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Abstract9

There is some evidence of rapid changes in the global atmosphere and hydrological cycle10

caused by the influence of climate variability. In West Africa, such changes impacts directly11

on water resources leading to incessant extreme hydro-meteorological conditions. This study12

examines the association of three global climate teleconnections (El-Niño Southern Oscilla-13

tion (ENSO), Indian Ocean Dipole (IOD), and Atlantic Multi-decadal Oscillation (AMO))14

with changes in terrestrial water storage (TWS) derived from both Modern-Era Retrospective15

Analysis for Research and Applications (MERRA, 1980−2015) and Gravity Recovery and Cli-16

mate Experiment (GRACE, 2002−2014). In the Sahel region, positive phase of AMO coincided17

with above-normal rainfall (wet conditions) and the negative phase with drought conditions,18

and confirms the observed statistically significant association (r = 0.62) between AMO and19

the temporal evolutions of standardised precipitation index. This relationship corroborates20

the observed presence of AMO-driven TWS in much of the Sahel region (though considerably21

weak in some areas). While ENSO appears to be more associated with GRACE-derived TWS22

over the Volta basin (r = −0.40), this study also shows a strong presence of AMO and ENSO23

induced TWS derived from MERRA reanalysis data in the coastal West African countries and24

most of the regions below latitude 10◦N. The observed presence of ENSO and AMO driven25

TWS are noticeable in tropical areas with relatively high annual/bimodal rainfall and strong26

inter-annual variations in surface water. The AMO has a wider footprint and sphere of in-27

fluence on the region’s TWS and suggests the important role of North Atlantic Ocean. IOD28

related TWS also exists in West Africa and its influence on the region’s hydrology maybe29

secondary and somewhat complementary. Nonetheless, presumptive evidence from the study30

indicates that ENSO and AMO are the two major climatic indices more likely to impact on31

West Africa’s TWS.32

Keywords: Rainfall, ENSO, Climate Variability, Droughts, West Africa, SPI33



1. Introduction34

Extreme climatic conditions (e.g., droughts and floods) in West African countries (Fig. 1)35

caused by large-scale ocean-land-atmospheric interactions and global climate teleconnections36

(e.g., El-Niño Southern Oscillation-ENSO) represent considerable impact on annual and sea-37

sonal variability in freshwater. Drying trends and deficits in precipitation, soil moisture, and38

net precipitation flux, for instance, as observed in the region have been linked to warming of the39

tropical oceans, anthropogenic emissions of aerosols and greenhouse gases, and other processes40

of oceanic inter-annual variations (e.g., Andam-Akorful et al., 2017; Nicholson, 2013; Ogun-41

tunde and Abiodun, 2013; Sheffield and Wood, 2008; Giannini et al., 2008). These trends,42

which are also driven and influenced by competing multiple physical mechanisms (Druyan,43

2011), might impact substantially, either directly or indirectly on terrestrial water storage44

(TWS; total of surface waters (i.e., rivers, lakes, and wetlands), soil moisture, canopy storage,45

and groundwater) in the region.46

The global atmosphere and hydrological cycle are undergoing rapid changes driven by the47

influence of climate variability and teleconnections (see, e.g., Phillips et al., 2012; Hurkmans48

et al., 2009; Malhi and Wright, 2004). Variability in ENSO amongst other factors (e.g., rainfall,49

temperature, barometric pressure, etc.), for example, was associated with changes in aquifer50

water levels in Japan (see, Dong et al., 2015). In Africa, climate variability at decadal to51

century scales resulted in recharge rates of 30 mm/yr (see, Scanlon et al., 2006). Trans-Niño52

index showed strong association with stream flow during the warm phase of Pacific Decadal53

Oscillation (PDO) in the Upper Klamath Lake in the US (see, Kennedy et al., 2009) whereas54

more recently, a low frequency modulating El-Niño activity was found to have induced lower55

changes in rainfall variance over West Africa (see, Andam-Akorful et al., 2017). Obviously, the56

observed extremes in West African rainfall (especially the Guinea Coast) is likely to increase57

owing to the strong impacts of climate variability, environmental changes, influence of tropical58

Atlantic sea surface temperature (SST) anomalies, and the nature of West African Monsoon,59

which is largely controlled by interactions between continental surfaces and the oceans (see,60

e.g., Rodŕıguez-Fonseca et al., 2011; Losada et al., 2010; Redelsperger and Lebel, 2009; Polo61

et al., 2008; Redelsperger et al., 2006). The overarching outcomes of a plethora of related62

studies in West Africa (see, e.g., Ndehedehe et al., 2016c; Diatta and Fink, 2014; Nicholson,63

2013; Paeth et al., 2012; Bader and Latif, 2011; Joly and Voldoire, 2010; Losada et al., 2010;64

Ali and Lebel, 2009; Giannini et al., 2008; Reason and Rouault, 2006), be it region-specific or65

basin scale, overwhelmingly agree on the roles of climatic variations through changes in the66

global oceans, mesoscale convective systems, and indices of climate variability (e.g., ENSO,67
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Atlantic Multi-decadal Oscillation-AMO, PDO, etc.) on precipitation patterns and other wa-68

ter fluxes (e.g., stream flow). Thus, climate variability is expected to significantly impact on69

hydrological conditions, leading to considerable impacts on changes in TWS. Such impacts70

amongst other factors could restrict agriculture, ecosystem services and the region’s fresh-71

water systems, warranting the study of climate teleconnections and its contributions to long72

term changes in TWS. Since climate teleconnections also provide significant influence on me-73

teorological processes, and TWS being a hydrologic state variable that integrates hydrologic74

processes (e.g., recharge and infiltration), the knowledge of climate teleconnection’s influence75

on TWS is critical and provides meaningful insights on drought events, wet conditions, and76

water resources management. Ultimately, identifying teleconnections that impact TWS in the77

region will be beneficial for forecasting.78

The pioneering works of Phillips et al. (2012) and Boening et al. (2012) have shown how79

ENSO teleconnection patterns around the globe are associated with changes in global mean sea80

level and continental water storage derived from Gravity Recovery and Climate Experiment81

(GRACE, Tapley et al., 2004). Given that ENSO has large energy between 2-5 years, only82

a few cycles will occur in the 8-year GRACE data used by Phillips et al. (2012). On the83

other hand, Boening et al. (2012) did not dwell on the relationship between continental stored84

water and climate teleconnections, but showed that the 5 mm decline in global mean sea level85

(GMSL) was tied to the 2010/2011 La-Niña. This significant decrease in GMSL according to86

the study, caused an excess transport of freshwater from ocean to land areas. Since ENSO87

is mostly based on oceanic variability in the Pacific, the role of other climate indices that88

describes variability in the Atlantic and Indian Oceans on TWS also requires reckoning. An89

extended hydrological time series will provide more evidence on climate tele-connection driven90

changes in TWS at the regional or global scale.91

Globally, observed variations in precipitation, soil moisture, freshwater discharge, recharge,92

and drought characteristics have been attributed to variabilities in ENSO, AMO, and PDO93

(e.g., Andam-Akorful et al., 2017; Dai et al., 2009; Hurkmans et al., 2009; Sheffield and Wood,94

2008; Scanlon et al., 2006). Like many other parts of the world, rainfall and hydro-climatic95

conditions in West Africa are influenced by ENSO and a number of other global climate96

teleconnections (AMO, Indian Ocean Dipole-IOD, etc. see, e.g., Ndehedehe et al., 2016b,c;97

Diatta and Fink, 2014; Molion and Lucio, 2013; Paeth et al., 2012; Bader and Latif, 2003,98

2011; Giannini et al., 2003; Nicholson et al., 2000; Nicholson, 2013, and the references therein).99

These climate teleconnections result in extreme hydrological conditions and intensification of100

the water cycle, all of which impact on TWS in the region. Although the influence of these101
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climate teleconnections and other climate modes on West African rainfall has been widely102

studied as indicated, their influence on TWS in the region has, however, not been considered.103

Moreover, although rainfall is the main input of TWS, the influence of teleconnections on104

rainfall might not directly be the same as its influence on TWS, which is a vertical integration105

of surface water, groundwater, soil moisture, ice/snow and biomass, all of which might respond106

differently to climate variability. Despite this, the few studies available over West Africa107

that addressed TWS (see, e.g., Ndehedehe et al., 2016a; Henry et al., 2011; Grippa et al.,108

2011; Hinderer et al., 2009; Forootan et al., 2014) do not consider the influence of climate109

teleconnections on its TWS changes.110

This manuscript investigates the association of three well known global climate teleconnec-111

tions (ENSO, Indian Ocean Dipole-IOD, and AMO) on the region’s TWS and highlights the112

influence of climate teleconnection-induced rainfall on TWS. To this end, this study assumes113

that these teleconnection indices (Fig. 2), which directly or remotely contribute to extreme114

hydro-meteorological conditions (i.e., extreme wetness and dryness) in the region (see, e.g.,115

Diatta and Fink, 2014; Paeth et al., 2012; Nicholson et al., 2000), subsequently influences TWS116

changes over the region. Specifically, the two main objectives of this study are (i) to identify117

the spatio-temporal modes of precipitation anomalies (i.e., wet and dry conditions) over two118

different timescales (i.e., 6 and 12 month aggregations) that influence TWS variations over119

