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Abstract 
 

Climate models generally indicate that climate volatility may rise in the future, severely 
affecting agricultural productivity through greater frequency of yield-diminishing climate 
extremes, such as droughts. For Tanzania, where agricultural production is sensitive to climate, 
changes in climate volatility could have significant implications for poverty. This study assesses 
the vulnerability of Tanzania’s population to poverty to changes in climate variability between 
the late 20th Century and early this century.  Future climate scenarios with the largest increases 
in climate volatility are projected to make Tanzanians increasingly vulnerable to poverty through 
its impacts on staple grains production, with as many as 90 thousand additional people, 
representing 0.26 percent of the population, entering poverty in the median case.  Extreme 
poverty- increasing outcomes are also found to be greater in the future under certain climate 
scenarios. In the 20th Century, the greatest predicted increase in poverty was equal to 880 
thousand people, while in the 21st Century, the highest possible poverty increase was equal to 
1.17 million people (approximately 3.4 percent of the population). The results suggest that the 
potential impacts of changes in climate volatility and climate extremes can be significant for 
poverty in Sub-Saharan African countries like Tanzania. 
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1. INTRODUCTION 
 

There is substantial evidence that the mean and extremes of climate variables have 
been changing in recent decades, and that rising atmospheric greenhouse gas concentrations 
could cause those trends to intensify in the coming decades (Diffenbaugh et al, 2005; Easterling 
et al, 2000; IPCC, 2007). These changes are particularly important for agriculture (Lobell et al, 
2008; White et al, 2006; Mendelsohn et al, 2007) and therefore also have critical implications for 
developing countries, both because the majority of the poor reside in rural areas where farming 
is the dominant economic activity and also because the poor may spend as much as two-thirds 
of their income on food (Cranfield et al, 2003). 
  
 The importance of agriculture to the poor is particularly true for Tanzania, where 
agriculture accounts for about half of gross production, and employs about 80 percent of the 
labor force (Thurlow and Wobst, 2003). Agriculture in Tanzania is also primarily rain-fed, with 
only two percent of arable land having irrigation facilities – far below the potentially irrigable 
share (FAO, 2009). Tanzanian yields, especially of staple foods like maize, are particularly 
susceptible to adverse weather events. This threat has been recognized by policy makers, with 
Tanzania’s National Strategy for Growth and Reduction of Poverty identifying droughts and 
floods as among the primary threats to agricultural productivity and poverty vulnerability. 
 
 There is a substantial literature examining the effects of climate change on food security 
in developing countries (see review by Dinar et al, 2008). For example, Lobell et al (2008) used 
statistical models to assess the potential impacts of future changes in the mean climate state on 
crop production. In addition, Battisti and Naylor (2009) used historical examples to highlight the 
significant impact that changes in the frequency of heat stress may have on agricultural output. 
In both cases, analyses of food insecurity are driven by inferred declines in food supply. 
However, food insecurity and famines are influenced by forces that constrain people’s access to 
food, and not just its availability (Sen, 1981; Schmidhuber and Tubiello, 2007).  

 
One such force is food prices, which have seen considerable volatility in recent years, 

and which is estimated to have increased poverty by 105 million people during the recent food 
price crisis of 2005-2008 (Ivanic and Martin, 2008). Recently, Ahmed et al (2009) provide 
evidence through a cross-country analysis that extreme climate events which reduce agricultural 
productivity can severely increase poverty in Sub-Saharan African countries. Climate induced 
changes in agricultural productivity thus may have severe implications for poverty through price 
and income effects. However, the link between climate variables and agricultural yields in this 
earlier work was based on simple extrapolation and lacked a tight connection between the two 
sets of variables. 

 
Understanding the effects of climate volatility on crop production and food prices is thus 

critical to understanding the potential impacts of future climate change on poverty. However, 
few studies have focused on the economic effects of changes in the volatility of climate 
variables and the impacts on the poor. Thus, despite its expected significance for developing 
countries like Tanzania, the effects of changes in climate volatility on agriculture and 
development are not well-understood.   

 
This paper thus fills an important gap in the literature by developing a quantitative 

framework that permits us to examine the vulnerability of Tanzania’s population to 
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impoverishment due to interannual climate variability that affects agricultural productivity, both 
in recent history as well as in the near future1. The next section describes the poverty profile of 
Tanzania, while section 3 provides details of climate volatility and agricultural variability 
between 1971 and 2031. Section 4 subsequently analyzes Tanzania’s poverty vulnerability, while 
section 5 concludes. 
 

