidal 40°N heat-

ing (dot–dash), and for the bottom three model levels for suites of

low-level equatorial heating (long dash) and low-level 40°N heat-

ing (short dash).
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As a specific example of the behavior predicted by

(16) we have considered one source of FDT errors that

can be quantified. Because the basis we have used is not

complete, the forcing functions used to force the FDT

operator are not exactly equal to the forcing functions

that force the AGCM. One consequence of this is that

even though only the temperature equation is directly

forced in the AGCM experiments, in the corresponding

FDT experiments the streamfunction equation is also

forced. This can have a large effect on the FDT solu-

tions and since this forcing is spurious, it degrades the

FDT solution skill.

As an example of the effect of spurious streamfunc-

tion forcing, we consider the case of low-level heating at

(40°N, 165°W), for which the FDT operator has low

skill. Figure 9a shows the AGCM �0.336 response for

this case, and Fig. 9b shows the FDT estimated re-

sponse. Even the sign of major features, like those in

the North Pacific, is wrong. Figure 9c shows the �0.336

tendency that results from expanding the imposed heat-

ing for this case in terms of the three-dimensional mul-

tivariate EOFs of our FDT operator. With values in the

neighborhood of 2.5 � 106 m2 s�1 day�1 and consider-

ing that the maximum AGCM anomalies for this case

are about 2.5 � 106 m2 s�1, it is clear that these can have

a significant influence on the FDT solutions. Of course

the operator cannot be used to determine the effect of

this component of the forcing, but we can estimate it by

inserting it into the AGCM. When we have done this,

we find the response in Fig. 9d. Clearly it is much stron-

ger than the effect of the heating itself and when we

compare this response to the FDT response for this

case, it is apparent that this spurious streamfunction

source has had a large effect, so large that it changes the

sign of the response in the North Pacific from what

heating alone gives.1

Now the strength and structure of the truncation-

induced spurious forcing varies with the position of the

forcing as does the strength and structure of the circu-

lation anomalies that it forces in the FDT solutions. As

an indication of this, in the bottom panel of Fig. 8

(dashed curve) we have included a plot of the ampli-

tude of the AGCM response to each of the truncation-

induced streamfunction sources inherent in each case in

the 40°N low-level heating suite. For some cases, like

those in the North Pacific and North Atlantic where the

heating-induced response is relatively weak, the

streamfunction-forced response can potentially over-

whelm the response to heating while in other locations,

particularly where the response to heating is strong, the

streamfunction-forced response can have a much less

1 Note the AGCM response to the spurious forcing (Fig. 9d) is

considerably weaker than the response of the FDT operator (Fig.

9b, which employs a large contour interval). This is consistent with

our finding that the FDT operator solutions tend to be too strong

for low-level heating and indicates that spurious streamfunction

forcing is not the only error affecting FDT solutions.

FIG. 8. Results for low-level 40°N heating suite. (top) Pattern

correlation between streamfunction anomalies in AGCM solu-

tions and FDT solutions (solid line). Pattern correlations at each

level have been calculated and their vertical average is plotted.

Dashed line represents vertically averaged ratio of amplitude of

AGCM streamfunction response to heating to amplitude of

AGCM streamfunction response to spurious streamfunction forc-

ing. (bottom) Vertically averaged streamfunction amplitude of

AGCM response to heating (solid line). Dashed line represents

vertically averaged streamfunction amplitude of AGCM to spu-

rious streamfunction forcing.
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important impact on the solution. If we form an index

of the relative strength of these two contributors to the

FDT solutions by taking the ratio of the heating-

induced response amplitude to the amplitude of the

streamfunction-induced response and plot it as the

dashed curve in the top panel in Fig. 8, we find it gen-

erally tracks the FDT operator skill. The two are cor-

related with a value of 0.72. Hence this appears to be an

example of the impact of FDT errors being modulated

by the amplitude of the true response. Errors resulting

from sampling and nonnormality may also be modu-

lated in this way.

6. Applications

The FDT operator that we have constructed has

proven to give useful estimates of our AGCM’s linear

response operator and its inverse except in cases of

weak response. Thus we have been encouraged to ap-

ply it to problems that would be difficult to solve with

the AGCM itself. Here we present one application con-

cerning one of the principal patterns of variability

present in simulations of our AGCM, namely the lead-

ing EOF of �0.991. This pattern, shown in Fig. 10, has

characteristics similar to the Northern Hemisphere an-

nular mode (NAM; Thompson and Wallace 1998) in

that it is concentrated in midlatitudes with a strong

zonal mean component and enhanced variance in the

northern ocean basins. We refer to it as the AGCM’s

NAM.

As reflected in its 7.5-day characteristic time this pat-

tern has a longer time scale than most patterns in our

AGCM and so should be relatively easy to force. A

natural question to ask is: what forcing tends to excite

this pattern in our AGCM? One could address this

question by using the inverse of the FDT operator,

which we tested in section 4. Here, we instead show the

results of a second approach, one that constructs a

Green (or influence) function (Branstator 1985; Grimm

and Silva Dias 1995) as a way of summarizing the ef-

fectiveness of a heat source at each location on the

FIG. 10. Leading EOF of half-daily AGCM �0.991.