West Africa, and (ii) examine the relationship of TWS derived from GRACE (2002 − 2014)120

and Modern-Era Retrospective Analysis for Research and Applications (MERRA, Rienecker121

et al., 2011) (1980 − 2015) to climate teleconnections. In trying to achieve these objectives,122

the present study employs for the first time a methodological framework based on multivari-123

ate analysis that allows the assessment of hydrological processes, and extreme precipitation124

anomalies on TWS and its association with climate teleconnections over West Africa.125

To comprehensively study teleconnections’ influence on TWS over West Africa, multiple-126

linear regression analysis (MLRA) and independent component analysis (ICA, see, e.g., Westra127

et al., 2010; Aires et al., 2002; Cardoso and Souloumiac, 1993; Cardoso, 1999) are combined128

to examine hydro-meteorological conditions and the association of climate indices with TWS129

derived from both GRACE (2002 − 2014) and global high-resolution MERRA data (1980 −130

2015). The standardised precipitation index (SPI, McKee et al., 1993) and the ICA technique131

are employed to analyse the relationship of extreme hydro-meteorological conditions with these132

climate teleconnections.133

The remainder of the study is organised as follows; in section 2, a brief highlight on the134

study area is provided while sections 3 and 4 provide, respectively, a discussion on the data135
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and methodology used. This is followed by presentation and discussion of the results in section136

5. The conclusions of the study are summarized in section 6.137

2. West Africa138

2.1. Location139

West Africa covers an areal extent of 7.5 million km2 and comprises two major geographical140

zones; the countries of the Gulf of Guinea and the Sahelian countries (e.g., Amani et al., 2007;141

Ndehedehe et al., 2016a). The 16 member countries (Fig. 1) of this region, have an estimated142

population of 330 million people (USAID, 2013). The region is located between latitudes 0◦N143

to 20◦N and longitudes 20◦W to 20◦E excluding the highlands of Cape Verde. However, the144

analysis of the current study extends to the equatorial region, which includes the Congo basin145

(Fig. 1).146

2.2. Climate and hydrology147

The climate of the region consists of extreme wet and dry conditions, and the intra-annual148

rainfall distribution in the region is linked to seasonal migration of the intertropical conver-149

gence zone (ITCZ) and circulation features (e.g., the African Easterly Jets, Tropical Easterly150

Jets, African Westerly Jet)(Lebel and Ali, 2009; Nicholson, 2013; Nicholson and Grist, 2001;151

FAO, 1983). Rainfall varies from less than 200 mm/yr in the Sahelian countries to over 2000152

mm/yr along the Gulf of Guinea. In the Gulf of Guinea region, the rainfall seasons occur153

between April-June and July-September, with the wettest months being June and Septem-154

ber or sometimes October, while in the Sahel region, rainfall mostly occur between June and155

September, with maximum rainfall occurring in August (Nicholson et al., 2000). ENSO and156

AMO are well known climate teleconnections that have been associated with extreme rainfall157

variability in the region (see, e.g., Diatta and Fink, 2014; Paeth et al., 2012; Nicholson et al.,158

2000). That said, the severe droughts of the 1980’s was perceived as the combined effects of159

unusual warming in the Indian Ocean and the eastern equatorial Atlantic Ocean (see, e.g.,160

Bader and Latif, 2011; Giannini et al., 2003). Temperature varies with altitude, with lowland161

areas having a mean annual temperature above 18◦C while in the Central Sahel, temperatures162

in July could be as high as 58◦C, differing from the the southern part of the Sahara where163

mean monthly temperatures could rise to 30◦C (FAO, 1983).164

Numerous rivers such as the Niger, Benue, Volta (Black and White Volta rivers), Senegal,165

Oti, Comoe, and Gambia amongst others drain the West African region (Fig. 1) while the166

Congo river is the second largest river in Africa and drains one of the largest tropical forests of167
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Figure 1: Study area showing countries in West Africa and some parts of Equatorial Africa (i.e., the Congo

basin). Major river basins (e.g., Niger, Volta, Congo, and Senegal), rivers, lakes, and groundwater aquifers

are also indicated. The Congo (tulip pink) and Niger (sky blue) river basins are considerably large and ap-

parently the most significant and prominent basins in the region owing to the two major rivers (Niger and

Congo) that provide numerous ecosystem services. The types of aquifers are described in terms of numbers; for

example, the numbers ranging from 11-15 are found in major groundwater basins while the numbers 33 and

34 on the map, are those found in local and shallow aquifers. Aquifer maps and some river distribution net-

works were adapted from the World-wide Hydrogeological Mapping and Assessment Programme (WHYMAP)

(https://www.whymap.org/whymap/EN/Downloads/Global maps/globalmaps node en.html).

the world, i.e., in the Congo basin (e.g., Shahin, 2008). The aforementioned rivers are mostly168

shared by four and up to eight riparian countries, which sometimes results in trans-boundary169

water conflicts. The Niger river in particular is the longest river in West Africa and is shared170

by several riparian countries in the region. The Fouta Djallon Highlands where the river171

Niger originates from is the water tower of West Africa and shows the strongest amplitudes172

of TWS and precipitation over the region (see, Ndehedehe et al., 2016a). TWS and stream173
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flows are largely precipitation-driven with time lags in some areas. However, diversity in local174

climates, soil infiltration characteristics, and multiple strings of anthropogenic factors, e.g.,175

land use change, dam constructions, and developments of small-scale reservoir systems for176

water mobilization to support agriculture, have also contributed to changes in hydrological177

regimes of water fluxes in the region (e.g., Ndehedehe et al., 2017, 2016a; Ahmed et al., 2014;178

Descroix et al., 2009; Favreau et al., 2009; Li et al., 2007).179

Figure 2: Time series of monthly climate indices (ENSO, IOD, and AMO) for the period of 1980− 2014 used

in the study.

3. Data180

All datasets used in this study are described below and key parameters are summarized in181

Table 1.182

3.1. Terrestrial Water Storage (TWS)183

i Gravity Recovery and Climate Experiment TWS184

Since the inception of Gravity Recovery and Climate Experiment (GRACE, Tapley et al.,185

2004) in 2002, monthly estimates of Earth’s gravity field have been used to infer changes186

in mass at and below the Earth’s surface (e.g., Wahr et al., 1998). The Earth’s wa-187

ter storage changes derived from GRACE observations both at basin and continental188

scales with global and regional applications in droughts, hydrology, climate, and valida-189

tion of hydrological models have been widely studied (see, e.g., Wouters et al., 2014, and190

the references therein). The GRACE Release-05 (RL05) spherical harmonic coefficients191

from Center for Space Research (CSR) for the period 2002 to 2014 (http://icgem.gfz-192

potsdam.de/ICGEM/shms/monthly/csr-rl05/) are used in this study to compute changes193

in TWS. Since GRACE does not provide changes in degree 1 coefficients (i.e., C10, C11,194

and S11) coupled with the effect of large tide-like aliases (e.g., Seo et al., 2008) in degree195
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Table 1: Summary of precipitation, TWS products, and teleconnection indices used in this study.

Data Type Period Spatial Res. Temporal Res. Coverage

GPCP Guage and satellite 1979− 2014 2.5◦ x 2.5◦ Monthly Global

MERRA Global reanalysis 1980− 2015 0.625◦ x 0.5◦ Monthly Global

GRACE Satellite gravity 2002− 2014 1.0◦ x 1.0◦ Monthly Global

MEI climate index 1980− 2015 −− Monthly

IOD climate index 1980− 2015 −− Monthly

AMO climate index 1980− 2015 −− Monthly

2 coefficients, we replace degree 1 coefficients with estimates from satellite laser ranging196

(Swenson et al., 2008), and following Chen and Wilson (2008), degree 2 coefficients are197

also replaced by those provided by Cheng et al. (2013). DDK2 decorrelation filter (Kusche198

et al., 2009) is then applied on the spherical harmonic coefficients in order to reduce the199

effect of the correlated noise. The DDK2-filtered monthly GRACE solutions are then200

converted to equivalent water heights on a 1◦ x 1◦ grid following the approach of Wahr201

et al. (1998). Monthly changes in TWS solutions W(θ, λ, t), in time t (where θ, λ are the202

geographical latitudes and longitudes, respectively), after removing the long term mean203

w(λ, θ) over the investigated period are given as (Phillips et al., 2012):204

XTWS(θ, λ, t) = W(θ, λ, t)− w(θ, λ). (1)

ii Modern-Era Retrospective Analysis for Research and Applications (MERRA) TWS205

One of the main purposes of the MERRA data was to improve upon the water cycle206

represented in previous generations of reanalyses (Rienecker et al., 2011). The data is a207

state-of-the-art reanalysis that provides atmospheric fields, water fluxes, and global esti-208

mates of soil moisture (Reichle et al., 2011). Also, it has been improved significantly when209

compared to previous reanalysis datasets (Rienecker et al., 2011). MERRA outputs have210

been used in the study of atmospheric circulations and assessing agricultural droughts in211

the African continent (see, Agutu et al., 2017; Wu et al., 2013) and has been recommended212

for land surface hydrological studies (Reichle et al., 2011). The land TWS data compo-213

nent of MERRA used in this study, covers the period of 1980− 2015, and is available for214

download through the National Aeronautic and Space Administration (NASA) data por-215

tal (http://disc.sci.gsfc.nasa.gov/mdisc/). The MERRA-TWS is employed to highlight the216

influence of climate teleconnections on long term terrestrial stored water, complementing217

the limited GRACE-TWS data record.218
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3.2. Global Precipitation Climatology Project (GPCP)219

