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Rapid climate warming in the tundra biome has been linked
to increasing shrub dominance1–4. Shrub expansion can modify
climate by altering surface albedo, energy and water bal-
ance, and permafrost2,5–8, yet the drivers of shrub growth
remain poorly understood. Dendroecological data consisting
of multi-decadal time series of annual shrub growth provide
an underused resource to explore climate–growth relation-
ships. Here, we analyse circumpolar data from 37 Arctic
and alpine sites in 9 countries, including 25 species, and
∼42,000 annual growth records from 1,821 individuals. Our
analyses demonstrate that the sensitivity of shrub growth to
climate was: (1) heterogeneous, with European sites showing
greater summer temperature sensitivity than North American
sites, and (2) higher at sites with greater soil moisture and
for taller shrubs (for example, alders and willows) growing
at their northern or upper elevational range edges. Across
latitude, climate sensitivity of growth was greatest at the
boundary between the Low and High Arctic, where permafrost

is thawing4 and most of the global permafrost soil carbon pool
is stored9. The observed variation in climate–shrub growth
relationships should be incorporated into Earth systemmodels
to improve future projections of climate change impacts across
the tundra biome.

The Arctic is warming more rapidly than lower latitudes owing
to climate amplification involving temperature, water vapour,
albedo and sea ice feedbacks5,7. Tundra ecosystems are thus
predicted to respond more rapidly to climate change than other
terrestrial ecosystems4. The tundra biome spans Arctic and alpine
regions that have similar plant species pools and mean climates,
yet vary in topography, seasonality, land cover and glaciation
history. Concurrent with the recent high-latitude warming trend7,
repeat photography and vegetation surveys have shown widespread
expansion of shrubs1–3, characterized by increased canopy cover,
height and abundance. However, climate warming7 and shrub
increase2,10 have not occurred at all sites. Models predict that
warming of 2–10 ◦C (ref. 11) could convert asmuch as half of current
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Figure 1 | Climate sensitivity across the tundra biome. The size of the circle
shows the strength of the summer temperature sensitivity as indicated by
the 1AIC. The colour of the circles indicates the direction of the
relationship with summer temperature variables. Locations with multiple
circles indicate study sites where multiple species were sampled. The
coloured regions indicate the bioclimatic zones of the Circumpolar Arctic
Vegetation Map (http://www.geobotany.uaf.edu/cavm).

tundra to ‘shrubland’ by the end of the twenty-first century8, but
the uniformity of the frequently cited relationship between climate
change and tundra shrub expansion5,12–15 has yet to be quantified
across the tundra biome as a whole.

Shrubs are woody perennial species that can live from decades
to centuries. In seasonal climates, they form annual growth rings,
allowing analysis of radial growth over time.Many shrub species are
widely distributed across the tundra biome and are often dominant,
owing to their canopy height, longevity and ability to outcompete
low-growing plants.With wide geographic distributions and annual
growth records, shrubs are ideally suited for quantifying tundra
vegetation responses to climate warming. Assembled annual growth
records from sites across the tundra biome provide a unique
opportunity to test competing hypotheses of shrub responses to
climate change over the past half-century.

Previous ecological monitoring and dendroecological studies
have identified temperature, growing season length, summer
precipitation and snow cover as important variables explaining spa-
tial and interspecific variation in shrub growth1,10,13,14,16–18. However,
there is a lack of consensus regarding which climate variables
best explain growth across all tundra ecosystems. We therefore
do not know whether climate–growth relationships are consis-
tent in direction, strength and magnitude among species and
among sites where plant composition, climate trends and environ-
mental parameters differ. At present, most large-scale vegetation

models assume high climate sensitivity and a uniform growth re-
sponse to warming among shrub species and populations8,19. These
models predict pronounced positive climate feedbacks as a result
of tundra vegetation change5,8. Yet, if shrub growth responses to
climate are constrained, then changes in shrub dominance should
vary regionally, and feedbacks across the tundra biome as a whole
could be weaker than predicted at present.

