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1.  INTRODUCTION

Recent global warming and its potential impact
on the hydrological cycle and subsequent ecological
implications strengthen the need to quantify the
degree of past natural climate variability (IPCC
2007). This demand becomes even more critical
for drought-sensitive and highly populated regions
with intense agricultural background (Büntgen et
al. 2011). The Mediterranean region will be par -

ticularly vulnerable to a predicted temperature in -
crease and precipitation decrease, likely resulting
in amplified drought extremes and episodes (e.g.
Gao & Giorgi 2008). Assessment of regional-scale
climate variability, however, is complicated (see
Luter bacher et al. 2006 for a review) due to com -
plex interactions of synoptic circulation patterns
(Dün keloh & Jacobeit 2003, Xoplaki et al. 2003,
2004, Nicault et al. 2008), and specific local thermal
and orographic situations.
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A dense temporal and spatial coverage of paleocli-
matic indicators is therefore required to reconstruct
inter-annual to multi-centennial climate variability. In
this context, tree rings are considered the most impor-
tant high-resolution climate proxy archive for large
areas around the Mediterranean, besides historical
documentary data (Luterbacher et al. 2006). Dendro-
climatological efforts in assessing past climate varia-
tions of high mountain environments have been made
in the western Mediterranean, with em phasis on the
northern Iberian Peninsula (e.g. Gutiérrez 1989, Macias
et al. 2006, Büntgen et al. 2008, 2010), and northern
Africa (Guiot et al. 1979, Esper et al. 2007), for in-
stance. Investigations in the central part of the Medi -
terranean basin are rather sparse (Serre-Bachet 1985,
Todaro et al. 2007), and the eastern part of the Medi -
terranean basin is dominated by work concentrated in
Turkey, where tree growth has generally been described
as sensitive to hydroclima tic extremes (e.g. D’Arrigo &
Cullen 2001, Touchan et al. 2005, Akkemik et al. 2008).

Specifically on the Balkan Peninsula, a key region
in the climatic transition zone between the western
and eastern Mediterranean and also between the
Mediterranean and central European synoptic re -
gimes (e.g. Xoplaki et al. 2003, 2004), reliable proxies
are scarce (Vakarelov et al. 2001, Popa & Kern 2009).
Preliminary studies have been conducted in Bulgaria
(Panayotov et al. 2009, 2010, Trouet et al. 2012) and
Greece (Brandes 2007, Griggs et al. 2007), testing
growth–climate relations of high-elevation pines. By
using maximum latewood density rather than tree-
ring width (TRW), Seim et al. (2010) showed the
 potential for temperature reconstructions based on
 Pinus heldreichii, an endemic, long-living  high-
elevation species on the Balkan, as well as in southern
Italy (Barbero et al. 1998). Old stands of this species
are abundant in Albania, but little tree-ring research
has been carried out there so far. First attempts, how-
ever, demonstrated the potential to develop composite
chronologies from living trees and historical timber
(Westphal et al. 2010), which likely even reflect a pro-
nounced drought  signal when carefully collected
low-elevation pine trees Pinus nigra Arnold were
considered (Levanič & Toromani 2010).

Here we present a dataset of 302 samples from
217 high-elevation pines across Albania spanning
the 617–2008 period. Temperature, precipitation,
and drought sensitivity of the new data were ana-
lyzed with particular emphasis on temporal stability
and  potential age-related changes in response to
 climate. Finally, we discuss our results in the light
of potential long-term climate reconstructions for
Albania.

2.  MATERIALS AND METHODS

2.1.  Tree-ring data

Tree-ring sampling was performed in order to
develop well-replicated, long, and climate-sensitive
chronologies including different age classes. From
131 living trees, 47 disk and 255 core samples were
collected, and 86 samples were derived from stumps
of recently logged trees or from dry dead wood re -
mains. We sampled at 3 high-elevation sites along a
north-south transect in Albania: Thethi (AT), Fushe
Lura (AL) and the Cuka Partisan (AP) (Fig. 1). All
sites were located in open forest stands near the
upper local treeline on shallow soils. The most north-
ern site, AT (42° 25’ N, 19°46’ E), is located in the Al -
banian Alps, and 41 trees were sampled between
1700 and 1900 m above sea level (a.s.l.) on a south-
east-exposed slope. The AL site (41°48’ N, 20°14’ E)
is located in the Lura mountain range in central Alba-
nia, where 89 trees were sampled between 1800 and
2000 m a.s.l. on a steep southwest-exposed slope. We
complemented cores of living trees with samples
from 10 logs (>500 yr) found in local sawmills close to