FIG. 9. (a) AGCM response for �0.336 to low-level heating at (40°N, 165°W); (b) �0.336 response of FDT operator to low-level heating

at (40°N, 165°W); (c) spurious �0.336 forcing caused by truncation to operator basis; (d) �0.336 response of AGCM to spurious

streamfunction forcing. Contour intervals are 5 � l05 m2 s�1 for (a), 2 � 106 m2 s�1 for (b), 5 � 105 m2 s�1 day�1 for (c), and 5 � 105

m2 s�1 for (d).
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globe at exciting the pattern. To be specific we have

forced the FDT operator with steady sinusoidal heat

sources with the same horizontal distributions used in

section 4 and with A set to 5°C day�1. A steady re-

sponse has been calculated for such a source centered

at each of the grid points of the AGCM’s 48 � 40

transform grid. These solutions have been projected on

to the AGCM’s NAM to produce an estimate of the

influence function for this pattern of variability.

Figure 11 is a plot of this influence function. Of

course, because of the simplicity of our AGCM, Fig. 11

serves primarily as a demonstration of a potential use of

FDT response operator. But it is interesting that Fig. 11

highlights some regions where previous studies have

indicated heating may be able to stimulate the NAM or

the related North Atlantic Oscillation (NAO). For ex-

ample, the strongest feature on the plot, the lobe in the

Indian Ocean, corresponds to AGCM experiments by

Bader and Latif (2003) and Hoerling et al. (2004) who

found precipitation anomalies in this region forced cir-

culations with positive projections onto the NAM.

Similarly, the strong negative values in the Arctic re-

gion of Fig. 11 agree with Magnusdottir et al.’s (2004)

finding that heat sources in the polar North Atlantic

can stimulate the negative NAM. As far as we know,

some features on the plot have not been recognized

before, but whether this is because of our unique meth-

odology or because of the formulation of our AGCM

we cannot say.

Of course the FDT operator is not perfect, so we

have checked some of the most prominent features in

the influence function and found most (but not all) do

correspond to regions where heating in the AGCM ex-

cites the model NAM. In Fig. 12 we show �0.991 solu-

tions for four regions of interest and the corresponding

AGCM solutions. In each of these cases the FDT op-

erator gives accurate enough solutions to be useful.

One of the examples (Fig. 12b) corresponds to the In-

dian Ocean feature of Fig. 11. According to this FDT

solution, heating at (10°S, 75°E) produces a Northern

Hemisphere response that has a strong zonal mean

component as well as lobes in the ocean basins, includ-

ing an NAO-like dipole. Figure 12a, which is the cor-

responding solution for the AGCM, verifies that indeed

the AGCM does react to heating in this location in this

way. The second example concerns the broad negative

feature that covers most of the Arctic in Fig. 11. As the

FDT solution for forcing at (75°N, 150°W) demon-

strates (Fig. 12d), and the AGCM solution of Fig. 12c

confirms, this region is very effective at stimulating the

model’s NAM, including an Atlantic dipole. Perhaps

one of the most surprising features of the influence

function is the positive lobe over central South

America. The FDT response to heating at (20°S, 60°W)

in Fig. 12f shows the response that this feature reflects.

In the Northern Hemisphere, the similarity to the

NAM is clear, but the more prominent component of

the response is a largely zonally symmetric anomaly in

Southern Hemisphere midlatitudes. In both hemi-

spheres, these circulation features are good approxima-

tions to how the AGCM actually responds to heating in

this location (Fig. 12e). The fourth example we display

is for forcing at (35°N, 97.5°W), which corresponds to a

weak positive maximum in the Fig. 11 influence func-

tion. Forcing in this location produces a monopole in

the North Pacific and a dipole in the North Atlantic

(Fig. 12h). Of the four examples, this is the least accu-

rate FDT estimate. The AGCM reaction to this forcing

function (Fig. 12g) contains these same features, but it

also contains a low over the southeastern United States

that is missing in the FDT solution.2 Additional AGCM

solutions indicate that some of the other weak features

in the influence function result from FDT solutions that

are even less accurate. These include the negative

Aleutian lobe and some of the negative regions in the

North Atlantic.

7. Concluding remarks

Our calculations demonstrate that the fluctuation–

dissipation theorem is a viable means of producing the

three-dimensional steady linear response operator for

an atmospheric general circulation model. Indeed, our

extensive tests found the response of an AGCM to an

imposed heat source could be well approximated by the

response of the FDT-based operator for most heating

configurations. Furthermore, the inverse of the opera-

2 Further experiments, which we do not have space to discuss in

detail, indicate that to some extent forcing truncation errors, simi-

lar to those discussed in section 5, are responsible for this mis-

match.

