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Abstract 

Climate change highly affects precipitation patterns. Here, we address the question whether 

the signal of climate change is already detectable in time series of reported damages caused 

by fluvial floods. Building on hazard indicators from process-based hydrological simulations, 

we develop an empirical model to reconstruct reported damages and quantify individual 

contributions of climate-induced changes in hazard, exposure, and vulnerability to observed 

trends. Across nine world regions, trends in damages are generally dominated by increasing 

exposure and decreasing vulnerability, with the latter being most pronounced in less 

developed regions. However, accounting for heterogeneity in changes of hazard frequency 

and magnitude within a region, a climate signal is detectable, especially in South and Sub-

Saharan Africa as well as in Latin America. Damages in most regions are subject to a 

monotonous trend even after accounting for natural variability where an effect of long-term 

global warming can not yet be distinguished from a potential influence from multidecadal 

oscillations.      

 

Main 
 

Since 1980, fluvial floods have caused more than 200,000 fatalities and more than $790 bn in 

direct economic damages, globally1, placing them among the most socially and economically 

devastating natural disasters. Theoretical considerations on the global surface energy budget 

suggest that global mean precipitation increases with global mean temperature (GMT) at a 

rate of 1-2% per K2. However, most relevant for fluvial flood risk extreme precipitation events 

are3 and their intensity increases with the moisture of air that can be precipitated out according 

to the Clausius-Clapeyron relationship4,  and therefore extreme daily precipitation is expected 

to scale at a substantially higher rate of ~6-7% per K5. These theoretical considerations were 

recently confirmed by observations showing a global median increase in annual maximum 

daily precipitation of 5.9% to 7.7% per degree of global warming6 and more record-breaking 

rainfall events than expected in a stationary climate (12% increase in 1981–20107). Further, 

https://www.zotero.org/google-docs/?Be7mP7
https://www.zotero.org/google-docs/?pvhxJc
https://www.zotero.org/google-docs/?jd9y4T
https://www.zotero.org/google-docs/?0TLeZ4
https://www.zotero.org/google-docs/?fuq4EG
https://www.zotero.org/google-docs/?KNjmHF
https://www.zotero.org/google-docs/?HBY56F
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the observed intensification of extreme daily precipitation events since the 1980ies have been 

recently attributed to anthropogenic global warming8. Observed annual discharge maxima 

show regionally varying trends with significant increases in most stations of Asia, Europe and 

Latin America and mostly decreasing trends in Africa, Australia and North America9. Globally, 

1985-2009 flood frequency has first increased, peaked around 2003, and eventually 

decreased afterwards 10. Extreme flood events show a similar non-monotonous temporal 

evolution with strongest long term trends in Europe and the United States of America11. On 

global and latitudinal scales the observed variation in flood frequencies can be statistically 

explained by variations of four decadal and multi-decadal climate oscillations: the El Niño–
Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the North Atlantic 

Oscillation (NAO), and the Atlantic Multidecadal Oscillation (AMO)10. Here, we focus on 

economic damages caused by fluvial flooding and investigate to what extent climate change 

has already induced long-term trends. To disentangle the impact of climate induced changes 

in weather-related hazards (flood extent and depth) from changes in exposure of assets, and 

their vulnerability, we develop a semi-empirical model where annual flooded areas are derived 

from hydrological simulations forced by observational weather data12, 13, overlaid with spatially 

and temporally explicit asset distributions. Derived exposed assets are translated into direct 

economic damages by damage functions14 allowing for time dependent vulnerability factors12, 

13, 15  (Methods and supplementary Figs. SI1, SI2). Globally, trends in flood-induced damages 

have been shown to be dominated by increasing exposure and decreasing vulnerability12, 13, 

15, i.e., no detectable potentially climate-driven trend remains after removal of socio-economic 

effects at the global scale as well as on the level of world regions. This finding is irrespective 

of the regions’ development level 12, 16, 17, 18 and income groups12. However, these studies 

focus on the detection of changes in vulnerability and therefore considered world regions that 

have been defined to be homogeneous with respect to socio-economic indicators, but not with 

regard to climate-induced changes in weather-related hazard indicators. This aggregation 

across heterogeneous trends in hazards could hide the signal of climate change. To avoid 

this, we first verify that discharge trends modeled by global hydrological models (GHMs) (Fig. 

1a) compare well with observed trends 9, 19, 20, 21, when the GHMs are driven by observed 

weather data  (Methods and Supplementary Information (SI) Sec. 4). We then use the 

modeled trends to divide 9 standard, socio-economically homogeneous world regions (R)22 

into subregions 𝑅+ and 𝑅− with positive and negative trends in discharge, respectively (Fig. 

1b and Methods). 