218

Fig. 1. Tree sampling sites: Thethi (AT, green), Fushe Lura
(AL, red), and Cuka Partisan (AP, blue). White circles: grid 

points used for climate calibration (CRUTS3)
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this site. The AP site in the Tomorri massif (40°42’ N,
20° 8’ E) is the southernmost location, where 77 trees
were sampled between 1900 and 2100 m a.s.l.

2.2.  Chronology development

Annual TRW variations were measured with a
semi-automated measurement system with 0.01 mm
precision (LINTAB™-5 and PAST 4). First, TRW
 patterns were visually cross-dated and their dating
quality was verified using COFECHA software
(Holmes 1983). The ‘pith-offset’ (PO), i.e. the number
of missing years between the innermost ring on a
core sample and the pith, was estimated to obtain the
absolute biological age of each tree. The PO esti-
mates were based on the growth rates and the curva-
tures of the tree rings from the existing material and
if possible, compared with the second core of the
same tree (Bräker 1981).

The whole dataset was analyzed in 4 different
ways: (1) by site (3 groups: AT, AL, AP), (2) by age
class: (3 groups: <250 yr, 250 to 400 yr, >400 yr), (3)
by growth performance (2 groups: slow- and  fast-
growing trees), and (4) the Albanian (ALB) compos-
ite chronology, containing all data. The range of age
classes and growth-performance groups was de -
fined in order to obtain a balanced distribution of
records per group. Age-class splitting was per-
formed based on the length of each series. Nearly
equal replication was reached by generating a
young age class up to 250 yr including 80 series,
a middle age class from 250 to 400 yr including
115 series, and an old age class >400 yr includ-
ing 107 series. The average growth rate (AGR) of
0.88 mm yr–1 after truncation of the first 100 yr of
each series was used as the threshold to distinguish
slow- and fast-growing subsets, while the AGR of
trees younger than 100 yr was individually checked
for this classification. This method reduced possible
bias caused by increased growth rates during the
juvenile phase of the trees. The fast-growing group
consisted of 114 series and the slow-growing group
of 158 series.

To remove age-related trends while preserving
 climatic information on inter-annual to longer-term
time-scales from each individual raw and power-
transformed (PT) TRW series (Cook & Peters 1997), an
array of 5 commonly used detrending functions was
applied: (1) the regional curve standardization (RCS;
Becker et al. 1995) with and (2) without PO estimates,
(3) the negative exponential function, and (4) individ-
ual cubic smoothing spline (SPL) with 150 yr and

(5) 300 yr frequency-response cut-off at 50%. TRW
chronologies of the 3 sites, the combined ALB com-
posite, and of the age class and growth-rate  subsets
were developed as weighted means of the detrended
series after variance stabilization (Frank et al. 2007).
The strength of the common variance be tween the
single series was assessed using the inter-series cor-
relation (Rbar) and the expressed population signal
(EPS; Wigley et al. 1984) cal culated over 50 yr periods
with 25 yr of overlap for each chronology.

2.3.  Signal detection

Due to the scarcity and brevity of local instrumen-
tal data (e.g. Seim et al. 2010), growth–climate rela-
tions (calculated as Pearson’s correlation coefficients)
between the various TRW chronologies and different
 climate parameters were performed using  high-
resolution gridded (0.5° × 0.5°) monthly resolved cli-
mate indices including temperature, precipitation,
and the self-calibrated Palmer Drought Severity Index
(scPDSI) (CRUTS3; Mitchell & Jones 2005, van der
Schrier et al. 2006). The closest grid points to the
3 sampling sites were 40°45’ N, 20°15’ E; 42°15’ N,
19°45’ E; and 41°45’ N, 20°15’ E for AT, AL and AP,
respectively (Fig. 1). Cross-correlation for annual
temperature, precipitation, and scPDSI was signifi-
cantly positive amongst the 3 grid points (0.98, 0.85
and 0.82, re spectively; p < 0.01). The mean of the
3 grid points was used for comparison with the ALB
chronology. Correlations were computed over an
18 mo window from the previous year’s May to the
current year’s October for the period of overlap (1901
to 2002). Seasonal temperature means and precipita-
tion sums for the 3 sites are highlighted using winter
(DJF; previous December to current  February) and
summer (JJA; June to August) seasons (Table 1).