The global grids of monthly estimate of Global Precipitation Climatology Project (GPCP)220

data set from 1979− 2014 (Huffman et al., 2009; Adler et al., 2003) is used in this study. The221

GPCP data is a merged satellite-based product that is adjusted using rain gauge data and can222

be downloaded through the World Data Center website (see http:// lwf.ncdc.noaa.gov/oa/wmo223

/wdcamet-ncdc.html). Previous studies (see, e.g., Ndehedehe et al., 2016b; Paeth et al., 2012;224

Yin et al., 2004) have shown that the GPCP version 2 precipitation data has a relatively225

good correlation with rain gauge observations, Tropical Rainfall Measuring Mission based226

precipitation, and Climate Prediction Center Merged Analysis (CMAP) data. Because of227

its long term record and availability, the GPCP data is used here to compute standardised228

precipitation index (SPI) over West Africa at 6 and 12 months aggregation. Our assumption is229

that 6 and 12 month SPI cumulations provide a reasonable lag for extreme rainfall conditions230

to be reflected in catchment stores.231

3.3. Climate modes232

(a) Multivariate ENSO Index (MEI)233

El-Niño Southern Oscillation (ENSO) is a climate pattern that describes the presence of ab-234

normally warm (El-Niño) and cold (La-Niña) sea surface temperature anomalies in the eastern235

Pacific (e.g., Phillips et al., 2012). Although there are other ENSO indices such as Nino3.4 and236

Nino4, the Multivariate Enso Index (MEI) downloaded from NOAA (http://www.esrl.noaa.gov237

/psd/enso/mei/) is used here because it has been associated with inter-annual variability of238

water availability, and comprises six other variables over the Pacific coupled with atmospheric239

anomalies (see, e.g., Phillips et al., 2012; Hurkmans et al., 2009).240

(b) Indian Ocean Dipole (IOD)241

The Indian Ocean Dipole (IOD) is a coupled ocean and atmosphere phenomenon in the242

equatorial Indian Ocean that mostly affects the climate of countries around the Indian Ocean243

(e.g., Saji et al., 1999). It is essentially mirrored in the the SST data over the Indian ocean244

(Cai et al., 2014). Indian Ocean SSTs have been associated with regional climate anomalies245

(Bader and Latif, 2003). Apart from ENSO, IOD is one of the relevant climate indices that has246

been identified as having a robust relationship with Sahel inter-annual rainfall variability (e.g.,247

Okonkwo, 2014). The IOD time series can be accessed from European Climate Assessment248

& Data portal (http://climexp.knmi.nl)249

(c) Atlantic Multi-decadal Oscillation (AMO)250

The AMO is a consistent pattern of variability in the North Atlantic SSTs with a period of251

about 60-80 years, and conventionally computed from the average SST anomaly of the North252
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Atlantic, that is, north of the equator (see, Trenberth and Shea, 2006). Zhang and Delworth253

(2006) and Trenberth and Shea (2006) have linked multi-decadal variations of Sahel summer254

rainfall to AMO. More recently, Chylek et al. (2016) showed that AMO contributed to the255

1970 − 2005 global warming. In addition, its relative influence according to the study, is256

expected to increase during the second half of the twenty-first century, further necessitating257

the need to examine its possible contribution to TWS. The AMO index used in this study258

was smoothed from the Kaplan SST V2, which is available for downloaded at NOAA’s web-259

site (http://www.esrl.noaa.gov/psd/data/timeseries/AMO/). The time series of all climate260

indices used in the study are indicated in Fig. 2.261

4. Methodology262

4.1. Independent Component Analysis (ICA)263

The ICA is a higher order statistical method that uses statistical moments higher than264

second order. The method uses a statistically based identification technique to estimate di-265

rectional vectors (i.e., independent patterns) from a data matrix (see, e.g., Common, 1994;266

Cardoso and Souloumiac, 1993; Cardoso, 1999). The method explores the unknown dynamics267

of a system through the rotation of the classical empirical orthogonal functions (Aires et al.,268

2002). Fundamentally, ICA decomposes the time series of the data matrix ZP (t), into a mixing269

matrix A and a number of statistically independent source signals sj(t), where t is the time270

index. This can be expressed as (e.g., Ziehe, 2005)271

ZP (t) =
∑

Aijsj(t), (i = 1, ..., n, j = 1, ...,m). (2)

Further details on the computational routines, numerical steps of ICA implementation, algo-272

rithm development, and mathematical formulations have been documented (e.g., in Cardoso,273

1991; Cardoso and Souloumiac, 1993; Common, 1994; Cardoso, 1999; Theis et al., 2005; Ziehe,274

2005). The interest in regionalizing hydro-climatic signals at global and basin scale is increas-275

ing and has resulted in several applications of ICA in geophysical signal separation and drought276

analysis (see, e.g., Ndehedehe et al., 2016b, 2017; Boergens et al., 2014; Forootan et al., 2012,277

2014; Frappart et al., 2010, 2011). Here, the ICA (algorithm available at http://perso.telecom-278

paristech.fr/cardoso/Algo/Jade/jadeR.m) is employed to decompose GRACE-derived TWS279

(after removing the annual and semi-annual parts) and gridded SPI values into statistically280

independent modes (spatial and temporal patterns). Note that MERRA-TWS was not statis-281

tically decomposed as it does not contain groundwater component, however, since it is sensitive282

to climate, our focus is to examine and highlight the association of long term TWS changes283
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with climate teleconnection indices. The temporal evolutions of residual TWS (Section 4.2)284

were correlated with time series of ENSO, IOD, and AMO in order to assess their association285

with the observed TWS, which have been localized over West Africa using the ICA technique.286

ICA is employed to help the regionalization (i.e., localization) of GRACE-TWS values with the287

hope of studying their association with global climate teleconnections at large spatial scales.288

The advantage of using ICA for this region, is that it improves the detection of regionally less289

dominant (i.e., obscured) signals (i.e., those of GRACE-derived TWS) and enables their spa-290

tial patterns to be localised making it possible for them to be examined concurrently with the291

association of climate modes, TWS and SPI evolutions in different sub-regions. Furthermore,292

since rainfall in West Africa results in two homogeneous regions depending on the domain size293

and period investigated (e.g., Sanogo et al., 2015), the ICA technique was also employed to294

support the localisation of complex SPI signals and definition of regions with similar hydro-295

meteorological patterns in West Africa. It was pointed out in a recent study that regions in296

West Africa (especially the coastal areas) with large amplitudes of TWS are mostly areas that297

receive considerable rainfall, characterised by huge aquifers and endowed with surface waters298

such as lakes and reservoirs (see, Ndehedehe et al., 2016a). Because TWS variability over West299

Africa is largely precipitation driven, climate teleconnection induced changes in precipitation300

such as the 2007 and 2010 La-Niñas may have caused larger changes in TWS in the region.301

In this study, our aim is to understand these modes of extreme precipitation anomalies in the302

region as they can provide a clue regarding the mechanisms of larger changes in TWS. To this303

end, the ICA method was also applied to regionalize (localize) SPI patterns (hereafter called304

drought and wet conditions) over West Africa, in order to help examine the impacts of regional305

fluctuations in rainfall on catchment storage.306

4.2. Multiple Linear Regression Analysis (MLRA)307

The strongest signals in TWS variability emanates from the harmonic components (i.e.,308

annual and semi-annual signals) of the data, hence the trend, annual, and semi annual com-309

ponents of the data were removed in order to allow for the estimation of the impact of climate310

indices. Essentially, our approach employs a MLRA model that parameterizes the cosines311

and sines’ harmonic components of monthly GRACE and MERRA data. This is followed312

by the method of least squares, which is used to estimate the amplitude of a climate index313

(i.e., ENSO, IOD, and AMO) on the TWS whose trend and harmonic components have been314

removed (hereafter called deseasonalize TWS) over the region. Using the MLRA, the dataset315
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YTWS , is parameterized as316

Y(l, k, t) = β0 + β1t+ β2sin(2πt) + β3cos(2πt) + β4sin(4πt) + β5cos(4πt) + β6E(t+ ϕE) + ε(t),

(3)

where (l, k) are the grid locations, t is the time in years, β0 is the constant offset, β1 is the317

linear trend, β2 and β3 account for the annual signal while β4 and β5 represent the semi-annual318

signal. The variable β6 is the amplitude of TWS changes or rainfall that is related to climate319

indices describing large scale ocean-atmosphere phenomenon (e.g., ENSO, IOD, and AMO).320

E is the normalized time series (i.e., after removing long term mean) of each climate index321

(Fig. 2), ϕE is the phase lag between the time series of TWS and each climate index, while322

ε(t) is the random error term. The annual and semi annual amplitudes of TWS (MERRA and323