FIG. 11. Projections onto �0.991 EOFl of FDT operator solutions

to sinusoidal 5°C day�1 heating.
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tor could accurately estimate the forcing that produced

a given anomalous state in the AGCM. Additionally we

found that the operator was accurate enough to be used

for exploratory calculations in which we systematically

searched for local heating functions that produced so-

lutions with a prespecified structure.

By using the FDT we were able to construct this

response operator without using the AGCM’s govern-

ing equations and without experimental evidence of

how the AGCM responds to external forcing anoma-

lies. Rather it was sufficient to have statistics of the

AGCM’s intrinsic fluctuations. The conditions under

FIG. 12. Responses of �0.336 to sinusoidal 5°C day�1 heating for (left) AGCM and (right) FDT operator. (a), (b) Heating at (10°S,

75°E). (c), (d) Heating at (75°N, 150°W). (e), (f) Heating at (20°S, 60°W). (g), (h) Heating at (35°N, 97.5°W). Contour interval is 5 �

105 m2 s�1 except in (a), (b) where it is 1 � 106 m2 s�1.
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which Kraichnan (1959) had proven the FDT to be true

are not satisfied by the AGCM used in our tests, or by

any realistic atmospheric model. Leith (1975) argued

that nature (and by implication realistic climate mod-

els) approximately satisfy conditions under which he

proved the theorem holds. As we have demonstrated,

using the approach introduced by Dymnikov and Grit-

sun (2005) and Majda et al. (2005), one can derive an

alternative set of conditions for the theorem that are

arguably even more closely satisfied by the atmosphere.

Thus, our successful application of the FDT should not

be completely unexpected.

Though we found the FDT produced a response op-

erator that was very accurate for most tested forcing

functions, we did find that for some functions its re-

sponse was not similar to the corresponding AGCM

solution. Our analysis of these situations did have an

optimistic outcome, however. To reduce the effect of

sampling on the covariances needed to calculate the

FDT operator, we had found it necessary to perform

our calculation in a reduced space. Our results indicate

that those cases that were poorly handled by the FDT

operator were those whose true response was weak.

For these cases, errors caused by the reduction over-

whelm the true solution. It may be that an alternative

method of reducing the dimensionality of the system

can be found that will not affect the operator’s accuracy

as much. Moreover, it may be that alternative trunca-

tions can reduce the dataset length required to produce

useful FDT operators. The results of Dymnikov and

Gritsun (2005) are encouraging in this respect. They

found they could produce an operator with useful skill

from the relatively short time series of fields available

from nature.

Other methods for constructing linear response op-

erators have been used in the past, but the FDT ap-

proach has advantages over these approaches that

should make its operators more accurate. The most

common method is to linearize the governing equations

of the system being studied, but as Branstator and

Haupt (1998) have demonstrated, this linearization ex-

cludes dynamical processes that have a large impact on

the response operator. These processes include the im-

pact of momentum fluxes produced by synoptic eddies.

Those authors proposed a means of generating a re-

sponse operator that does approximate such processes.

It uses the inverse of the operator that comes from

linear inverse modeling (Penland 1989). Construction

of an operator from linear inverse modeling shares one

important property with construction of a response op-

erator via the FDT; both construction procedures re-

quire only lag-correlation statistics of the undisturbed

system. The two approaches also have two important

differences. First, linear inverse modeling is based on

the assumption that the underlying system dynamics

are linear, while, as explained in sections 1 and 2, the

FDT does not make this assumption. Second, a linear-

inverse-modeling-based operator is designed to opti-

mally predict tendencies (Penland 1989), a condition

that does not necessarily optimize the response prob-

lem. Indeed, in calculations not detailed here, when we

have applied the linear inverse modeling approach to

constructing a three-dimensional response operator for

the AGCM used in our study, the resulting operator

had significant skill but was not as accurate as the FDT

operator. This result does not detract from the merits of

using linear inverse models for initial value problems,

as has been done in studies including Penland and Ma-

gorian (1993) for tropical sea surface temperature and

Winkler et al. (2001) for tropospheric circulation and

heating.

Our study dealt with generation of an operator that

estimates the steady, time-mean response of a system

with a quasi-normal PDF. As implied by the derivation

of section 2, this approach can be extended to other

situations and problems. First, as explained in that sec-

tion and as considered by Majda et al. (2005), Falcioni

et al. (1990), and Carnevale et al. (1991), it is possible to

modify the FDT approach so that it takes into account

non-Gaussian properties of a system. Second, it should

be possible to construct operators that give the re-

sponse of statistics other than the time mean. For ex-

ample, one could estimate the response of second-order

quantities. Third, the approach can be readily adapted

to problems in which one estimates the time-dependent

response to a time-dependent forcing. These facts, to-

gether with our results, indicate that operators based on

the fluctuation–dissipation theorem, especially when

constructed with an adequate number of degrees of

freedom to capture the dynamics of a system, should be

useful for a broad range of problems.
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