3.  RESULTS

3.1.  Data characteristics and growth trends

The number of cross-dated series per site is 54 for
AT and 124 each for AL and AP. The mean segment
length (MSL) of the 3 sites ranges from 275 yr at AT to
397 yr at AL (Fig. 2). By adding recently logged trees
and dry dead wood to these datasets, we were able to
cover the periods 1417–2007 at AT, 968–2008 at AL,
and 1443–2008 at AP, with a minimum replication of 5
series. The longest series was derived from a sawmill
log in the AL region, which counts 1017 tree rings, and
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spans the 968–1984 period. AGRs are similar between
sites, ranging from 0.92 (AP) to 1.02 mm yr–1 (AL)
(Table 2, Fig. 3a). Maximum PO estimates are 237 yr
for AT, 250 for AL, and 306 for AP, which are  adequate
when considering an age of 1017 yr on a ~35 cm
radius of the same tree (no. ABS5).

Age class splitting separates the MSL in 529, 299
and 144 yr for the old, middle, and young trees,
respectively, with corresponding growth rates rang-
ing from 0.59 (old) to 1.53 mm yr–1 (young) (Fig. 3c).
Fast and slow growth-rate groups are distinctively
differentiated by the splitting method, with an AGR

220

Fig. 2. Replication of 3 Albanian site chronologies (AT: Thethi, AL: Fushe Lura, AP: Cuka Partisan). Bar: 1 individual sample, 
black dots: estimated germination age. Black arrows: sample size threshold of 5 series. MSL: mean segment length

Fig. 3. Average growth rate (AGR) of trees by (a) site (AT, AL, AP; see Fig. 1), (c) age class and (e) slow vs. fast growth rate.
Mean growth (TRW: tree ring width) trends (upper lines) and replication (lower lines) after age-alignment by (b) site, (d) age 

class, and (f) growth rate group. SL: segment length

Site Temperature (°C) Precipitation (mm)
DJF JJA Yr DJF JJA Yr

AT –2.3– 15.4 6.6 305.7 230.1 1148.3
AL 0.5 18.2 9.4 281.4 171.5 996.5
AP 1.7 18.4 10.0 319.1 126.9 969.1

Table 1. Climate conditions obtained from the CRUTS3
data at 3 Albanian sites (AT: Thethi, AL: Fushe Lura, AP:
Cuka Partisan) classified in winter (DJF: previous  Dec–
current Feb), in summer (JJA: Jun–Aug), and for annual (yr)
temperature means and precipitation sums for 1961–1990
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of 1.37 mm yr–1 for the fast-growing trees and 0.59 mm
yr–1 for the slow-growing trees, corresponding to the
growth rates of the age class splitting (Fig. 3e).

The growth curves of the 3 sites generally suggest
similar levels and trends, but with higher variations
at AT, possibly related to the smaller sample size
at this site. As expected, splitting the dataset into
age classes accentuated the highest growth level for
young trees. The growth trends of middle and old
age classes were, however, nearly identical as long
as replication was similar (Fig. 3b,d,f). Grouping into
age classes and growth rates respectively resulted
in similar age-related growth trends but different
growth levels (Fig. 3d,f).

Growth variations of the PT 150 yr SPL detrended
site chronologies show strong conformity on  inter-
annual to multi-decadal time-scales (Fig. 4). EPS
 statistics were robust from 1460 onwards at AT, from
1295 at AL, and from 1510 at AP. Pearson’s correla-
tion coefficients between the 3 site chronologies show
strongest relations between sites close to each other,
with AT–AL correlating at 0.68, AL–AP at 0.72, and
the most distant AT–AP at 0.56, computed over the
common period 1443–2007. Correlations be tween
chro nologies of old and middle age classes are nearly
identical (r = 0.91), and the youngest and oldest trees

correlate only slightly less (r = 0.79) (both p < 0.01)
for the 1761–2008 period. The same holds for the
fast and slow growth-rate groups with r = 0.85
(1341–2008, p < 0.01).