 

 

https://www.zotero.org/google-docs/?72Se7H
https://www.zotero.org/google-docs/?5v9fNY
https://www.zotero.org/google-docs/?EurvhV
https://www.zotero.org/google-docs/?4oHJqM
https://www.zotero.org/google-docs/?vnhzFi
https://www.zotero.org/google-docs/?KrjGTZ
https://www.zotero.org/google-docs/?RCn7B3
https://www.zotero.org/google-docs/?ysxYvT
https://www.zotero.org/google-docs/?3CXyey
https://www.zotero.org/google-docs/?zdthLv
https://www.zotero.org/google-docs/?9wSRVc
https://www.zotero.org/google-docs/?CPMDnT
https://www.zotero.org/google-docs/?ngcDcN
https://www.zotero.org/google-docs/?5Vawl7
https://www.zotero.org/google-docs/?BKx9mj
https://www.zotero.org/google-docs/?ZNBevw
https://www.zotero.org/google-docs/?rijDI9
https://www.zotero.org/google-docs/?10Ju2p
https://www.zotero.org/google-docs/?Y4uyPX
https://www.zotero.org/google-docs/?VfWMk5
https://www.zotero.org/google-docs/?9yco3O
https://www.zotero.org/google-docs/?XksuXp
https://www.zotero.org/google-docs/?1mbhFl
https://www.zotero.org/google-docs/?HEGh9Y


 

3 

 
Figure 1: Discharge trends and definition of regions. a Absolute trends in annual maximum 

discharge in the time period 1971-2010 (significance levels are shown in supplementary Fig. 

SI3) b Map of the nine geographical world regions: North America (NAM), Eastern Asia (EAS), 

Western Europe (WEU), Latin America (LAM), Central Asia & Eastern Europe (CAE), South 

& Sub-Saharan Africa (SSA), South & South-East Asia (SEA), North Africa & Middle East 

(NAF), Oceania (OCE) chosen according to geographical proximity and similarity of socio-

economic structure. These regions are then further divided into subregions with positive (𝑅+, 

dark colors) and negative discharge trends (𝑅−, light colors). 

 

Climate signal in flood damages. When analyzing the contributions of the individual drivers 

to damage trends, we focus on regions where the full model accounting for all three drivers) 

explains at least 30% of the variance in reported damages (gray panels in Fig. 2) indicating 

that at least part of the critical processes determining the variability in damages are captured. 

In North America (𝑁𝐴𝑀), the explanatory power is exceptionally high (𝑅𝑁𝐴𝑀2 > 90%, 𝑅𝑁𝐴𝑀+2 >70%, 𝑅𝑁𝐴𝑀−2  > 95%), but reaches also more than 60% in Eastern Asia (𝐸𝐴𝑆) (~40% in 

its subregions) and in subregions of Latin America (𝐿𝐴𝑀) and Oceania (𝑂𝐶𝐸). In Western 

Europe (𝑊𝐸𝑈) and South & Sub-Saharan Africa (𝑆𝑆𝐴), the explanatory power is also good 

(𝑅2> 30%). Unexplained variations may be rooted in unsystematic reporting errors or biases 

in damages23, varying performance of GHMs across hydrobelts24 , limited quality of the forcing 

data sets25, and depth-damage functions (Methods). 

https://www.zotero.org/google-docs/?jpDbvW
https://www.zotero.org/google-docs/?RrJkxz
https://www.zotero.org/google-docs/?HBpe9i
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Climate-induced trends in damages are estimated from a restricted model accounting only for 

observed daily weather fluctuations while keeping exposure (in units of inflation adjusted 2005 

purchasing power parities (PPP) USD) and vulnerability at 1980 levels (DCli-1980). Damage 

trends induced by changes in exposure are then estimated from the difference between the 

trend in DCli-1980 and the trend derived from an extended model additionally accounting for 

changes in exposure (DCliExp). Finally, damage trends induced by changes in vulnerability are 

estimated from the difference in trends between DCliExp and the full model (DFull) (Methods). In 

line with previous studies12, 13, 15, 26, we find that trends in total damages mainly result from an 

increase in exposure that is moderated by a reduction in vulnerability (Fig. 2). This general 

picture is particularly visible in 𝐿𝐴𝑀 (and its subregions), in 𝐸𝐴𝑆, in South & South Eastern 

Asia (𝑆𝐸𝐴), and in North Africa & Middle East (𝑁𝐴𝐹). Exposure trends are exclusively positive 

and mostly significant, except in 𝑂𝐶𝐸. We find mostly decreasing vulnerability levels with the 

exception of Western Europe and North America, where vulnerability has increased. In 𝐿𝐴𝑀 a 

strong reduction in vulnerability has widely overcompensated increasing exposure and led to 

an overall reduction in damages, also in the subregion with decreasing discharge trends 𝐿𝐴𝑀−. 

By contrast, in 𝐿𝐴𝑀+, the increase in both, climate induced trends and trends in exposure, has 

led to a positive trend in modeled damages that is perfectly in line with the observed trend and 

not compensated by the vulnerability reduction. With the exception of 𝑆𝑆𝐴, weather-induced 

trends in the regions are small compared to exposure and vulnerability-induced trends and 

mostly insignificant. However, when splitting up the world regions into their subregions with 

homogeneous discharge trends, climate-induced trends become clearly detectable (Fig. 2). 