2. POVERTY PROFILE OF TANZANIA 
 

Following the approach of Hertel et al (2004), the population as a whole can be divided 
into seven distinct strata, reflecting the pattern of household earnings specialization: 
Agricultural self-employed (more than 95 percent of income from farming), Non-Agricultural 
(more than 95 percent of income from non-agricultural self-employment), Urban Labor (more 
than 95 percent of income from wage labor), Rural Labor (more than 95 percent of income from 
wage labor), Transfer dependent (more than 95 percent of income from transfer payments), 
Urban Diverse, and Rural Diverse. As determined by the Household Budget Survey 2000/01, 
there were 12.3 million Tanzanians living below the national poverty line in 2001 (NBS, 2002)2.  

 
Table 1 reports some key estimates of the structure of poverty in Tanzania, based on Tanzania’s 

national poverty line and the 2001 household survey (NBS, 2002). The rows in this table 
correspond to the seven strata and are therefore exhaustive of the Tanzanian population. The 
first column reports the poverty headcount rate in each stratum. This shows that the overall 
poverty headcount in Tanzania was about 36 percent.  The estimated headcount rate was 
highest in the agriculture-specialized stratum (68 percent), followed by the transfer-dependent 
households (56 percent), the rural diversified stratum (51 percent) and then rural labor, urban 
diversified, non-agriculture self-employed and urban labor.  Based on these figures, it is not 
surprising that the agriculture, transfer and rural diversified households all account for a larger 
share of the total poor in Tanzania (column II) than in the total population (column III). Taken 
together, the agricultural specialized and rural diversified households account for about 60 
percent of total poverty in Tanzania. 
 
Table 1: Socioeconomic Distribution of Tanzania by Earnings Based Stratum (in percent) 

Stratum 
Stratum Poverty 

Rate 
Share in 

Total Poverty 
Share in 

Total Population 

 I II III 

Agriculture 68.79 29.95 15.54 

Rural Labor 24.15 0.74 1.09 

Rural Diversified 51.43 30.34 21.05 

Non-Agriculture 23.71 10.02 15.08 

Urban Labor 12.24 3.40 9.91 

Urban Diversified 23.24 23.44 35.99 

Transfers 56.01 2.11 1.35 

National 35.68 100.00 100.00 

Source: Authors’ estimates based on data from NBS (2002) 

                                                 
1
 Henceforth referred to as poverty vulnerability. 

2
 The national poverty line is the basic needs poverty line defined in the Household Budget Survey 

2000/01 (NBS, 2002), and is TShs 7253 (2001) without correcting for Purchasing Power Parity. 
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From Thurlow and Wobst (2003), we know that grains are among the most important 
crops for impoverished Tanzanian households, both from an earnings and a consumption 
perspective. Volatility in the productivity of the grains sector will thus have different poverty 
implications for each of the seven strata of Tanzania’s poor. For example, a drought will reduce 
agricultural productivity, and push up food prices. To a first-order approximation, whether a 
particular household gains or loses real income from this change depends on whether it is a net 
buyer or seller of the commodity. Higher prices will clearly push up the cost of living at the 
poverty line for non-agricultural households. However, the degree to which this will occur 
depends on what happens to the wages earned by these households. Given the labor intensity 
of agriculture in Tanzania, any shock to agriculture is likely to have an impact on unskilled wages 
in the economy. 

 
It is thus difficult to ascertain, in the absence of more specific knowledge of the 

situation, how climate volatility affects poverty, and empirical methods are necessary. For a 
comprehensive analysis of the poverty implications of prospective climate volatility changes 
over the course of the 21st Century, we have developed an analytical framework that 
incorporates climate variables, analyses of crop production, and economy-wide, market 
equilibria, as described in the following section. 
 

3. CLIMATE VOLATILITY AND AGRICULTURAL PRODUCTIVITY 
 
The analytical framework used in this paper relies on several empirical methods 

implemented in sequence in order to shed light on the sensitivity of poverty in Tanzania to 
changing climate volatility. The first step in this process involves understanding how the 
distributions of key climate variables – temperature and precipitation – are likely to change in 
the future, and what those changes imply for the distribution of interannual agricultural 
productivity changes. In this study, we are particularly interested in climate volatility as reflected 
in the magnitude of year-on-year changes in productivity. 