The longest records (AL, old age class, slow-grow-
ing trees) cover the time from 968–2008 and include
the period of the Medieval Climate Anomaly prior to
1300 with 20 trees. High variations prior to 1150 are
likely caused by the low replication (7 trees) during
this period. TRW values of young trees show higher
variations, especially in the 18th and 19th centuries.
This effect might be caused by more individual noise
during the juvenile period of tree growth (e.g. Carrer
& Urbinati 2004), which is reflected in the lowest
Rbar value of 0.45 for trees <250 yr (Table 2).

3.2.  Albanian composite chronology

After truncation at a minimum sample size of
5 series, the ALB chronology spans the period of
968–2008 (Fig. 5). Robust EPS and Rbar statistics are
recorded from ~1290 onwards, which can be ex -
plained by the low replication during the first 300 yr
of the record (986–1295) (Fig. 5b). The mean Rbar
scatters around 0.52 (Table 2).
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Fig. 4. Power transformed 150 yr spline (PT 150 yr SPL) detrended tree-ring width (TRW) chronologies at 3 sites (AT, AL, AP;
see Fig. 1), for 3 age classes, and for slow- vs. fast-growing tree series after truncation at <5 series. Pearson’s correlation 

coefficient (r) was calculated for the individual common period (vertical grey line)
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Effects of the different detrending methods are
emphasized for the ALB composite (Fig. 5). The 9
detrending techniques reveal consistent results in
high- to low-frequency domains, but show strong
differences between the PT and non-PT records.
This is mainly reflected in the standard deviation
(Fig. 5): the mean standard deviation calculated
for the PT records averages ~0.11, whereas with -
out PT it is higher at 0.17. This result confirms the

reduction of variance inflation and time series sta-
bilization by PT.

The strong increase of the RCS detrended records
at both ends of the time-series, prior to ~1300 and in
the 20th century, suggests a so-called ‘end-effect’
phenomenon (Cook & Peters 1997, Büntgen et al.
2005). In the period from 1300 to 1900, the differences
between detrending techniques are minimized and
the records strongly agree.

222

Group Elevation Trees Series Period Period AGR MSL Rbar EPS L-1
(m a.s.l.) (n) (n) >5 series (mm yr–1) (yr) Raw PT

Site
AT 1700−1900 41 54 1303−2007 1417−2007 0.94 275 0.54 0.91 0.76 0.48
AL 1800–2000 99 124 617−2008 968−2008 1.02 397 0.53 0.91 0.91 0.26
AP 1900−2100 77 124 1405−2008 1443−2008 0.92 310 0.57 0.95 0.66 0.34

Age class
<250 yr 74 80 1285−2008 1760−2008 1.53 144 0.45 0.90 0.80 0.46
250−400 yr 83 115 1334−2008 1429−2008 0.87 299 0.52 0.85 0.85 0.29
>400 yr 67 107 617−2008 968−2008 0.65 529 0.53 0.91 0.92 0.29

Growth rate
Fast growing 105 144 1237−2008 1340−2008 1.37 243 0.52 0.89 0.81 0.41
Slow growing 125 158 617−2008 968−2008 0.59 428 0.52 0.91 0.92 0.21

Composite
ALB 1700−2100 217 302 617−2008 968−2008 0.96 284 0.52 0.91 0.89 0.28

Table 2. Characteristics of site chronologies combined in the Albanian dataset. Elevation, number of trees and series, covered
time span (period), average growth rate (AGR), mean segment length (MSL), mean inter-series correlations of raw chrono -
logies (Rbar), expressed population signal (EPS), and 1st yr autocorrelation (L-1) of raw and power transformed (PT) 

150 yr spline detrended (150 yr SPL) chronologies. AT: Thethi, AL: Fushe Lura, AP: Cuka Partisan, ALB: Albania