The climate contribution is strongest in 𝑆𝑆𝐴+, where it exceeds the socio-economic 

contributions by far. Indeed, we find the positive significant damage trend in this subregion 

can be majorly attributed to climatic effects. In several subregions that have become wetter 

(𝑆𝐸𝐴+, 𝑁𝐴𝐹+, and especially 𝑂𝐶𝐸+), the climate-induced trends are comparable or even larger 

than the trends induced by the socio-economic drivers. Though, we have to caution that the 

explanatory power of our model is low in these subregions (R2 < 30%). In subregions with 

negative climate-induced trends, the climate signal translates into negative contributions to 

damage trends (e.g. 𝑂𝐶𝐸−), but it is not strong enough to lead to an overall reduction in 

damages, except in 𝐿𝐴𝑀− and 𝑆𝑆𝐴−. However, in these two regions the decline is not in line 

with observations. 

https://www.zotero.org/google-docs/?KDjmLs
https://www.zotero.org/google-docs/?UgJp1e
https://www.zotero.org/google-docs/?VNPanj
https://www.zotero.org/google-docs/?2GnS5g
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Figure 2: Contributions of changes in climate, exposure, and vulnerability to damages 

induced by river floods (1980-2010): Time series of observed damages (NatCatService 

database1 (black) as well as modeled damages (multi-model median) when accounting for 

changes in i) climate only (constant 1980 socio-economic conditions, DCli-1980, blue), ii) climate 

and exposure (DCliExp, orange) keeping vulnerability at 1980 conditions, and iii) in climate, 

exposure, and vulnerability (DFull, purple) over time for the nine world regions (left main panel), 

as well as their subregions with homogeneous positive and negative trends in river discharge 

(middle and right main panels) (cf. Fig. 1). Left Bars in the side panel on the right indicate the 

https://www.zotero.org/google-docs/?pyL9mN
https://www.zotero.org/google-docs/?oh4XUA
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relative trend in annual modeled (Full, purple) and observed damages (Full, black squares) 

and the individual contributions of each driver: climate variability (Cli, blue), exposure (Exp, 

yellow), vulnerability (Vul, red). R² indicates the explained variance of the full model compared 

to the observed damages. Time series indicating the model-spread are provided in 

supplementary Fig. SI4. 
 

While the damage reporting by Munich Re’s NatCatSERVICE only starts in 1980, the ISIMIP2a 
hydrological simulations start nine years earlier in 1971 allowing for a backward extension of 

simulated damages. The trends in damages are generally robust with respect to the 

backwards extension, except for 𝑂𝐶𝐸 and 𝑊𝐸𝑈 (Fig. 3). In several regions, climate induced 

trends become significant and clearly show the relevance of the considered subregions when 

determining the detectability of climate change in flood damages. For instance, in most 𝑅+regions, we find positive and significant  climate-induced trends in simulated damages over 

the period 1971-2010, whereas these trends remain insignificant in most geographical regions, 

except for 𝐸𝐴𝑆 and 𝑆𝑆𝐴. Climate-induced positive trends are most pronounced in 𝑆𝑆𝐴+ 

(𝐶𝑙𝑖𝑆𝑆𝐴+ 2010  =  19.1 %/𝑦𝑒𝑎𝑟) (exact numbers for all regions are given in supplementary Tab. 

SI2). The positive trend in 𝑆𝑆𝐴−demonstrates that trends in annual maximum discharge do not 

necessarily translate into similar trends in damages as the translation of discharge into 

damages is asymmetric: high discharge levels may lead to economic damages when 

protection standards are exceeded, while low discharge levels influence discharge trends but 

are irrelevant for flood damages.  

To check the robustness of the climate-induced trends with regard to the choice of the baseline 

year for the socioeconomic forcing, we additionally calculate the damage time series and 

derive climate-induced trends (𝐶𝑙𝑖2010) for fixed 2010 socio-economic conditions, which does 

not significantly alter the climate induced-trends (Fig. 3 and supplementary Fig. SI5). The 

(𝐶𝑙𝑖2010) trend also allows to quantify the contribution of climate from 1980-2010 (or 1971 -

2010) to median damages in 2010 as difference between the start level of the regression line 

and its end level (supplementary Tab. SI2). 
 



 

7 

 

 

Figure 3: Climate induced trends in economic damages. Shown are trends for each 

geographical world region (R, blue) as well as in the subregions with positive (𝑅+, turquoise 

bars) and negative discharge trends (𝑅−, brown bars). Uncertainty bars mark the ⅓ and the 
⅔ quantile of the Theil-Sen-slope estimation. Symbols indicate the statistical significance of 

the climate trends at various levels. Grey shadings indicate subregions with high explained 
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variance (R² > 30%). Climate-induced trends are calculated for fixed 1980 exposure (𝐶𝑙𝑖1980 ) 
and fixed 2010 exposure (𝐶𝑙𝑖2010). 

 

Drivers of climate induced damage trends. To assess whether climate-induced trends in 

damages will persist in the future due to ongoing anthropogenic climate change or whether 

they are temporary and caused by climate oscillations (which would make them highly 

sensitive to the considered time period), we test to what degree the modeled time series of 

climate-induced damages for the full period 1971-2010 (DCli-1980) can be explained by 

variations in ENSO, PDO, NAO, AMO and GMT. The latter is considered a proxy for long-term 

monotonous climate change27. In the given time period from 1971-2010, the AMO index is 

highly correlated with GMT (Pearson correlation coefficient r = 0.92) and shows a similar 

monotonous increase (Fig. 4a) such that it can be considered a replacement of GMT in many 

cases. Therefore, we identify the model providing the best representation of the simulated 

damages while avoiding overfitting based on a “leave-one-out-cross-validation” (LooCV)28 for 

two separate trend analyses; in the first, the best predictors are chosen among ENSO, PDO, 