 
We draw on Phase 3 of the Coupled Model Intercomparison Project (CMIP3) archive of 

Global Circulation Model (GCM) experiments (Meehl et al, 2005) to obtain Tanzania’s nationally 
averaged precipitation (in mm/day) and temperature (in °C) data by month, for the years 
between 1971 and 2031. These data are drawn from an ensemble of 22 different GCMs. The 
period 1971-2001 characterizes the late 20th Century, while the period 2001-2031 characterizes 
the early 21st Century (under the SRES A2 emissions scenario).  These data are aggregated to 
provide monthly average precipitation and temperature data series over the January-June 
growing season for grains, which are then recalibrated so that their mean and standard 
deviations in the historical period match those of the observed data3. 

 
Several important insights may be obtained by analyzing the bias-corrected growing 

season temperature and precipitation data for Tanzania between the two time periods and 
across the 22 GCMs. All the models agree that the average January-June growing season 
temperatures in the early 21st Century are going to be higher than in the 20th Century should 
greenhouse gas concentrations continue to rise (column III of Table 2), with the growing season 
average temperature increasing by 0.2 to 1.11 °C across the 22 GCMs (°C differences in 
parentheses). In a similar vein, most models agree that the average growing season 

                                                 
3
 Please see Appendix A for details on bias-correction. 
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precipitation will also be higher (column IV of Table 2). When it comes to the question of 
changes in their volatility – measured as the standard deviation across the period’s time series – 
the models are found to agree less on temperature and not at all on precipitation (columns VI 
and VII of Table 2).  

 
In order to capture the bounds of the GCM-based climate projections in the subsequent 

analyses of agricultural productivity and poverty vulnerability, we identify the GCMs that exhibit 
the greatest and smallest changes in climate volatility. GCM02 is found to display both the 
greatest increase in precipitation volatility and the largest decrease in temperature volatility. 
GCM 06 and GCM 08 exhibit the greatest increase in temperature volatility and the largest 
decrease in precipitation volatility, respectively.  
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Table 2: Difference between Climate in Tanzania in the Late 20th and Early 21st Centuries as 
Determined by the Period Average and Standard Deviation Values of Bias-Corrected 
Temperature and Precipitation by GCM. 

GCM 
Name 

GCM 
Code 

Percent Difference in the Average 
Value in the 21

st
 Century from the 

Average Value in the 20
th

 Century 
(%) 

Percent Difference in the Standard 
Deviation in the 21

st
 Century from 

the Standard Deviation in the 20
th

 
Century (%) 

  

Bias-
Corrected 
Average 
Monthly 
Growing 
Season 
Temp. 

Bias-
Corrected 
Average 
Monthly 
Growing 
Season 
Precip. 

Annual 
Average 
Grains 
Yield 

Average 
Monthly 
Growing 
Season 
Temp. 

Average 
Monthly 
Growing 
Season 
Precip. 

Annual 
Average 
Grains 
Yield 

I II III IV V VI VII VIII 

bccr_bcm2_0 01 1.20 (0.27) 7.21 11.72 -21.46 -4.54 -11.90 
cccma_cgcm3_1 02 1.68 (0.38) 20.86 15.81 -29.40 28.09 3.28 

cccma_cgcm3_1_t
63 

03 3.52 (0.80) 11.11 6.78 4.72 1.97 5.05 

cnrm_cm3 04 3.52 (0.80) 1.99 3.17 43.29 24.37 34.21 
csiro_mk3_0 05 1.17 (0.26) 3.38 10.28 37.60 14.45 18.72 
gfdl_cm2_0 06 2.67 (0.60) 11.02 9.12 45.14 12.28 19.04 
gfdl_cm2_1 07 1.72 (0.39) 0.12 7.46 -14.89 -19.68 -17.91 

giss_aom 08 3.82 (0.86) 3.14 2.78 -8.07 -28.34 -22.84 
giss_model_e_h 09 3.69 (0.83) 6.06 4.31 31.72 16.43 21.61 
iap_fgoals1_0_g 10 1.70 (0.38) 0.32 7.59 -6.40 -7.60 -2.74 

ingv_echam4 11 2.13 (0.48) 1.89 7.00 -8.90 7.47 5.07 
inmcm3_0 12 3.53 (0.80) 11.12 6.76 9.87 6.87 -23.27 
ipsl_cm4 13 3.34 (0.76) 5.13 4.91 10.33 0.93 9.69 

miroc3_2_hires 14 4.90 (1.11) 8.12 1.75 19.35 7.07 5.06 
miroc3_2_medres 15 2.33 (0.53) 3.74 7.18 26.51 1.31 -14.85 

miub_echo_g 16 1.71 (0.39) 1.81 8.15 -3.58 -15.23 -7.32 
mpi_echam5 17 0.88 (0.20) -1.74 9.06 25.84 -6.18 1.50 