Fig. 5. (a) Comparison of Albanian (ALB) chronology after different detrendings and a minimum sample size of 5 series (lower
black line): regional curve standardization (RCS; grey dashed line) and power transformed (PT) RCS with and without pith
 offset (PO; black dashed lines), negative exponential (NEG), 150 yr and 300 yr spline (SPL) without PT (grey solid lines), PT
NEG and PT 300 yr SPL (black solid lines), and PT 150 yr SPL (red solid line) with their respective (b) expressed population sig-
nal (EPS; horizontal line indicates 0.85 threshold) and inter-series correlation (Rbar) values, and (c) each moving 31 yr SD.
Only the ranges of the different detrendings are shown, which highlight the end-effect issue of the RCS (a) and the dampening 

effect of the PT (c)
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3.3.  Growth–climate relationships

First we tested the response to temperatures and
precipitation from the previous year’s May to the cur-
rent October of TRW formation for the 3 site chrono -
logies, the 3 age classes, and the fast- and slow-
growing tree groups (Fig. 6). Overall, correlations
computed over the common 1901–2002 proxy-target
period are not high (maximum r-value: –0.33 for AT
versus July temperature). From all 144 correlations
cal culated for temperature and precipitation each,
only 11.1 and 0.7%, respectively, reached the 99%
significance level.

Nevertheless, some systematic and robust patterns
appeared. In general, tree growth correlated nega-
tively to temperatures of previous July and August
as well as current June and July, and positively,
albeit not significantly, to winter (February and
March) temperatures of the current year (Fig. 6).
Correlations with precipitation were positive, but
weaker and mostly restricted to previous June and
current July. Regarding site-specific patterns, the AT
site seemed to be slightly more sensitive to tem -
perature and precipitation variations of the current
summer than the other regions. Regarding age and
growth groups, the young, middle, and fast-growing
trees correlated slightly stronger to the variables
and seasons de scribed above than the old and slow-
growing groups.

In a next step, we repeated the climate correlation
calculations using the PT ALB composite chronology
with the 5 detrending methods applied (Fig. 7), and
including scPDSI. Generally, correlation values were
in the range of the subset results, with a negative
response to temperatures of the previous and current
summer and positive response to temperatures
of current February. Positive correlations to scPDSI
suggest current June and July as the most relevant
season for tree growth variability, with r = 0.22 (p <
0.01). When applying the RCS-detrended, low-fre-
quency weighted versions of the ALB composite, the
winter signal is improved (DJF: r = 0.21, p < 0.01)
compared to the regional subsets. The PT 150 yr SPL,
containing mainly the inter-annual to multi-decadal
frequency domains, generally correlates highest in
the most relevant summer months.

The overall negative response to summer tempera-
tures and the positive response to summer precipita-
tion suggest that tree growth of Pinus heldreichii is
mainly controlled by drought conditions, which is
supported by positive correlations to scPDSI during
this season, especially in the high-frequency domain
(PT 150 yr SPL). Moving correlation patterns shown
for tree growth to the highest correlating combi -
nation of June and July climate variables suggest an
en hanced sensitivity to drought in the middle of the
20th century and decreased strength of the climate
signal before and afterwards (Fig. 7b).
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Fig. 6. Sub-chronologies (site subsets, age classes, growth groups) correlated with averaged gridded temperature and precip-
itation data (CRUTS3) for the 1901–2002 period. Solid (dashed) red lines indicate 99% (95%) significance level. AT: Thethi, 

AL: Fushe Lura, AP: Cuka Partisan
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4.  DISCUSSION

4.1.  Chronology characteristics

We were able to develop a long and well-replicated
composite TRW chronology documented for the Balkan
Peninsula and the eastern Mediterranean region
reaching a maximum of 1392 yr back in time (617 to
2008). This was possible due to favourable conditions
such as (1) the presence of long-living trees reaching
ages >1000 yr, (2) Pinus heldreichii ’s high resistance
to biological degradation as a result of a high amount

of diterpene neutrals in its resin (Lange et al. 1994)
resulting in decade-to-century long preservation of
dead wood, and (3) environmental conditions pro-
tecting against decay such as dry summers, snow
cover in winter and rocky shallow soils. In compari-
son, the longest nearby P. heldreichii chronologies
span periods of 762 yr (1243 to 2004) in Greece (Kuni-
holm & Striker 1987), 758 yr (1250 to 2008) in Bul-
garia (Panayotov et al. 2010), and 827 yr (1148 to
1974) in South Italy (Serre-Bachet 1985).