NAO, and GMT, and (Fig. 4b), in the second, the best predictors are chosen among all four 

climate oscillations (replacing GMT by AMO) (Fig. 4c) (Methods). From all regions where the 

explained variance of the full model (DFull) is high (R2> 30%)  (𝐺𝐿𝐵, 𝑁𝐴𝑀+, 𝑁𝐴𝑀, 𝑁𝐴𝑀−, 𝐸𝐴𝑆+, 𝐸𝐴𝑆, 𝐸𝐴𝑆−, 𝑊𝐸𝑈, 𝐿𝐴𝑀+, 𝑆𝑆𝐴+,and 𝑂𝐶𝐸−), either GMT or AMO are significant predictors for 

the monotonous long-term trend in climate induced damages (Fig. 4c). The explanatory power 

of the best models are similar, regardless whether AMO or GMT are contained in the set of 

predictors (Table SI4). It has been argued that the observed AMO should be viewed as a 

combination of both, internal variability and responses to external forcings29, 30, 31 and does 

not permit to rule out the effect of anthropogenic forcing even when AMO is the best predictor. 

Thus, while we cannot distinguish between the effects of GMT and AMO, our analysis should 

be considered as a test for a potential long-term monotonous trend given large scale climate 

oscillations. Future availability of longer time series, e.g., extending the data up to 2020, may 

allow us to disentangle the effects of AMO and GMT more robustly. 

 

https://www.zotero.org/google-docs/?ZHAMJv
https://www.zotero.org/google-docs/?eqWV8m
https://www.zotero.org/google-docs/?JcqDnZ
https://www.zotero.org/google-docs/?8yXeHL
https://www.zotero.org/google-docs/?CkLste
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Figure 4: Predictors of climate-induced trends in flood damages. a Normalized indices of 

ENSO, PDO, NAO, AMO, and GMT from 1971-2010. Only the period 1971-2010 is used for 

the analysis (gray shading). b Relative shares of the coefficients (Methods) of the linear 

predictors (ENSO, PDO, NAO, and AMO) included in the best model (according to the leave-

one-out-Cross-Validation) for the damage time series accounting for climate induced trends 

only (fixed 1980 exposure and vulnerability). Shown are only regions with R2 > 30% for the full 

model of Fig. 1. Black boxes indicate significant predictors at 90% level. c Same as b, but 

using ENSO, PDO, NAO, and GMT as predictors. 

 

Discussion. In many regions, the quantification of the contribution of climate change to 

observed trends in flood induced economic damages is still limited by an insufficient 

understanding of the observed damage time series. First of all, coarse and uncalibrated 

hydrological simulations such as those used here may not be able to properly reproduce the 

interannual variability of observed damages. In addition, due to the use of multi-model 
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medians of damage time series, modeled time series are assumed to have a relatively smaller 

variability than the recorded damages, explaining the differences in the significance levels 

between observed and modeled damage trends. However, the excellent reproduction of 

observed fluctuations in damages in North America underlines the explanatory power of the 

considered modelling approach. The general performance of the hydrological models is also 

demonstrated by the close agreement between simulated and observed trends in discharge 9, 

19, 20, 21 (SI Sec. 4). Especially, for large-scale climate change impact assessments, as the trend 

analysis undertaken here, they have been found to be a suitable tool 32. Qualitatively, observed 

and modeled damage trends match in all world regions and subregions, except for 𝑂𝐶𝐸, 𝑆𝑆𝐴−, 𝑁𝐴𝐹−, 𝐿𝐴𝑀−. Unexplained variances of observed damage data may result from regional 

deficits in reported damages, observational climate forcings, representation of protection 

standards, or asset distributions. Our analysis highlights the importance of subregional 

differences in impacts and the need for spatially-explicit and event-specific damage records 

to allow for a high-regional detail in the assignment of damages. The geo-codes provided in 

the NatCatSERVICE database are a good starting point in this regard, but more accurate 

event footprints are desirable for a better regional assignment of damages.  

Here, we estimate vulnerability from the ratio of observed and simulated damages as obtained 

when accounting for climate and exposure driven changes in damages (𝐷𝐶𝑙𝑖𝐸𝑥𝑝). In 

consequence, misrepresentation of trends in either the reported, or simulated climate and 

exposure-driven damages will reflect in changes in vulnerability over time. For example, an 

underreporting of damages in early years would erroneously translate into low vulnerabilities 

in the early phase. Similarly, too low estimates of the climate-induced trends could be 

compensated by increasing vulnerability estimates. We find mostly decreasing vulnerability 

trends indicating that both effects may only play a limited role. Robust increases in vulnerability 

are only identified in Western Europe and North America (Fig. 3, supplementary Figs. SI1 and 

SI2), where the data quality of reported damages is assumed to be high. Increasing 

vulnerabilities in high developed regions may particularly occur due to behavioural changes 

caused by better assumed protection, e.g. the levee effect33. In addition, vulnerability is 

assumed to change slowly over time, while the good reproduction of annual fluctuations in 

reported damages may be an indicator for a high quality of the observational climate data and 

translation into flood hazards. In previous studies, mostly decreasing vulnerabilities with 

overall converging trends between high- and low-income countries have been found12, 15. 