GRACE) over the region are computed as324

Annual Amplitude =
√

(β2)2 + (β3)2, (4)

and325

SemiAnnual Amplitude =
√

(β4)2 + (β5)2. (5)

Removing these harmonic components and the trend in Eqn 3 leaves the residual part, (i.e.,326

deseasonalized TWS,XTWS) which is here assumed to be associated with slow dynamic climate327

oscillations (e.g., AMO). This residual variability perhaps can also emanate from internal328

variability or regional forcings (though unclear for the region), but as indicated in Section 1,329

the impact of climate related indices on rainfall are more likely to result in large amplitudes330

of TWS, dominating the time series of the deseasonalized TWS. This deseasonalized TWS331

is statistically decomposed into temporal and spatial patterns (i.e., using the ICA technique332

described in Section 4.1). The deseasonalized XTWS , signal is characterised as333

XTWS = Y− [β1t+ β2sin(2πt) + β3cos(2πt) + β4sin(4πt) + β5cos(4πt)]. (6)

The coefficients of MLRA indicated in Eqns 4-6 were estimated using the least square ad-334

justment technique. The linear trend of TWS is removed in order to ensure that the pseudo335

trends (GRACE-TWS) emanating from the ponding of water behind large dams as is the case336

in Lake Volta (e.g., Ndehedehe et al., 2017; Moore and Williams, 2014) are not interpreted as337

contributions of climate modes to TWS changes. This deseasonalized TWS was statistically338

decomposed into spatial and temporal patterns using the ICA technique (see Section 4.1). The339

significant modes of variability of the deseasonalized TWS were selected for a further compar-340

ison with the normalised time series of each climate index. Doing this allows the evaluation341

of the quantitative estimates of climate induced TWS in terms of the variability explained.342

12



Further, in order to estimate the contribution of each of the climate index (i.e., ENSO, IOD,343

and AMO) on the amplitudes of GRACE and MERRA-derived TWS, a least square fit on344

each grid location of XTWS in Eqn 6 was then performed as (e.g., Phillips et al., 2012)345

XIndices(x, y) = a(x, y) + b(x, y) ∗ Indices+ c(x, y) ∗ imag(Hilbert(Indices)), (7)

where coefficients b and c are used to estimate the climate induced TWS change XIndices(x, y)346

at a grid location (x, y), while the imaginary part of the Hilbert transform of the climate index347

represents the lag between TWS anomalies and a given climate index (see, Phillips et al.,348

2012). The amplitude of TWS, A, given as349

AENSO/IOD/AMO =
√

b2 + c2, (8)

is the estimated magnitude of climate index on TWS (i.e., the estimated contribution of each350

of the climate index to TWS change).351

4.3. Standardised Precipitation Index (SPI)352

Prolonged rainfall deficit usually reduces the alimentation of a given hydrological system353

leading to agricultural and hydrological drought (see, Ndehedehe et al., 2016c). It is reasonable354

therefore to assume that extreme rainfall conditions (i.e., wet and drought events) resulting355

from the influence of climate teleconnections on the region will have a direct impact on the356

amplitudes of TWS perhaps with some time lags of say 6-12 months. To this end, extreme357

rainfall conditions are analysed using SPI aggregated at 6 and 12 months. The choice of these358

aggregation scales is based on the hypothesis that SPI on longer time scales can provide the359

capability to monitor drought and wet conditions suitable for hydrological applications (see,360

e.g., Ndehedehe et al., 2016c; Li and Rodell, 2015; Lloyd-Hughes, 2012; Hayes et al., 1999),361

which is what MERRA and GRACE-derived TWS are mostly suited for (e.g., Awange et al.,362

2016). For example, Li and Rodell (2015) recently showed that averaged groundwater drought363

index had a strong correlation with SPI at 12 and 24 month cumulations. To understand the364

influence of climate induced rainfall conditions on observed TWS over West Africa, SPI (McKee365

et al., 1993) was computed from the GPCP based precipitation for the period 1979 − 2014.366

Instead of the gamma distribution, log-normal, extreme value, and exponential distributions367

that have been widely used in the simulations of precipitation distributions (e.g., Mishra and368

Singh, 2010), this study uses a non-parametric approach to derive standardised index (see,369

Farahmand and AghaKouchak, 2015; Hao and AghaKouchak, 2014). Although the gamma370

distribution, for instance, is efficient for low runoff values as noted by Shukla and Wood371

(2008), the sensitivity of the traditional SPI tails to distribution parameters (e.g., Farahmand372
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Table 2: SPI thresholds based on McKee et al. (1993) classification system.

Description Threshold

Extreme wet +2.0 and above

Very wet +1.5 to +1.99

Moderately wet +1.0 to +1.49

Near normal -0.99 to +0.99

Moderate drought -1.0 to -1.49

Severe drought -1.5 to -1.99

Extreme drought -2.0 or less

and AghaKouchak, 2015), however, may lead to inconsistent results for different regions. The373

non-parametric approach on the other hand can be applied to different hydro-climatic data374

(e.g., precipitation) without having to assume representative parametric distributions (see,375

Farahmand and AghaKouchak, 2015). This approach employs an empirical probability method376

as377

ρ(xj) =
j − 0.44

n+ 0.12
, (9)

where n is the sample size, j represents the rank of non-zero rainfall data starting from the378

smallest while p(xj) is the corresponding empirical probability. Equation 9 is transformed to379

a standardised precipitation index (SPI) as (see, Farahmand and AghaKouchak, 2015)380

SPI = φ−1(ρ), (10)

where φ is the standard normal distribution function and ρ is the probability obtained from381

Eqn 9. The SPI values obtained from Eqn 10 were subsequently decomposed into spatial and382

temporal patterns using the ICA technique (see Section 4.1). The association of a climate383

index with the temporal SPI evolutions were examined through Pearson’s correlation analysis.384

Dry and wet occurrence in this study is based on the McKee et al. (1993) classification system385

as highlighted in Table 2.386

5. Results and Discussion387

5.1. Extreme hydro-meteorological conditions related to climate modes388

This section relates extreme hydro-meteorological conditions (drought and wet conditions389

based on the description of Table 2) to climate modes using a spatio-temporal approach where390

the SPI values obtained over West Africa are statistically decomposed into spatial and temporal391

patterns. For the 6 month SPI localised over the region, the spatio-temporal patterns show392
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Figure 3: Spatio-temporal SPI patterns over West Africa using 6-month gridded SPI values. SPI values are

computed using GPCP-based precipitation product over the period 1979− 2014. The variability of the statisti-

cally decomposed SPI values are 14.1%, 7.7%, 7.2%, and 4.6% for IC1, IC2, IC3, and IC4, respectively. Actual

values for drought classification and categorization with respect to McKee et al. (1993) description are jointly

derived from the localised spatial patterns (right) and their corresponding temporal evolutions (left). The AMO

showed relatively a better association with SPI over the Sahel region (IC1) compared to other climate indices

(ENSO and IOD). The blue solid line (left) is the drought threshold. Hydrological units (rivers, lakes and other

water bodies) are also indicated on the spatial patterns of SPI (blues lines on the right).

the spread of SPI patterns, its frequency, onset, and termination. The observed temporal SPI393

evolutions (i.e., IC1−IC4, Fig. 3) are consistent with previous drought records of the region394

(e.g., Masih et al., 2014). The wider spread of droughts in some parts of the Sahel as indicated395

in the SPI spatial and temporal patterns (IC1, Fig. 3) confirms that the Sahel region was the396

worst hit by the droughts of 1982−1984, which affected West Africa and the continent at large.397

The AMO showed stronger association with SPI in some parts of the Sahel region and Central398

Africa Republic compared to ENSO and IOD (see IC1, Fig. 3 and Table 3). Although this399

specific case study indicates that AMO is more associated with the temporal patterns of SPI400

in much of the Sahel region, extreme wet conditions related to ENSO have also been reported401

in the region (e.g., Paeth et al., 2012; Nicholson et al., 2000). As shown in the SPI temporal402
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Figure 4: Spatio-temporal SPI patterns over West Africa using 12-month gridded SPI values. SPI values are

computed using GPCP-based precipitation product for the period 1979−2014. The variability of the statistically

decomposed SPI values are 17.4%, 7.0%, 6.5%, 5.3%, and 5.1% for IC1, IC2, IC3, IC4, and IC5, respectively.

Actual values for drought classification and categorization with respect to McKee et al. (1993) description are

jointly derived from the localised spatial patterns (right) and their corresponding temporal evolutions (left).

The AMO showed stronger association with SPI over the Sahel region (IC1) compared to ENSO and IOD. The

blue solid line (left) is drought threshold. Hydrological units (rivers, lakes and other water bodies) are also

indicated on the spatial patterns of SPI (blues lines on the right).

patterns (IC1, Fig. 3), 1991, 1998/1999, 2007, and 2010 are instances of wet conditions that403

could be attributed to ENSO events since they coincide with the ENSO years. Over the Volta404

basin, 2010 was extremely wet (IC2, Fig. 3) consistent with the strong amplitudes of TWS in405

the basin (see Section 5.2.1 for more discussion). Although the observed trends in GRACE-406

derived TWS in the Volta basin have been attributed to the influence of Lake Volta due to407

water ponding behind the dam (e.g., Ndehedehe et al., 2017; Ahmed et al., 2014), the wet408

conditions of the late 2007/2008, and 2010 associated with ENSO event (IC2, Fig. 3), resulted409

in water level rise of up to 7 m in 2010 over the lake (see, Ndehedehe et al., 2016a, 2017).410

Strong fluctuations in SPI temporal patterns that coincided with ENSO events have also been411
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highlighted in the Congo basin and some countries of the Guinea Coast (Liberia, Guinea, and412

Sierra Leone) (IC3-IC4, Fig. 3).