The high common variance amongst our 3 sites,
particularly in the high- to medium-frequency do -

224

Fig. 7. (a) Growth-climate response of ALB TRW chronologies (power transformed RCS-PO, NEG, 150 yr and 300 yr SPL; see
Fig. 5 for abbreviations) to averaged gridded temperature, precipitation, and drought data (CRUTS3) calculated over the
1901–2002 period. (b) Z-scores computed for the PT 150 yr SPL (black) against Jun-Jul (JJ) temperature (inverse; red), precip-
itation (blue), and scPDSI (green), and their respective 21 yr moving correlation (Pearson’s r) underneath. Solid (dashed) red 

lines: 99% (95%) significance level
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main, suggests that tree growth is controlled by
 similar factors across Albania. Although the repli -
cation of the dataset decreases back in time, robust
Rbar and EPS statistics are recorded from ~1290 AD
onwards. Over 600 yr (1300 to 1900), the ALB chro -
nology showed similar growth variability, while strong
differences appear at the ends of the differently
detrended composite chronologies. High deviations
in variance prior to 1300 might be caused by the
reduced sample depth and individual tree growth in
the juvenile phase of the pines and probably affect
the strength of Rbar. Changes in variance in the 20th
century are probably also caused by an increasing
number of young trees in this period. This bias is
enhanced after applying RCS with all modifications
in comparison to the other standardization methods
and is known as the so-called end-effect issue (Bünt-
gen et al. 2005). It results from the growth curve
application that forms the ends of the records in a
reciprocal shape (Cook & Peters 1997). Herein, the
adaptive power transformation dampens this bias to
a certain point, while individual spline detrending
shows no such increase in the most recent decades.

4.2.  Growth–climate relationships

Despite the strong observed common signal, the
response to climate of the 3 site chronologies, the age
classes and growth-rate groups, and the differently
detrended ALB chronologies, is not particularly strong
or robust. Negative correlations to summer tempera-
ture combined with positive correlations to summer
precipitation suggest an overall tendency to drought
sensitivity of the pines. It has to be noted, however,
that all correlations over the 1901–2002 period are
relatively low and only in a few cases exceed the
99% significance level. The low correlation values
could at least partly be related to the sparse availabil-
ity of regional meteorological station data for Alban-
ian high-elevation sites and also for the whole Balkan
region, resulting in a limited representation of the
gridded CRU data for the study region. However, sea -
sonal temperature means and precipitation amounts
show a north-south gradient (AT-AP) towards a
warmer and drier climate as described by Jaho et al.
(1975) and shown in Fig. 1, which seems to corre-
spond to the slighter higher growth-climate response
at the most northern AT site.

Nevertheless, our findings using the Albanian TRW-
chronology correspond well to results of other studies
on the same species growing under similar site con-
ditions, i.e. at higher elevation sites and on dry and

steep rocky slopes. Panayotov et al. (2009, 2010) and
Scheit hauer et al. (2009) observed a similar growth
re sponse at high elevation in the Pirin Mountains in
Bulgaria, and Todaro et al. (2007) presented compa-
rable results from a Pinus heldreichii var. leucoder-

mis (Antoine) chronology from Mount Pollino (2054 m
a.s.l.) in southern Italy. In all studies, the correlations
between TRW and the various instrumental climate
data (monthly temperature and precipitation) were
relatively weak and not robust over the 20th century
proxy-target period. Even for the western Mediter-
ranean basin, Büntgen et al. (2010) reported similar
results based on 3 conifer species from the Pyrenees.

The instability in the climate signal might be
related to temporally varying climatic influence on
tree-growth on inter-annual to decadal timescales as
also observed by Andreu et al. (2007). In particular,
the decrease in drought sensitivity in the last 40 yr
(Fig. 7b) seems to be partially associated with an in -
crease in water-use efficiency due to elevated atmos-
pheric carbon dioxide as hypothesized by Penuelas
et al. (2008) and Linares et al. (2009), for instance.