However, also increasing vulnerability levels have been reported for higher-middle income 

countries 13. Differences to our findings may be explained by the aggregation over countries 

by income and not with regard to geographical closeness or discharge trends and 

considerations of different time periods. Our quantification of climate change contributions to 

observed trends in flood-induced damages differs from “climate impacts attribution” as defined 
in chapter 18 of the IPCC AR534: “Detection of impacts’ of climate change addresses the 
question of whether a natural or human system is changing beyond a specified baseline that 

characterizes its behavior in the absence of climate change.”35 where this “baseline may be 
stationary or non-stationary (e.g., due to land use change)”. According to this definition, the 

impacts of climate change on observed trends in flood-induced damages would have to be 

estimated as the difference between observations and damages derived from simulation 

assuming stationary climate and observed changes in asset distributions and vulnerabilities. 

In contrast, we estimate them from a varying climate but with fixed asset distributions and 

vulnerabilities. However, the contributions of climate change to average damages at the end 

of the considered time period (2010) - estimated by multiplying climate induced trends (1980-

https://www.zotero.org/google-docs/?kob7Wh
https://www.zotero.org/google-docs/?honD0z
https://www.zotero.org/google-docs/?gTymoD
https://www.zotero.org/google-docs/?bn5znn
https://www.zotero.org/google-docs/?zl7eEo
https://www.zotero.org/google-docs/?zl7eEo
https://www.zotero.org/google-docs/?mUfIFe
https://www.zotero.org/google-docs/?bCNPuJ
https://www.zotero.org/google-docs/?cCSI6K
https://www.zotero.org/google-docs/?znShWB
https://www.zotero.org/google-docs/?Levlbb
https://www.zotero.org/google-docs/?Z0hfsr
https://www.zotero.org/google-docs/?RZdq27
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2010) assuming fixed 2010 socio-economic conditions with the length of the time period - 

basically corresponds to the AR5 definition of impact attribution in 2010. As such, our 

approach certainly only quantifies the contribution of climate change over the 1980-2010 

period and not the full contribution of climate change compared to pre-industrial levels.     

 

Conclusions. It is critical to identify the individual drivers of flood-induced damages since their 

mitigation may require different mitigation and coping strategies. We demonstrate that 

averaging across regions with heterogeneous climate induced trends in flood hazards can 

hide the signal of climate change in reported time series of flood-induced damages. While 

previous global studies suggest that the  contributions of climate to changes in flood damages 

have been minor compared to socio-economic drivers, we show that the impacts of climate 

change become detectable on subregional level, especially in regions of Sub-Saharan Africa, 

Eastern Asia, and Latin America. The considered “semi-empirical” modelling approach 
building upon process-based hydrological simulations and empirical estimates of 

vulnerabilities proves to be a powerful tool to attribute observed damages induced by river 

floods. While remote sensing may allow for the identification of flooded areas in recent years 

making use of the MODerate resolution Imaging Spectro-radiometer (MODIS) instruments on 

the NASA Aqua and Terra satellites36, process-based modelling remains critical, both for 

backward extensions required for the attribution of long-term trends and for future climate 

impacts projections.  

 

The generation of stationary counterfactual historical climate forcing data37 and their 

translation into flooded areas based on hydrological simulations will also allow us to apply our 

framework to the attribution of observed impacts as defined by the AR5. Whereas, based on 

the ISIMIP2a simulations (1971-2010), it was not yet possible to decide whether the climate 

induced change in damages is attributable to long-term warming or natural climate variability, 

the inclusion of the recent decade may already enable us to provide a clearer answer. 

Nonetheless, our analysis clearly reveals an underlying monotonous climate-induced trend in 

damages in many regions that prevails over the trends induced by the climate oscillations 

ENSO, NAO, and PDO.  

 
Methods 

 

Trend estimation. Throughout this work, we use the Theil-Sen Slope estimator38 to quantify 

trends and apply the non-parametric Mann-Kendall test39 to evaluate significance levels. In 

the damage analyses, trends are relative to the annual mean damage of the reference period 

1980-1990 in the corresponding region or subregion. 

 

Flood modeling and definition of subregions by discharge trends. We subdivide the nine 

geographical world regions into subregions with positive and negative trends in annual 

discharge maxima over the period 1971-2010. Studies on changes in global discharge 

patterns are rare and data coverage is not evenly distributed around the globe. Furthermore, 

the susceptibility of discharge to human intervention affects discharge records and 

complicates disentangling human and climatic forces in observations. We therefore derive 

discharge trends from the harmonized multi-model simulations of the 12 global gridded 

hydrological models (GHM) participating in phase 2a of the Inter-Sectoral Impact Model 

Intercomparison Project (ISIMIP2a40). We here apply the naturalized experiment referred to 

as ‘NOSOC’ in the ISIMIP2a protocol, meaning that no human impacts, such as dams and 

https://www.zotero.org/google-docs/?yevfjg
https://www.zotero.org/google-docs/?TCdAg3
https://www.zotero.org/google-docs/?lRtIcj
https://www.zotero.org/google-docs/?38sY4a
https://www.zotero.org/google-docs/?ZW0FSH
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water abstractions on river flow were considered. This is legitimate for two reasons: 1) to 

ensure consistency with river routing simulations that do not account for human regulation of 

rivers, and 2) based on a previous study for some major basins that showed that the shape of 

the hydrograph, for peak daily flow, is not significantly different between natural and human 

impact experiments41. Furthermore, this allows us to better isolate climate induced changes in 

river discharge (SI Sec 3.1). 