Figure 5: Space-time evolution of SPI (i.e., 12 month aggregation) patterns for 2002, 2005, 2010, and 2013

over West Africa. Unlike Figs. 3 and 4 these SPI patterns have not been localised.

413

At the 12 month SPI, the Sahel seems to be extremely wet in 1994/1995, 1998/1999,414

2003/2004, and recently during the 2012 − 2014 period (IC1, Fig. 4). Nicholson et al. (2000)415

reported similar wet conditions for 1988 and 1994 emphasizing a long term change in rainfall416

over the region. Depending on the structural stability, hydraulic conductivity, infiltration, and417

soil water holding capacity of the Sahel (see, Descroix et al., 2009), extreme wet conditions such418

as the 2003/2004 and the 2012 − 2013 period (IC1, Fig. 4) may translate to huge catchment419

storage and inundated areas, leading to increase in TWS (Ndehedehe et al., 2016a). Apart420

from a wider SPI spatial distribution along the Sahel band, it is noticeable that the extreme421

droughts of the 1980’s in the Sahel region (IC1, Fig. 4) persisted a bit longer (1982− 1985) at422

the 12 month aggregation when compared to 6 month SPI (IC1, Fig. 3). Further, the Volta423

basin show wet conditions, for example, in 2010 (IC2, Fig. 4) similar to what is observed in424

the 6 month SPI aggregation (IC2, Fig. 3). The wet conditions of 2007 in Cameroon/Nigeria425

and Congo maybe ENSO-related (IC3 and IC4, Fig. 4), due to the fact that multiple strings of426

El-Niño and La Niña episodes have been reported, for example, in Cameroon and the Congo427

basin (e.g., Molua and Lambi, 2006).428

Lake Volta, a major physiographic feature seated in the southern part of the Volta basin429

derives its nourishment from the Volta river system (comprising the Black Volta, White Volta,430
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Table 3: Correlations between ICA-decomposed SPI-6/SPI-12 month temporal drought evolutions and climate

indices. The correlation coefficient in bold are statistically significant at the 95% confidence level using the

Student T-test.

ICs/Region AMO IOD ENSO

IC1 (Sahel) 0.43/0.62 0.12/0.12 -0.22/-0.22

IC2 (Volta basin) -0.01/-0.01 0.02/0.01 -0.30/-0.30

IC3 (Congo basin/Nigeria) -0.33/0.30 -0.09/0.11 -0.21/-0.14

IC4 (Guinea Coast/Congo) 0.30/-0.17 0.15/0.0 0.18/-0.30

IC5 (Guinea Coast) -0.01/-0.09 -0.01/-0.06 -0.03/0.03

and Oti Rivers). Besides the rainfall in Ghana and the Oti river that also contribute to the431

TWS around the Lake area, the Black and White Volta rivers have their sources in Burkina432

Faso and contribute about 30% of the total annual flow to Lake Volta (e.g., Barry et al.,433

2005). This implies that the magnitude of wet conditions in Burkina Faso, for example,434

during 2012 − 2013 (IC1, Fig. 4) and Ghana for the 2008 − 2009 and 2010 − 2011 periods435

(IC2, Fig. 4) may induce considerable changes in regional hydro-meteorological patterns lead-436

ing to large amplitudes of TWS in the basin. Similarly, as the reservoir system of the Lake437

Volta is naturally connected to the Volta river system (see, Ndehedehe et al., 2017), climate438

teleconnection-induced reductions in rainfall may directly impact on the stream flows of the439

Volta river system, leading to deficits in stored water of the basin. Furthermore, the SPI spa-440

tial evolutions (i.e., without statistical decomposition) were sampled for the April-September441

months when considerable and significant rainfall occur in the region. This was done specifi-442

cally for 2002, 2005, 2010, and 2013. The SPI spatial distribution for the year 2002 (Fig. 5)443

confirms the severe wet and dry conditions previously observed in Ghana and countries in444

the Sahel (IC1-IC3, Fig. 4). The Sahel also show wet conditions in 2010 and 2013 (Fig. 5)445

while Liberia and Sierra Leone indicate extreme drought condition (though 2013 was moderate446

drought) during the same period consistent with IC1 and IC5 of Fig. 4, respectively. Overall,447

the SPI spatial patterns (Fig. 5) are consistent with the ICA-derived spatial evolutions of wet448

and dry conditions (Figs. 3 and 4).449

The association of SPI temporal evolutions (i.e., all the independent components of Figs. 3450

and 4) with climate teleconnections were also evaluated. The temporal evolutions of SPI451

cumulated at 6 and 12 months (Figs. 3 and 4) were correlated with ENSO, AMO, and IOD.452

The results show that AMO is associated with extreme dry and wet conditions in the Sahel453

(i.e., IC1, Figs. 3 and 4), indicating statistically significant (at 95% confidence level) positive454
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correlations of 0.43 and 0.62 with time series of SPI 6 and 12 months aggregations, respectively.455

The correlation results of these climate teleconnections with temporal evolutions of SPI over456

West Africa, which have been summarised in Table 3 also show negative correlations of -457

0.30/0.30 (ENSO), -0.33 (AMO) and positive correlation of 0.30 (AMO) with SPI temporal458

evolutions in the Volta and Congo basin areas (i.e., IC2 and IC3 of Fig. 3 and IC2 and IC4 of459

Fig. 4).460

While ENSO and AMO explain some of the variability in the observed rainfall conditions461

in West Africa, IOD does not show a statistically significant relationship as most correlations462

are relatively weak and statistically insignificant. However, as mentioned earlier, the droughts463

of the 1980’s in the Sahel were attributed to the synergy between the abnormally warm Indian464

Ocean SST and that of the eastern Atlantic, which suppressed rainfall in the Sahel due to465

large scale subsidence in the troposphere (see, Bader and Latif, 2011). Given that IOD is466

a coupled ocean and atmosphere phenomenon mirrored in the the SST data over the Indian467

Ocean (see, Cai et al., 2014; Saji et al., 1999), the impact of SST from the Indian Ocean,468

which is reported to have induced dryer conditions in the Sahel, are usually facilitated and469

induced by an occasionally warmer-than-average SST of the Atlantic Ocean (Giannini et al.,470

2003). Our hypothesis is that such impact, coupled with the association of ENSO and AMO471

on rainfall fluctuations as observed over the region, could be related to changes in TWS over472

West Africa. In Sections 5.2.1 and 5.2.2, such possibilities are further investigated using a473

combination of MLRA, Pearson correlation and statistical decomposition method (i.e., the474

ICA).475

5.2. Terrestrial water storage variability and its association with climate teleconnections476

5.2.1. Relationship between climate modes and deseasonalized TWS changes477

As a result of diversity in local climate in West Africa, which is mostly regulated by478

the movement of the rainbelt and other meteorological processes, similar to rainfall, TWS479

appears to be dominated by annual and semi annual patterns. For example, considerable480

strong annual and semi annual amplitudes of GRACE and MERRA-TWS are mostly found481

in Guinea and much of the Congo basin (i.e., in Gabon and Congo), respectively (Figs. 6a-d)482

where rainfall is mostly annual and bimodal. Also, relatively strong TWS amplitudes of about483

300 mm and more at the annual scale are found in Nigeria, Cameroon, and Central African484

Republic (Fig. 6a), all of which are located in the humid parts of the study area. These485

humid parts of West Africa are mostly characterised by networks of rivers, lakes, and several486

groundwater aquifers (Fig. 1). Essentially, as highlighted in a previous report (Ndehedehe487

et al., 2016a), these TWS amplitudes are induced by a relatively strong annual and seasonal488
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Figure 6: Spatial patterns of annual and semi annual amplitudes of GRACE-derived TWS (2002− 2014) and

MERRA-TWS (1980− 2015) over West Africa using the MLRA.

rainfall patterns, in addition to the presence of surface waters as is the case in the Congo basin489

and Nigeria. Moreover, the annual and semi annual amplitudes of GRACE-TWS (Figs. 6a490

and b) are stronger than those of MERRA-TWS (Figs. 6c and d) probably due to the lack of491

groundwater and surface water component in the MERRA reanalysis data. Reanalysis data492

such as the MERRA-TWS may not be excellent representations of the real system, however,493

they are furnished with numerical weather predictions and observations and are extremely494

useful in circumstances where observations are lacking and insufficient. It is further observed495

that the semi annual amplitudes of TWS dominates the equatorial regions (specifically Gabon496

and Congo) (Figs. 6b and d) while Guinea is the only country with relatively strong annual497

and semi annual amplitudes of TWS (Figs. 6a-c) in West Africa.498

As opposed to the Sahel region, the considerable strong annual and semi annual patterns499

of TWS in the Guinea Coast countries and Congo basin (Figs. 6a-d) confirm that these areas500

are the most favourable hydrological environments. Precipitation in these areas are largely501

seasonal and bimodal, and are driven by numerous factors, such as atmospheric circulation502
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features, mesoscale convective systems, ocean warming, physiographic features, and other503

processes of oceanic inter-annual variability (see, e.g., Hua et al., 2016; Mohino et al., 2011;504