We quantified the climate sensitivity of shrub growth—that
is, the strength of relationship between annual growth and
climate variables (including temperature and precipitation, specific
calculations described below)—to test four hypotheses: (1) The
greatest climate sensitivity of growth should occur at northern or
high-elevation range edges if plant performance is more climate
limited in the harsher growing conditions at range edges than in
the centre of species distributions20–22. (2) Climate sensitivity of
growth should be greatest in the centre of species distributions if
populations growing under more stressful conditions at range edges
have evolved conservative life history strategies limiting their ability
to respond when conditions improve23. (3) Climate sensitivity of
growth should vary along spatial gradients if the response of species
to warming is limited by other factors, such as soil nutrients, soil
moisture or biotic interactions21. Alternatively, (4) climate sensitivity
of growth could be uniform across the tundra biome.

We synthesized published and unpublished time series of shrub
growth across the tundra biome. Our data set extends beyond
previous analyses by including sites across the circumpolar Arctic,
comprising dwarf, low and tall canopy species, and encompassing
60 years of annual-resolution shrub growth.We used crossdated, ra-
dial and axial growth measurements spanning 1950–2010, collected
at 37 sites, and for 25 shrub species in 8 genera.We analysed climate–
growth relationships for 46 genus-by-site combinations using linear
mixed models to estimate climate sensitivity, with 33 candidate
climate models as predictors of shrub growth increments. All data
were normalized before analysis andmodel terms included seasonal
temperatures and precipitation as fixed effects and year as a random
effect (see Supplementary Information).

We calculated four complementary indices of climate sensitivity
from the mixed model analysis for each genus-by-site combination:
(1) the difference in Akaike information criterion (AIC) between
the best climate model and a null model (1AIC), (2) the R2 for
the best climate model, (3) the absolute value of the slope of the
relationship between growth and summer temperature and (4) the
proportion of individuals that had significant linear relationships
between growth and summer temperature (the best predictor from
the overall analysis). We assessed these indices of climate sensitivity
across abiotic (wet day frequency, soil moisture, growing season
length) and biotic gradients (distance to range edge and species-
level maximum canopy height, see Supplementary Information).
In Fig. 1, we report both 1AIC and model slopes to illustrate
spatial variation in climate sensitivity (all indices reported in
Supplementary Fig. 12). In Fig. 2 we report the percentage ofmodels
indicating climate (temperature or precipitation) sensitivity in the
model comparison analysis; Fig. 3 shows relationships between all
four climate-sensitivity indices across different gradients.

Climate–growth relationships were not uniform across the tun-
dra biome (Fig. 1), contrasting with the common assumption
used in Arctic vegetation models19. Overall climate sensitivity was
high: 76% (35/46) genus-by-site combinations exhibited climate-
sensitive growth (Supplementary Table 5). Summer temperature
variables best explained variation in shrub growth across the
46 genus-by-site combinations and 33 climate models (Fig. 2),
with 46% (21/46) genus-by-site combinations showing positive
growth–summer temperature relationships and 17% (8/46) show-
ing negative relationships (Fig. 1 and Supplementary Table 5).
Individual-level climate sensitivity of growth varied considerably:
5–97% of individuals at each site and ∼36% of all individuals
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Figure 2 | Comparison of climate models. Summer temperature models
were more frequently climate sensitive than other temperature or
precipitation models in the model comparison analysis of 46 genus-by-site
combinations and 33 climate models (Supplementary Table 4). The shaded
colouring indicates the percentage of models that were considered climate
sensitive (either positive or negative) for each of the four categories of
climate variables for each of the genus-by-site combinations with a 1AIC
value of greater than 2 between the given climate model and the null model
for all one-parameter models in the model comparison analysis.

showed significant summer temperature sensitivity (Supplementary
Table 5). A moving window analysis demonstrated the relatively
consistent climate sensitivity of shrub growth over time, despite the
increase in sample size in recent years (Supplementary Fig. 13).

Climate sensitivity of shrub growth was highly heterogeneous
across the tundra biome (Fig. 1). Climate sensitivity was greatest in
the northwest Russian Arctic and northern Europe, and more het-
erogeneous among sites in North America (Fig. 1), wheremany sites
exhibited weak relationships between growth and summer tempera-
tures (Supplementary Table 5). Across gradients, climate sensitivity
was greater in wetter sites relative to drier sites as indicated by the
number of dayswith precipitation and satellite-derived soilmoisture
(Fig. 3a,b). We found support for our first hypothesis: shrubs grow-
ing near their northern latitudinal or elevational range limits showed
greater climate sensitivity, as did taller (>50 cm maximum canopy
height) versus shorter species (<50 cm; Fig. 3c,d). Overall, shrub
climate–growth relationships were not uniform across the tundra
biome, but instead varied according to soil moisture, species canopy
height and geographic position within the species ranges.