 

Here, the 12 GHMs were driven by four separate observational (atmospheric) weather data 

products for the period 1971-2010 providing daily runoff at 30arcmin resolution. For this 

ensemble of 46 climate data/GHM combinations (supplementary  Tab. SI1), we follow the 

methodology applied previously in Willner et al. (2018a,b)42, 43, and first harmonize the output 

of the different GHMs with respect to their fluvial network using the fluvial routing model CaMa-

Flood (version 3.6.244) yielding daily fluvial discharge at 15arcmin resolution. Especially for 

peak discharges, CaMa-Flood agrees better with observed fluvial discharges than the direct 

output of the hydrological models45. For the subsequent analysis, we then select the annual 

maximum daily discharge for each grid cell. 

 

For each of the 46 simulations of daily fluvial discharge and each grid cell on 15arcmin 

resolution, we fit a generalized extreme value (GEV) distribution to the historical time series 

of the annual maximum discharge using L-moment estimators of the distribution parameters 

(for details see SI Sec 3.2 and discussion in Willner et al. (2018a)42) allowing for a model bias 

correction following the approach by 46. It has been shown in several recent publications that 

such a hydrological modeling chain is able to reproduce patterns in observed flood impacts 12, 

13. In addition to these previous studies, we account for current flood protection standards at 

the sub-national scale from the FLOPROS database47. For the final assessment, we re-

aggregate the high resolution flood depth data to a 2.5arcmin resolution by retaining the 

maximum flood depth as well as the flooded area fraction, defined as the fraction of all 

underlying high resolution grid cells where the flood depth was larger than zero. 

 

Socio-economic data sources. We use gridded Gross Domestic Product (GDP) data 

reported in purchasing power parity (PPP) in 2005 USD from the ISIMIP project48 with a spatial 

resolution of 5arcmin from 1971-2010 as a proxy for the distribution of assets. Gridded GDP 

data was obtained using a downscaling methodology 49 in combination with spatially-explicit 

population distributions from the History Database of the Global Environment (HYDE v3.2)50, 

51 and national GDP estimates52. Downscaled GDP data is available in 10y increments and 

linearly interpolated across decades. To estimate asset values more precisely we convert 

gridded GDP data into gridded capital stock, using annual national data on capital stock (in 

PPP 2005 USD) and GDP from the Penn World Table (version 9.1, 

https://www.rug.nl/ggdc/productivity/pwt/). For each country the annual ratio of national GDP and 

capital stock was calculated and smoothed with a 10-year running mean to generate a 

conversion factor, which was then applied to translate exposed GDP into asset values. 

 

Observed asset damages are taken from reported flood damages from the NatCatSERVICE1 

database collected by MunichRe since 1980, excluding flash flood events or flooding caused 

by tropical cyclones. We adjusted all flood damage estimates for inflation to the reference year 

2005 using country-specific consumer price indices (CPI), i.e., expressing them in the same 

base year as the GDP data. To do so, we constructed a conversion factor for each country 

based on all reported damages for a country-specific event in 2005 and the regularly CPI-

https://www.zotero.org/google-docs/?Q8Ywi1
https://www.zotero.org/google-docs/?hRVxuq
https://www.zotero.org/google-docs/?YTdYG3
https://www.zotero.org/google-docs/?05vRjL
https://www.zotero.org/google-docs/?KWtq3W
https://www.zotero.org/google-docs/?zDcjDq
https://www.zotero.org/google-docs/?AlLgx2
https://www.zotero.org/google-docs/?ovWgbx
https://www.zotero.org/google-docs/?VGAoYJ
https://www.zotero.org/google-docs/?UrVOr0
https://www.zotero.org/google-docs/?l88pyL
https://www.zotero.org/google-docs/?ccQch0
https://www.zotero.org/google-docs/?ehEZE4
https://www.zotero.org/google-docs/?FtAeWn
https://www.zotero.org/google-docs/?tsYfvM
https://www.zotero.org/google-docs/?SXpcYv
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adjusted values reported in Munich Re’s NatCatSERVICE database in the base year 2016. 
Multiplying CPI-adjusted reported flood damages by this conversion factor results in CPI-

adjusted damages for 2005. Event-specific damage estimates were then aggregated to year-

country and year-region level in order to be comparable with simulated river floods for which 

only the annual maximum was considered. Thereby we assumed that only one flood event is 

observed at each grid cell during a year. To resolve recorded damages in the refined 

subregional analysis, we make use of the geocodes given for each general flood event in the 

NatCatSERVICE dataset and assign the damage to the risk area of the centroid closest to the 

geocode location. 