Paeth et al., 2012; Bader and Latif, 2011; Boone et al., 2009; Giannini et al., 2008). In505

Guinea, for example, where GRACE-TWS annual amplitude is the strongest in the region506

(Fig. 6a), topography also play key roles in rainfall variability. Generally, high elevation areas507

in coastal West Africa tend to be characterised by stronger amplitudes of rainfall. While508

the role of topography on hydrological conditions remains a subject for future considerations,509

these rainfall patterns provide significant controls on inter-annual and inter-decadal variability510

in river flows and TWS in the region (see, Ndehedehe et al., 2016a; Conway et al., 2009).511

Interestingly, the groundwater maps of Africa developed by MacDonald et al. (2012) also show512

that these coastal areas of West Africa have higher recharge and the shallowest groundwater-513

levels (i.e., < 7 mgbl) compared to the Central Sahel (50−250 mbgl). While these groundwater514

maps also show that considerable amount of groundwater volumes exists in large sedimentary515

aquifers in North African countries, the distribution of freshwater and the huge water fluxes516

in coastal West Africa (e.g., Andam-Akorful et al., 2017; Ndehedehe et al., 2016a), is generally517

consistent with the amplitudes of TWS indicated in Fig. 6. Major rivers (e.g., the Niger,518

Congo, and the Volta river systems), which drain the region (cf. Fig. 1), in addition to519

the numerous dams and reservoirs (e.g., Kainji, Akosombo, Kindia, Konkoure, etc.) serving520

hydropower purposes are indications of the active hydrological nature of the region. As will be521

highlighted later in the manuscript (Section 5.2.2), the temporal and spatial distributions of522

TWS in these areas are also largely driven by teleconnections amongst other factors, similar523

to rainfall.524

The relationship of climate modes with deseasonalized TWS (i.e., the localised TWS sig-525

nals from the ICA procedure) was examined in the region. As indicated in Fig. 7, the ICA526

technique localises the TWS changes, providing a more meaningful space-time patterns that527

can be associated with physical phenomena. Similar to Ilin et al. (2005) who identified the528

ENSO phenomenon in global climate data (surface temperature, sea level pressure and pre-529

cipitation) using signal separation techniques, the main target here is to identify physically530

meaningful oscillations of the climate system that disturbs the region’s hydrology and impacts531

on freshwater distribution and variability. In order to predict TWS changes in West Africa,532

Forootan et al. (2014) combined the ICA technique with an autoregressive model to statis-533

tically study the physical processes of the region (excluding countries of the Congo basin).534

Whereas they focused on developing a prediction model based on independent temporal series535

of TWS, sea surface temperature and rainfall, the approach in this study identifies indepen-536
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Figure 7: ICA decomposition of GRACE-derived TWS (2002 − 2014) over West Africa after separating the

annual and semi annual cycles (i.e., deseasonalized) using the MLRA. The independent components (left) are

temporal patterns which are unit-less and corresponds to the spatial patterns (right), which have been scaled

using the standard deviation of the computed independent components of GRACE data. The total variabilities

explained by each ICA mode are also indicated. Other hydrological units (rivers, lakes, and groundwater

aquifers) have been indicated on the spatial patterns (blues and magenta lines on the right) associated with the

temporal series of SPI (left)

dent spatial elements of TWS over West Africa (including the Congo basin) with potential537

connections to climate modes. The ICA modes analysed in this study (Fig. 7), however, show538

variability in TWS (spatial patterns) over the Guinea Coast countries and some Sahelian areas539

that compares well with the leading modes of TWS presented by Forootan et al. (2014). In540

addition to this, spatially independent patterns of TWS are also observed over the Congo541

basin area (Fig. 7). ENSO shows a statistically significant negative correlation of -0.40 with542

TWS (IC1, Fig. 7), suggesting that ENSO explains some of the observed variability in TWS543

over the Volta basin and some parts of Nigeria. A coupled association of ENSO and AMO544

in Guinea and Chad is also noticed as they both indicate negative correlations of -0.30 with545

ENSO, while AMO shows weak positive correlations of 0.23 and 0.24, respectively with TWS546

(Table 4). Also, in Gabon, weak correlations of 0.20 and -0.22 for IOD and AMO, respectively547

with TWS (IC6, Fig. 7) are found. The correlation results of the climate teleconnections with548

the temporal evolutions of TWS over West Africa are summarised in Table 4. We do not claim549

any cause-effect relationship in the correlation results of TWS and climate indices. Consider-550

ing that some of the strong peaks (wet or dry) observed in the SPI shown in Figs. 3 and 4551
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(i.e., the SPI orthogonal modes) are climate indices related, the catchments within the Guinea552

Coast and Equatorial regions then become direct recipients of these extreme conditions. In553

the course of time (e.g., 1 year or more), probably owing to hydraulic characteristics of the554

region, the impact of these indices are likely to be reflected in storage conditions. We are555

cautious about this speculation, but Dong et al. (2015), in addition to observing an ENSO-556

induced variance in aquifer water levels in Japan, found that the water level in recharge area557

mainly fluctuates between 1 and 2-year periods. Given that ENSO and AMO were associated558

with drought temporal evolutions in the region (see Section 5.1), their association with TWS559

(Fig. 7) might be expected as rainfall is a major driver of TWS in the region (Ndehedehe560

et al., 2016a). The AMO for instance, shows a correlation of 0.62 with SPI 12 month time561

series while ENSO indicates a statistically significant negative correlation of -0.30 with time562

series of SPI 6 month cumulation.563

Observing more closely, one notes that unlike in the 2002− 2007 period, Liberia and parts564

of Guinea/Ivory Coast/Seirra Leone indicated a considerable high pronounced amplitudes of565

TWS between 2010 and 2013 (IC2, Fig. 7), inconsistent with extreme drought conditions566

during the same period when drought persisted during the 2009 − 2012 period (IC5, Fig. 4).567

Although meteorological patterns in these countries (Guinea/Ivory Coast/Seirra Leone) are568

associated with El-Niño events amongst other factors, large inter-annual variability in annual569

and seasonal rainfall, huge catchment stores, and the cumulative increase in the volume of570

water not involved in surface runoff (Ndehedehe et al., 2016a) are possible reasons for this571

inconsistency. There are indications, nonetheless, that these countries, which also indicate572

the strongest annual amplitude of TWS (Fig. 6a) show the presence of climate-induced TWS573

(Section 5.2.2).574

Besides the observed association of ENSO with TWS in the region, our findings also confirm575

that the development of AMO can also be considered as a factor that could enhance more576

rainfall in the Sahel leading to significant contributions on TWS changes in the region. AMO577

in particular showed the strongest associations with rainfall condition (i.e., 0.43 and 0.62 for578

SPI at 6 and 12 month aggregations, respectively) in the Sahel region (IC1, Figs. 3 and 4).579

Some studies (e.g., Ndehedehe et al., 2016b; Okonkwo, 2014; Mohino et al., 2011) have shown580

that the AMO index explains drought characteristics in the Sahel. Whereas Hodson et al.581

(2010) argued that the AMO played no role in the observed decline in Sahel rainfall, Rodŕıguez-582

Fonseca et al. (2011) however, attributed the decline in Sahel rainfall to the combined effects583

of AMO and global warming SST modes. They also speculated that a change in the AMO584

phase towards the end of the 20th century could have triggered the partial recovery in Sahel585
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Table 4: Correlations between ICA-derived temporal evolutions of TWS and climate teleconnections. The

correlation coefficient in bold are significant at the 95% significant level using the Student’s t-test. The locations

of the observed spatial patterns are also indicated.