Our results highlight the importance of soil moisture as a driver
of climate sensitivity of shrub growth. In tundra environments, soil
moisture is influenced by several factors including rainfall during
the summer, snow distribution, duration and melt, permafrost
status, soil properties and topography, making it more challenging
to quantify than climate variables24. We observed high climate
sensitivity and positive climate–growth relationships at many sites
with high soil moisture (Figs 1 and 3); however, eight sites exhibited
negative summer temperature–growth relationships (Fig. 1) and
some of these sites were located in areas with high soil moisture
at the landscape scale (Supplementary Fig. 14). These negative
relationships with summer temperatures could indicate drought
limitation of growth in woody species, which can occur in both
wet and dry landscapes25, although in sites with increasing soil

moisture, standing water can also lead to reduced growth and
shrub dieback6.

Previous studies have identified summer temperatures as an im-
portant driver of vegetation change1,13,14,26, but the role of soil mois-
ture is less often examined. A recent synthesis of two decades of eco-
logical monitoring (the International Tundra Experiment Network)
showed that increased shrub abundance was most pronounced at
sites that had experienced summer warming and in wetter versus
drier sites1. In addition, landscape-level studies of shrub change in
northernAlaska showed greater increases in wet floodplains relative
to well-drained hill slopes3,10. Our study, using a new circumarctic
dendroecological data set consisting of almost exclusively different
sites from those in previous studies, also demonstrates broad ge-
ographic patterns in the climate sensitivity of shrub growth, with
higher climate sensitivity at sites with higher soil moisture. Taken
together these results suggest that, with continued warming11, po-
tentially more variable precipitation11 and uncertainty in the future
soil moisture regime11,24, water availability or flooding could play
an increasingly important role in limiting future shrub expansion.
However, analyses of plant water availability in tundra ecosystems
are limited by the lack of high-resolution soil moisture data24.

In our study, climate sensitivity of shrub growth was greatest
at the northern or elevational range margins of individual species
(Fig. 3). Climate sensitivity of shrub growth was thus greatest at
the transition zone between tall and low shrub tundra (Fig. 1). The
largest ecosystem transitions in shrub dominance could occur at
these mid-Arctic latitudes, rather than at the northern limits of
the tundra biome as a whole. The patterns of climate sensitivity
of growth in tundra shrub species can be compared to patterns
observed in treeline ecotones. Half of the latitudinal and elevational
treelines studied so far have advanced poleward or upslope, often
associated with warming27. Temperature sensitivity of tree growth
has been found to be highest at the upper or northern-most margin
of the forest–tundra transition zone20,27 and moisture sensitivity
to be highest at southern or lower range edges28. Our results
suggest that for tundra shrubs, both temperature and soil moisture
control growth at range edges, whereas further from the range
edge other factors such as competition, facilitation, herbivory and
disease21 may be more important. Herbivore densities vary spatially
and temporally across our study locations12,29, and this could be
one of the factors explaining the variation in climate sensitivity.
Relationships between the climatic and biotic factors influencing
growth are probably complex and deserve greater study.

We find that climate sensitivity of growth is greater for tall shrubs,
than for low-statured shrub species (Fig. 3b). This has important
implications for Earth systemmodels, as changes in tall shrub cover
will contributemoremarkedly to ecosystem–climate feedbacks than
changes in dwarf shrub cover8. Increases in canopy height and abun-
dance of taller species relative to lower-stature shrub species was a
major finding of two recent syntheses of plot-based ecologicalmoni-
toring and passive warming experiments; however, these studies did
not include taller alder and willow species1,26. Tall shrub species may
more readily exploit favourable climate conditions, particularly at
the transition zone from tall to low shrub tundra, by competing for
limited light and nutrient resources30. In particular, in contrast to
previous work that has not explicitly tested biogeographic patterns
of climate sensitivity1, our analysis demonstrates that the climate
sensitivity of both tall and dwarf shrub species was often greater
towards colder range margins (Fig. 3a). This results in an overall
pattern of high climate sensitivity at mid-latitudes, but also high cli-
mate sensitivity for some species growing in theHighArctic (Fig. 1).