 

Economic damage assessment. For the estimation of direct asset damages, we apply the 

regional residential flood depth-damage functions developed by Huizinga et al. (2017) 14(SI 

Sec. 3.3). The quantification of flood damages consists of following steps: 1) determine 

exposed assets on the grid-level (150 arcmins resolution) based on the flooded fraction 

obtained from the inundation modelling; 2) determine the grid level damage by multiplying the 

exposed assets by the flood depth and the flood-depth damage function; 3) aggregate the 

estimated damages spatially to regional/subregional level, and 4) analyze the aggregated 

damages across different GHM simulations, assessing model medians and model spread. For 

steps 1 to 3, the open-source probabilistic natural catastrophe damage framework CLIMADA 

was used53. To account for the inhomogeneous but a priori unknown distribution of assets 

within a grid cell we additionally assume that no assets are exposed to a two-year flood event, 

thus subtracting the two-year flooded fractions from the modeled flooded fraction before 

multiplying with the asset value. This is equivalent to assuming that nobody would construct 

valuable assets in regions flooded every two years. 

 

The modeled damages for each GHM and grid cell are then aggregated to country and region 

level. For comparability reasons we first aggregate to 9 world regions constructed by grouping 

countries with geographical proximity and similar socio-economic structure following the the 

income group classification of the Worldbank22 (Fig. 1b). For regions and subregions, the 

median across all GHMs is then compared to reported damages from MunichRe’s 
NatCatSERVICE (Fig 2).  

 

 

Assessing and accounting for vulnerability. To include time-varying vulnerability, we apply 

an approach proposed in previous vulnerability studies12, 13, 15. Comparing modeled and 

observed damages, a time trend in the ratio of observed and modeled damages can be 

observed that can most likely be explained by changes in socio-economic vulnerability and/or 

adaptive capacity. These changes are not properly reflected within the modeling chain and 

are, e.g., caused by the fact that the protection standards underlying the FLOPROS database 

are stationary in time. We apply an 11-year smoothing on the ratio of reported and modeled 

damages using Singular Spectrum Analysis (SSA) (Fig. SI1 and Fig SI2)54 assuming a 

maximum ratio of observed and modeled damages of 1000 to remove outliers. Before applying 

the SSA, missing values were replaced by the median ratio between 1980 and 2010. 

 

Attributing damages to individual drivers. Given that the overall trend in damage time 

series is a superposition of the trends from each individual driver, we can separate the 

contributions from each driver by calculating the trend 𝛼 of each time series 𝐷𝐶𝑙𝑖−1980, 𝐷𝐶𝑙𝑖𝐸𝑥𝑝  

https://www.zotero.org/google-docs/?kE9dnt
https://www.zotero.org/google-docs/?fxp9wY
https://www.zotero.org/google-docs/?LR5ruG
https://www.zotero.org/google-docs/?lKU31c
https://www.zotero.org/google-docs/?yGAIJx
https://www.zotero.org/google-docs/?Cp8Ufj
https://www.zotero.org/google-docs/?Wkpwse
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and 𝐷𝐹𝑢𝑙𝑙   and extract climate induced trends in hazard, as well as trends in exposure and 

vulnerability, according to:  

 𝐶𝑙𝑖𝑅1980 = 
𝛼𝐶𝑙𝑖−𝑅 1980𝑛𝑅 , 𝐸𝑥𝑝𝑅 = 

𝛼𝐶𝑙𝑖𝐸𝑥𝑝−𝑅 − 𝛼𝐶𝑙𝑖−𝑅1980𝑛𝑅 ,  𝑉𝑢𝑙𝑅 = 
𝛼𝐹𝑢𝑙𝑙−𝑅 − 𝛼𝐶𝑙𝑖𝐸𝑥𝑝−𝑅𝑛𝑅  , 

 
(1) 

 

We apply a non-parametric trend analysis (Theil-Sen Slope estimator) to estimate 𝛼. Trends 

are given relative to the annual reported average damages in the time period 1980-1990 (𝑛𝑅) 

in each region or subregion (side panels in Fig. 2). We additionally provide climate induced 

trends from time series with 2010 fixed socio-economic conditions (Fig. 3): 

 𝐶𝑙𝑖𝑅2010 = 
𝛼𝐶𝑙𝑖−𝑅2010𝑛𝑅  (2) 

 

Socio-economic trends are assessed from 1980-2010. As climate induced trends are 

independent from observational data, we can extend it backward, making use of the full 

ISIMIP2a time period and additionally assess trends from 1971-2010. 

 

Climate oscillations and global mean temperature. In order to avoid interferences with long 

term temperature increase, we use the pressure based Southern Oscillation Index as a 

predictor for ENSO (https://www.ncdc.noaa.gov/teleconnections/enso/enso-tech.php). Monthly data 

for AMO and NAO were extracted from the NOAA/Earth System Research Laboratory 

(https://www.psl.noaa.gov/data/climateindices/list/) and PDO from the NOAA/Climate Prediction 

Center ( https://www.psl.noaa.gov/data/climateindices/list/). We derived annual GMT (daily mean 

Near-Surface Air Temperature) as the mean of three of the four input climate forcings provided 

in ISIMIP2a. We excluded the WATCH dataset because it does not capture the full historical 

period. 