ICs ENSO IOD AMO Region

IC1 -0.40 0.10 0.12 Volta basin/Nigeria

IC2 -0.30 0.08 0.20 Liberia/Ivory Coast/Guinea

IC3 -0.30 -0.02 0.23 Guinea/Senegal/Gambia

IC4 0.23 -0.01 0.01 Congo/Central African Republic

IC5 -0.14 0.14 0.19 Nigeria/Cameroon

IC6 0.16 0.20 -0.22 Gabon

IC7 -0.30 0.01 0.24 Chad

IC8 0.30 0.16 -0.14 Congo/Democratic Republic of Congo

rainfall, consistent with Mohino et al. (2011) who had similar conclusions that the partial586

recovery was mainly driven by the AMO. The association of AMO with temporal evolutions587

of SPI over the Sahel region in this study is consistent with Diatta and Fink (2014) who found588

a positive correlation between Sahel rainfall and AMO. Rainfall over the Sahel is enhanced by589

the positive phase of the AMO while in the Gulf of Guinea AMO decreases it (Mohino et al.,590

2011). Consequently, this observed relationship between AMO and localised SPI time series591

(IC1, Figs. 3 and 4) may have implications on TWS variations (especially the soil moisture592

components) and ecosystem performance, probably in complex and non-linear ways that would593

perhaps require further analysis in the future.594

5.2.2. Spatial variability of climate induced TWS595

The spatial patterns of climate induced TWS presented in Fig. 8 are for areas where596

statistically significant (α = 0.05) relationships (TWS vs teleconnections) exist in the region.597

The amplitudes of the relative contributions (i.e., from the spatial patterns) of these climate598

teleconnections on TWS changes were estimated using Eq.8. The amplitudes of GRACE-TWS599

induced by all three climate modes in the equatorial regions (Gabon, Congo, and Democratic600

Republic of Congo-DRC) reached 30 mm for ENSO, AMO, and IOD respectively, (Fig. 8a-c).601

For the long term MERRA-derived TWS, the spatial patterns for all climate-induced TWS602

indicate an amount greater than 30 kg m−2 in the Gulf of Guinea countries and equatorial603

regions (Fig. 8d-f). The contributions of ENSO, AMO, and IOD are somewhat weak in much604

of the Sahel but strong along the coastal West African countries probably due to rainfall605
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distribution patterns, which are modulated by ITCZ and transitions in the rain belt.606

Overall, considerable strong contributions of climate teleconnections to TWS change in the607

region are found mostly in areas with a strong presence of surface water (rivers and lakes),608

sub-surface storage changes (e.g., groundwater aquifers) and annual rainfall (cf. Figs. 1 and609

8d-f). For instance, high rainfall amounts at seasonal and annual scales are prominent drivers610

of TWS changes over West Africa as highlighted in e.g., Ndehedehe et al. (2016a). But the611

river discharge of the lower Congo basin, Lake Volta water level variations, and the Chari-612

Logone river system, which provide approximately 95% of the total input into Lake Chad613

basin, are also major triggers of observed trends and inter-annual variability in TWS. The

Figure 8: Spatial patterns of climate induced TWS derived from GRACE-TWS (a-c) and MERRA-TWS

(d-f). These estimates (amplitudes of TWS) are derived using the MLRA technique. The regression coefficients

indicated for both GRACE and MERRA data are those with statistically significant (α = 0.05) association

with climate indices (ENSO, AMO, and IOD). Groundwater aquifers (magenta), rivers and lakes (blue) have

also been shown on the spatial distribution of climate induced TWS.

614

ENSO-induced amplitude of TWS indicated by GRACE and MERRA are relatively strong615

and have a wider spread over the Volta and Congo basins (Figs. 8a and d) compared to616

the Sahel while the amplitude of AMO-induced TWS show strong presence in much of the617

Guinea Coast areas and the equatorial regions where rainfall is relatively high and bimodal618
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(Figs. 8b and e). Recall that in Section 5.2.1, the temporal evolutions of TWS over the Volta619

basin (IC1, Fig. 7) showed a statistically significant negative correlation of -0.40 with the620

normalised time series of ENSO. This observed relationship is moderate and also coincides621

with the negative correlation of ENSO (i.e., -0.30) with the temporal evolutions of SPI 6 and622

12 months aggregation (see Table 3), indicating that ENSO has an association with rainfall623

conditions and TWS changes over the Volta basin. The ENSO phenomenon has been linked624

to increase in the variability and decline in rainfall totals, causing decline in Lake Volta water625

levels (Owusu et al., 2008). Other regions such as the Congo basin also indicate similar626

association with ENSO, that is, positive correlations of 0.23 and 0.30 with TWS (IC4 and627

IC8, Fig. 7, respectively) and a negative correlation of -0.30 with SPI temporal evolutions628

(IC7, Fig. 7). Besides the associations of ENSO and AMO with rainfall conditions, we also629

found a somewhat weak correlation of IOD (0.20, Table 4) with temporal patterns of TWS630

in Gabon (IC6, Fig. 7, respectively). In addition to the observed relationship of IOD with631

the temporal patterns of TWS in Gabon, the contributions of IOD-induced TWS (GRACE),632

which reached 30 mm (Fig. 8c) may suggest a possible contribution of all three climate modes633

in this sub-region. Coincidentally, the spatial patterns of IOD-induced TWS (GRACE) are in634

the same direction where increasing trend in GRACE-TWS was observed in previous studies635

(Ndehedehe et al., 2016a; Ahmed et al., 2014). However, the magnitude and domain size of636

MERRA-TWS indicates that ENSO and AMO have had stronger impact on the TWS of the637

region during the 1980− 2015 period (Fig. 8d and e) compared to IOD (Fig. 8f).638

The impact of the frequency and strength of IOD on the West Africa’s climate is still639

unclear. Bader and Latif (2011) and Giannini et al. (2003) have argued however, that the640

warming in the Indian Ocean was a major forcing in the observed 1983 drought in the West641

Sahel. Whereas IOD indicates contributions of more than 30 kg m−2/yr in the long term642

MERRA-TWS in east Guinea (part of West Sahel), Côte d’Ivoire, Benin, Nigeria, Liberia,643

and the equatorial regions (mostly Cameroon), it shows weaker contributions in most Sahelian644

areas similar to ENSO and AMO (Fig. 8f). Although possible uncertainties in the MERRA645

data over the region can also limit its capability in quantifying accurately the impacts of IOD on646

TWS, warranting future consideration of inherent uncertainties in the data, Diatta and Fink647

(2014) observed statistically significant negative correlations of IOD (-0.30 and -0.23) with648

rainfall indices at West and Central Sahel areas. Some studies based on model experiments649

and observations (see, Nicholson, 2013, and the references therein) have argued that both650

Indian Ocean warming and SST gradients in the Indian Ocean have considerable influence651

on Sahel rainfall. Even though large scale climatological shifts in the Indian Ocean SST are652
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also the fall-out of other processes of oceanic variability such as the ENSO (Farnsworth et al.,653

2011), the observed drying trend in the West Sahel from the 1950s to the 1990s was attributed654

to the warming trend in the Indian Ocean (see, Bader and Latif, 2003). Put together, this655

may imply a possible signature of IOD in West Africa’s rainfall, in addition to the well known656

connection of AMO and ENSO with rainfall variability in the region (see, e.g., Martin and657

Thorncroft, 2014; Diatta and Fink, 2014; Nicholson, 2013; Paeth et al., 2012; Panthou et al.,658

2012; Nicholson et al., 2000). So far, this study speculates that the mechanism of influence659

of IOD on TWS in the region may be at best complementary. Based on the result shown in660

Fig. 8 and our hypothesis that indices related rainfall impact on catchment storage (especially661

the Gulf of Guinea countries), it is our view, that these indices of climate variability in the662

region, collectively impact on the leading orthogonal modes of TWS (IC1, Fig. 7) in the region,663

exacerbating its variability. Apparently, MERRA-TWS over the Guinea Coast countries show664

statistically significant associations with all climate modes probably due to its long term665

records, which makes it possible to extract complete oscillations in each climate index unlike666

the GRACE data.667

TWS over Gabon and some parts of the Congo basin have relatively strong semi-annual668

patterns (Fig. 6). The presence of strong seasonal rainfall in Guinea Coast countries, Gabon669

and much of the Congo basin also accounts for the observed TWS modes (Fig. 7) and semi670

annual amplitudes (Fig. 6). While non-symmetric meteorological signals (e.g., a strong rise in671

summer rainfall anomalies) may also create considerable peaks in the hydrological time series672

(TWS), much of the equatorial regions (e.g., Congo, Gabon, etc.) have huge water fluxes (e.g.,673

surface runoff) and vegetative cover that show strong sensitivity to rainfall conditions, SST674

anomalies and other perturbations of the nearby oceans. Given that the climate of Gabon is675

tropical in nature, with single wet season between October and May, leading to 200− 250 mm676

of rainfall (see, McSweeney et al., 2010), the strong semi annual amplitude of TWS (Fig. 6b)677

in this area may also be associated with multiple climate modes as shown in Fig. 8a-f. Such678

relationship however, may require further clarification as the records of GRACE observation679

increases.680

Furthermore, ENSO shows a stronger association (especially over the Volta basin, which681

explains the strongest variability in TWS−24.9% (IC1, Fig. 7) with observed TWS changes (see682

Table 4). From all indications, apart from the observed amplitude of AMO TWS (i.e., using683

MERRA-TWS) (Fig. 8e), in much of the Guinea Coast countries, ENSO is more closely related684

to GRACE-TWS changes in the region. This is exemplified in the inter-annual fluctuations of685

TWS of the first three ICA modes, which jointly explained 52.8% of the total variability (i.e.,686
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IC1−IC3, Fig. 7) and showed a much higher association with ENSO (-0.4 and -0.3) compared687

to other climate modes (IOD and AMO). Using GRACE-derived TWS during the 2003−2010688

period, Phillips et al. (2012) observed that in tropical regions, ENSO was negatively correlated689

with TWS, consistent with our observed relationship of the leading TWS modes with ENSO690

(IC1, Fig. 7). In a recent study over West Africa where available water expressed in terms of691

net-precipitation (1979−2010) was analysed using wavelet coherence analysis, decreasing rate692

in available water was highly coupled to a low frequency modulating El-Niño (see, Andam-693