Although sampling in Albania was performed at
the highest forested elevations (up to 2100 m a.s.l.),
our 3 sites might not fully represent typical treeline
conditions. The thermal tree line of Pinus heldrechii

at the Olymp (Greece) ranges from 2200 to 2400 m
a.s.l. with the krummholz zone even reaching eleva-
tions of 2500 to 2700 m a.s.l (Brandes 2007). Körner
(1998), on the other hand, states that Mediterranean
treeline sites do not show a clear temperature con-
trolled growth pattern compared to the Alpine region
and that it is questionable if sampling at the upper
zone provides more defined growth control.

The major reason for the absence of a clear climatic
signal is assumed to be related to a complex com -
bination of climate factors, i.e. high temperature
means and low precipitation amounts, dominating
tree growth during summer, as is usually observed
for the Mediterranean region (e.g. Gutiérrez 1989,
Xoplaki et al. 2003, 2004, Nicault et al. 2008, Büntgen
et al. 2010).

The similar climate response patterns of different
age classes and growth-performance groups in our
study support this hypothesis. Our analyses of vari-
ous age classes and growth levels indicate that
young, middle, and fast-growing trees are more sen-
sitive to drought conditions particularly in the driest
months, June and July, than the age class >400 yr
and the slow-growing trees. Studies focusing on age-
dependent growth–climate relations indicate that
cambial activity of young trees starts ~2 to 3 wk
 earlier, that environmental information is thus inte-
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grated over a longer time period, and that the re -
sponse to environmental changes occurs faster (Lin-
derholm & Linderholm 2004, Rossi et al. 2008, Rozas
et al. 2009). The development of root systems may
also play a significant role since young trees with
shallow roots reach less water from deeper soil layers
and, hence, respond more directly to variations in soil
water availability (Vaganov et al. 2006).

Moreover, the natural tree line occurs as an open
forest steppe in which young trees form more nar-
rowly spaced groups with potentially increased com-
petition for vital environmental resources such as
light, water and nutrients. The weaker strength of
the climate signal contained in very old tree rings,
e.g. 400 to 1000 yr, is linked with minimal growth
rates and individual growth variation related to tree
mortality (Frank et al. 2007). Contrary to our results
are findings by Carrer & Urbinati (2004) and refer-
ences therein, obtained in the Italian Alps, where cli-
mate sensitivity increases with tree age. However,
those comparisons are generally limited by local con-
ditions and intensity of past human impacts, which
leads to highly varying forest ages and thus, the
 definition of old trees becomes rather relative.

Growth-climate relations of the differently detrended
versions of the ALB chronology highlight the impor-
tance of carefully adapting the detrending to the
 frequency provided by the target. In summer, when
drought tends to drive tree growth, the high-frequency
weighted 150 yr SPL series appears to best capture
the white noise spectrum of the target (Mitchell &
Jones 2005), whereas in winter, when tem perature
tends to drive tree growth, the RCS detrended series
containing more low frequency trends, which best
 capture the more red-noise-weighted character of
temperature. Follow-up studies should be based on
tree-ring parameters such as maximum latewood
density and stable isotope ratios that are expected to
be more climate sensitive in the Mediterranean
region (Andreu et al. 2008, Seim et al. 2010, Trouet
et al. 2012). Also these studies will have to take the
spectral patterns of targets and proxies into account,
which enable the development of robust millennium-
long climate recon structions containing the whole
range of low to high frequency signals.

5.  CONCLUSION

Our new millennium-long TRW chronology from
Albania is an important step towards a denser tree-
ring network in the Mediterranean and especially in
the Balkan region.

The consistently strong common growth variation
within and between sites indicates that tree growth
at high elevations in Albania is subject to similar
 ecological conditions. Its summer drought signal,
however, remains relatively weak and not  stable in
the 20th century, making a robust climate recon-
struction challenging. Reasons for this low climate
signal might be found in (1) the scarcity and brevity
of representative climate data available in this re -
gion, and (2) the drought signal itself and its temporal
instability. Nevertheless, our results provide an im -
portant basis for additional tree-ring parameters such
as maximum latewood density and stable isotope
ratios to be processed, and hence to fully exploit the
potential for climatic reconstructions. In addition, our
unique dataset serves as a highly valuable reference
for dendroarchaeological investigations as well as
network analyses towards a better understanding of
the complex climate system in the Mediterranean
region.
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