 

Contribution of global mean temperature and climate oscillations to climate induced 

damage trends. Following the methodology introduced by Najibi & Devineni (2018) and Armal 

et al. (2018), we apply  generalized linear models (GLM) assuming damages to be log-

normally distributed and assuming fixed 1980 socio-economic conditions (𝐷𝐶𝑙𝑖)10, 27. In a 

stepwise procedure we calculated GLMs from all possible combinations of the predictors 

ENSO, PDO, NAO, AMO, and GMT and a constant 𝛽: 

 𝐷𝐶𝑙𝑖 =  𝛼𝐸𝑁𝑆𝑂 ⋅  𝐸𝑁𝑆𝑂 +  𝛼𝑃𝐷𝑂 ⋅  𝑃𝐷𝑂 + 𝛼𝑁𝐴𝑂 ⋅  𝑁𝐴𝑂 + 𝛼𝐺𝑀𝑇 ⋅  𝐺𝑀𝑇 + 𝛽2 (3) 

 𝐷𝐶𝑙𝑖 =  𝛼𝐸𝑁𝑆𝑂 ⋅  𝐸𝑁𝑆𝑂 +  𝛼𝑃𝐷𝑂 ⋅  𝑃𝐷𝑂 + 𝛼𝑁𝐴𝑂 ⋅  𝑁𝐴𝑂 + 𝛼𝐴𝑀𝑂 ⋅  𝐴𝑀𝑂 + 𝛽1 (4) 

 

We then select the best model applying a leave-one-out-Cross-Validation (LooCV) 28, which 

allows to assess model quality outside the fitting period calculating the “out-of-sample-error” 
(Supplementary Tab. SI4). The best model is the one with the smallest “out-of-sample-error”, 
we additionally test different link functions (inverse-power, identity, log). To compare the 

https://www.zotero.org/google-docs/?uO4eQB
https://www.zotero.org/google-docs/?yGgHWC
https://www.zotero.org/google-docs/?QMpqRS
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contributions of the different linear predictors across the different link functions we compare 

the partial derivatives of the model with regard to the individual predictors. Finally, we test the 

residuals for remaining trends applying the non-parametric trend analysis.  

 

 

Code availability. All implementations, input and output data are available upon request and 

will be made available in a git repository. For damage assessment, we used the natural 

catastrophe damage framework CLIMADA available at:   

https://github.com/CLIMADA-project/climada_python 
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Figures

Figure 1

Discharge trends and de�nition of regions. a Absolute trends in annual maximum discharge in the time
period 1971-2010 (signi�cance levels are shown in supplementary Fig. SI3) b Map of the nine
geographical world regions: North America (NAM), Eastern Asia (EAS), Western Europe (WEU), Latin
America (LAM), Central Asia & Eastern Europe (CAE), South & Sub-Saharan Africa (SSA), South & South-
East Asia (SEA), North Africa & Middle East (NAF), Oceania (OCE) chosen according to geographical
proximity and similarity of socio-economic structure. These regions are then further divided into
subregions with positive (R_+, dark colors) and negative discharge trends (R_-, light colors). Note: The
designations employed and the presentation of the material on this map do not imply the expression of



any opinion whatsoever on the part of Research Square concerning the legal status of any country,
territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This
map has been provided by the authors.

Figure 2

Contributions of changes in climate, exposure, and vulnerability to damages induced by river �oods
(1980-2010): Time series of observed damages (NatCatService database1 (black) as well as modeled



damages (multi-model median) when accounting for changes in i) climate only (constant 1980 socio-
economic conditions, DCli-1980, blue), ii) climate and exposure (DCliExp, orange) keeping vulnerability at
1980 conditions, and iii) in climate, exposure, and vulnerability (DFull, purple) over time for the nine world
regions (left main panel), as well as their subregions with homogeneous positive and negative trends in
river discharge (middle and right main panels) (cf. Fig. 1). Left Bars in the side panel on the right indicate
the relative trend in annual modeled (Full, purple) and observed damages (Full, black squares) and the
individual contributions of each driver: climate variability (Cli, blue), exposure (Exp, yellow), vulnerability
(Vul, red). R² indicates the explained variance of the full model compared to the observed damages. Time
series indicating the model-spread are provided in supplementary Fig. SI4.



Figure 3

Climate induced trends in economic damages. Shown are trends for each geographical world region (R,
blue) as well as in the subregions with positive (R_+, turquoise bars) and negative discharge trends (R_-,
brown bars). Uncertainty bars mark the  and the  quantile of the Theil-Sen-slope estimation. Symbols
indicate the statistical signi�cance of the climate trends at various levels. Grey shadings indicate



subregions with high explained variance (R² > 30%). Climate-induced trends are calculated for �xed 1980
exposure (Cli_(1980 )) and �xed 2010 exposure (Cli_2010).

Figure 4

Predictors of climate-induced trends in �ood damages. a Normalized indices of ENSO, PDO, NAO, AMO,
and GMT from 1971-2010. Only the period 1971-2010 is used for the analysis (gray shading). b Relative
shares of the coe�cients (Methods) of the linear predictors (ENSO, PDO, NAO, and AMO) included in the



best model (according to the leave-one-out-Cross-Validation) for the damage time series accounting for
climate induced trends only (�xed 1980 exposure and vulnerability). Shown are only regions with R2 >
30% for the full model of Fig. 1. Black boxes indicate signi�cant predictors at 90% level. c Same as b, but
using ENSO, PDO, NAO, and GMT as predictors.
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