Akorful et al., 2017). Other remarkable footprints of these climate modes in the region are also694

documented. For example, in the Sahel, ENSO, AMO, and IOD were found to have strong695

association with precipitation at periodicity (Okonkwo, 2014). In a study analysing global696

trends and variability in soil moisture and drought characteristics, West Africa is one of the697

areas in the world where inter-annual and decadal variations in soil moisture are driven mainly698

by variabilities in ENSO and AMO (see, Sheffield and Wood, 2008). Considering the results699

in preceding sections (Figs. 3, 4, and 7), hydrological conditions of the Lake Volta, arguably700

have some remote links with ENSO events and aligns with earlier reports (e.g., Owusu et al.,701

2008). Since TWS change over the Volta basin is also significantly driven by variations in Lake702

Volta water levels, the influence of ENSO in the basin presumably exists. For example, even703

after removing the annual and semi-annual components of TWS, the amplitudes of TWS in704

late 2010 and 2012 periods in the vicinity of the Volta basin reached ∼ 200 mm (i.e., jointly705

derived from the temporal/spatial patterns), coinciding with the strong La-Niña events of706

2010−2011 and 2011−2012 (IC1, Fig. 7). Similarly, the hydrological drought of 2001/2002 in707

the Volta basin (e.g., Ndehedehe et al., 2016c; Bekoe and Logah, 2013) is also consistent with708

our observed spatio-temporal fluctuations of wet/dry conditions (IC2, Figs. 4 and 5). The709

hydrological drought during this period (2001 − 2002) resulted in one of the lowest negative710

anomalies (i.e., ∼ −200 mm when jointly derived from the first ICA mode of Fig. 7) observed711

in GRACE-derived TWS in the Volta catchment since inception of GRACE observations.712

Although the observed drought of 2001/2002 in the region remains the general signature of713

climate variability rather than the influence of these specific climatic indices, it nonetheless,714

gives credence to our hypothesis that the impact of extreme rainfall fluctuations leads to715

increased or decreased catchment storage in the region.716

Based on the premise that drought conditions are primarily the result of precipitation717

deficits, and can lead to reduced recharge of the soil column (Sheffield and Wood, 2008), then718

this assumption holds. On the contrary, catchment characteristics, land use change, changes in719

temperature, and other meteorological and ecological processes can interact in complex ways720
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that accentuates TWS variations in the region. For instance, during periods of precipitation721

deficits in Niger (Sahel region), an extensive network of well observations showed that ground-722

water levels and water table increased significantly due to land clearing and land use change723

(see, Favreau et al., 2009; Séguis et al., 2004; Leduc et al., 2001). Similar complex hydrological724

processes were reported for south-east Australia and south-west US (see, Scanlon et al., 2005;725

Allison et al., 1990). Although the influence of non-climatic factors (e.g., shrub removal) on726

hydrological changes remains unclear in central Texas (see, Wilcox, 2007), Cattle trampling727

and timber harvesting triggered an evolution of runoff regime in northern Mexico (see, Vi-728

ramontes and Descroix, 2003), confirming the influence of human activities on hydrological729

changes. The Sahel is a semi-arid ecosystem and one would naturally expect water availability730

through rainfall and soil moisture as major hydrological indicators of ecosystem performance.731

But Seghieri et al. (2012) found that a decrease in temperature was the strongest predictor of732

both leafing and reproductive phenophases in the Sahel. Collectively, these are some indica-733

tions that the impact of non-climate teleconnection factors on hydrological processes exists in734

the region, especially the Sahel and other semi-arid regions.735

From the foregoing, nonetheless, our presumptive evidence, is that ENSO (i.e., depending736

on the phase) impacts more on TWS in West Africa and leads to strong changes in surface737

and sub-surface storage (i.e., at seasonal scales). The analyses in this study also show a738

strong presence of AMO TWS in the coastal West African countries and much of the regions739

below latitude 10◦N (Fig. 8e). As noted over the Sahel, positive phase of AMO coincides740

with above-normal rainfall or wet conditions and the negative phase with drought conditions741

(IC1, Figs. 3 and 4). This could be an evidence that corroborates the strong presence of742

AMO-driven TWS in the region as shown in Fig. 8e. However, considering the rather weak743

correlations of these climate modes with the localised time series of the leading GRACE-TWS744

modes, there might be indication that other low frequency climate oscillations combined with745

the influence of atmospheric circulations may be related to TWS over the region. The study746

is cautious in this regard but affirms that as the records of GRACE observation increases, this747

physical mechanisms and others can be investigated much more systematically with clarity748

and simplicity.749

6. Conclusions750

The presence of climate teleconnection (i.e., ENSO, AMO, and IOD) induced TWS changes751

derived from GRACE and MERRA over West Africa was studied using a suite of statistical752

techniques. The leading spatio-temporal modes of TWS and extreme rainfall anomalies (wet753
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and drought events) were identified and their possible relationship to climate teleconnections in754

the region were examined using correlation analysis. The results of the study are summarised755

as follows:756

(i) The leading modes of SPI at 6 and 12 month aggregation indicating extreme drought/wet757

conditions coincided with extreme low/high amplitudes of TWS during the same period, giving758

credence to our hypothesis that the impact of extreme rainfall fluctuations leads to increased or759

decreased catchment storage in the region. While it is generally expected that large anomalies760

in rainfall are likely to generate low/high values of SPI (drought or wet conditions), leading to761

large anomalies in TWS (extreme low/high amplitudes), it is sometimes not usually the case762

for areas where water availability is also driven by temperature and in ecosystems where human763

activities (e.g., land clearing) have modified the land surface and soil characteristics. These764

scenarios, which result in complex hydrological processes (e.g., increasing water table during765

periods of strong precipitation deficits) have been highlighted in previous reports in the Sahel766

region and are few exceptions to the above argument. AMO and ENSO noticeably explains767

some of the variability in the observed SPI over the Sahel and the equatorial regions, sug-768

gesting that these teleconnections also play key roles in the characteristics of extreme climatic769

conditions in the region.770

(ii) While ENSO appears to be more associated with TWS in the region and shows a771

statistically significant correlation with the observed temporal patterns of TWS, our analysis772

here also show a strong presence of AMO induced TWS in the coastal West African countries773

and much of the regions below latitude 10◦N. The AMO has a wider footprint and sphere of774

influence on the region’s TWS and suggests the important role of North Atlantic temperature775

in the region. Its association with temporal evolutions of SPI may have implications on TWS,776

especially in the semi-arid regions, though in complex ways, that requires further investigation.777

There are also statistically significant relationships between TWS and teleconnections (ENSO,778

AMO and IOD) in much of the Sahel region. Nonetheless, the contribution of the latter to779

TWS in the Sahel is considerably weak and maybe related to the rainfall structure of the780

region.781

(iii) The impacts of IOD on the Western African hydrology appears to be unclear but782

shows statistically significant contribution to the long term MERRA-TWS for the countries783

along the coast and coincided with observed fluctuating drought conditions observed between784

2005 and 2012 in eastern Guinea and Liberia. Global climate simulations in which IOD-like785

SST anomalies are imposed could help to clarify the role of IOD on the region’s TWS and can786

be taken into consideration in future studies. Although this study confirmed the existence of787
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IOD-induced TWS in the region, which at best may be complimentary, TWS over much of788

West Africa and countries of the Congo basin are more likely to be influenced by ENSO and789

AMO events.790

(iv) As some areas in the Sahel show strong AMO contributions to GRACE-TWS compared791

to the observed weak AMO-related MERRA-TWS, there are possibilities of false associations792

of GRACE-TWS with teleconnections (especially AMO) probably due to the limited time span793

of GRACE observations. However, the rather weak correlations of these climate modes with794

localised time series of GRACE-TWS, may also give the impression that other climate oscilla-795

tions and atmospheric circulations could be associated with TWS changes in the region. The796

study is rather cautious in this regard but optimistic that as the records of GRACE observa-797

tion increases with time, these physical mechanisms and others can be investigated much more798

systematically with clarity, simplicity, and very limited uncertainties. A robust analysis to help799

examine specific zones of global SSTs that impacts on TWS amplitudes over West Africa could800

provide more insights into the relationship between TWS and climate teleconnections and will801

be the subject of future considerations.802
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Losada, T., Rodŕıguez-Fonseca, B., Janicot, S., Gervois, S., Chauvin, F., and Ruti, P. (2010).997

A multi-model approach to the Atlantic Equatorial mode: impact on the West African998

monsoon. Climate Dynamics, 35(1):29–43. doi:10.1007/s00382-009-0625-5.999

MacDonald, A. M., Bonsor, H. C., Dochartaigh, B. E. O., and Taylor, R. G. (2012). Quan-1000

titative maps of groundwater resources in Africa. Environmental Research Letters, 7.1001

doi:10.1088/1748-9326/7/2/024009.1002

Malhi, Y. and Wright, J. (2004). Spatial patterns and recent trends in the climate of tropical1003

rainforest regions. Philosophical Transactions of the Royal Society of London, 359:311329.1004

doi:10.1098/rstb.2003.1433.1005

Martin, E. R. and Thorncroft, C. D. (2014). The impact of AMO on the West African1006

monsoon annual cycle. Quarterly Journal of the Royal Meteorological Society, 140:31–46.1007

doi:10.1002/qj.2107.1008
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