In conclusion, climate sensitivity of shrub growth is generally
high at sites across the tundra biome, which provides strong ev-
idence for the attribution of tundra shrub increases to climate
warming4. However, pronounced increases in shrub growth with
warming are unlikely to occur in all regions, and the greatest
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Figure 3 | Climate sensitivity across gradients. a–d, Greater climate sensitivity was found for shrub species growing at sites with a greater number of wet
days (a), higher soil moisture (b), closer to northern/elevational range limits (c) and for species with higher maximum canopy heights (d). e,f, Climate
sensitivity varied among genera (e; Supplementary Table 2) and between the two growth measures of stem increments and annual ring widths (f). The
lines and associated p values indicate beta regression of the di�erent climate-sensitivity metrics; the shaded areas indicate the 90th quantile of these
regressions and the error bars (e,f) indicate the range of values. The distance to the range edge (c) is the distance between the sampling location and the
northern or elevation range edge for each species converted to relative latitudes (see Supplementary Information). This gives an index of how far a sample
population is located from the maximum extent of the distribution of that species either northward in the Arctic or upslope in alpine tundra.

shrub growth responses are instead likely to occur in the transition
zone between tall- and low-statured shrub tundra and where soil
moisture is not limiting. A pressing research question is whether
temperature-induced increases in shrub growth will continue to
occur at current or accelerated rates or whether factors such as water
availability, herbivory, pathogen outbreaks, nutrient limitation or
firewill play a greater role in limiting future tundra shrub expansion.
Further experimental manipulations of temperature26, moisture
regime, biotic interactions and atmospheric CO2 concentration are

necessary to predict shrub growth responses under future environ-
mental scenarios. Improved soil moisture records24 (resulting from,
for example, ESA http://www.esa-soilmoisture-cci.org and NASA
http://smap.jpl.nasa.gov) and other locally influenced climate and
biological variables and expanded networks of in situ tundra vege-
tation observations1 will further improve predictions. Only with a
combination of enhanced ecological monitoring, multifactorial ex-
perimentation and additional data synthesis can we make improved
projections of vegetation feedbacks to future climate change.
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Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
To examine climate sensitivity of tundra shrub growth, we assembled a
database of 37 Arctic and alpine sites encompassing 25 species from 8 genera
(Supplementary Tables 1 and 2) for a total of 46 genus-by-site combinations,
1,821 individual shrubs, and 41,576 yearly growth measurements. Growth
measurements included annual ring widths (35 genus-by-site combinations)
and stem increments (11 genus-by-site combinations). Although data collection
was not coordinated in advance and includes both published and unpublished
data, the resulting data set represents many of the dominant and widely distributed
shrub species found across the tundra biome.

To test the correspondence between variation in climate and annual growth, we
used monthly Climate Research Unit (CRU) TS3.21 gridded temperature and
precipitation data (0.5◦ resolution, Supplementary Table 3). We found high
correlations between the CRU TS3.21 and station data for the 19 sites with a
meteorological station in relatively close proximity (Supplementary Table 4).

We used linear mixed models (package nlme, R version 2.15.3) and model
selection among 33 candidate models that included temperature and precipitation
variables to relate annual growth to climate (Supplementary Tables 5 and 6). We
analysed data from 1950 to 2010, the period with the highest quality climate data
and overlap between different individual shrub growth time series.

We present four different indices of climate sensitivity for each genus-by-site
combination (see above and Supplementary Information). We considered the
overall climate sensitivity to be the comparison of the best model to a null model;
summer temperature sensitivity was a comparison of only the models containing a
summer temperature variable. We then compared the climate sensitivity of growth
to environmental and biotic gradients including wet day frequency, soil moisture,
distance to nearest range edge and the maximum potential canopy height for the
sampled species. Data have been archived at the Polar Data Catalogue
(https://www.polardata.ca Ref No. 12131). Detailed methods describing the data
and analyses that were used are included in the Supplementary Information.
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