mri_cgcm2_3_2a 18 1.99 (0.45) -1.26 6.15 32.97 -8.10 -0.11 
ncar_ccsm3_0 19 4.07 (0.92) 17.18 7.67 4.21 -10.38 -25.56 

ncar_pcm1 20 2.80 (0.63) -0.64 4.14 -5.64 -18.57 -13.84 
ukmo_hadcm3 21 2.01 (0.45) -10.42 2.46 -2.98 -10.95 -16.56 

ukmo_hadgem1 22 3.20 (0.72) -4.54 1.47 29.98 -14.63 -4.58 

Average  2.62 (0.59) 4.35 6.62 10.01 -1.04 -1.74 

Average Absolute  2.62 (0.59) 6.04 6.62 19.22 12.06 12.94 

Sign Consistency  1.00 0.72 1.00 0.52 -0.09 -0.13 

Source: Authors’ estimates and processing of Meehl et al (2005)  
Note: Sign consistency is the ratio of the average to the average of absolute values and is 
bounded by -1 and +1. A value of 1.0 indicates that the models all agree that the variable in 
question will rise, and conversely for a sign consistency measure of -1.0. The numbers in 
parentheses in column III indicate the difference in growing season average temperature 
between the 20th Century and 21st Century in °C. 



7 

 

Climate data from these series alone, however, are insufficient to tell us how variability 
in agricultural productivity will change, and we must empirically determine the crop productivity 
response to temperature and precipitation. A widely used statistical approach is the Ricardian 
technique pioneered by Mendelsohn et al (1994). This approach has been applied to examine 
the impact of climate change on African agriculture – albeit not for Tanzania –  as reviewed in 
Dinar et al (2008), and in various other studies (see Kurukulasuriya et al 2006; Kurukulasuriya 
and Mendelsohn, 2007). The Ricardian approach takes advantage of climate variation across 
space to estimate the impact of decadal-scale climate outcomes on land rents, crop value or 
production in a given year. It presumes that the “Ricardian” returns to land have adjusted to 
reflect differences in climate across locations. 

 
However, in order to quantify poverty vulnerability to volatility, our study focuses on 

changes in temperature and precipitation that occur on interannual time-scales – a period over 
which farmers do not have the ability to anticipate or significantly adapt to climate variations. As 
such, if we used Ricardian estimates of crop responses to analyze interannual volatility, we 
would be inappropriately applying estimates of farm responses to gradual climate changes in 
our analysis of short run variation in temperature and precipitation. Hence, a time series 
estimation of crop yields with annual temperature and precipitation among the explanatory 
variables (e.g. Lobell et al, 2006, 2008) is deemed more appropriate. 

 
To that end, monthly climate data from the CRU TS 3.0 dataset (CRU, 2008) were used in 

linear regression models to analyze the relationship between mean temperature (°C) and 
precipitation (mm/month), and crop yields for several grains. This analysis was done at the sub-
national level, more specifically at the administrative region level from 1992 to 2005. The 
climate data were also adapted to the growing season calendar as provided by the Famine Early 
Warning Systems NETwork (FEWS NET, 2008). Based on this calendar, we used a single growing 
season for maize, sorghum, and rice4, extending from January to June. Thus, for each year, the 
0.5° gridded climate data were averaged temporally over this 6-month period and spatially for 
each administrative region. 
 

For each crop, data on harvested area and production from the Tanzanian Ministry of 
Agriculture as well as from Agro-MAPS (Monfreda et al, 2009) were compiled for each of the 17 
regions and converted to yields (tonnes/ha).  These data were available from 1992 to 2005. 
Forward stepwise multiple linear regression models were developed for each of the three crops 
linking yields to mean temperature and precipitation while accounting for temporal trends. 
Inclusion of higher order terms (e.g., temperature squared) would be appealing but is not 
supported by the limited availability of the time series data. A few observations were removed 
from analysis as they presented highly unlikely yield values. Moreover, harvested areas were 
used as weights in the fitting process.  

 
The analysis finds that when considering a yields as functions of climate and time trends 

(where significant), the temperature coefficients are negative, while the coefficients for 
precipitation are positive (Table 3). Coefficients on both climate variables are highly significant 
in all models. That is, rising temperatures will put downward pressure on grains yields, while 
rising precipitation will enhance yields.  An increase in average growing season precipitation by 
one mm/month is enough to increase maize and rice yields by 0.005 tonnes per hectare, and 

                                                 
4
 Selected due to reliable production data availability, representing 93 percent of cereals production (FAO, 

2009) 
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sorghum yields by 0.002 tonnes per hectare. Temperature has the smallest effect on sorghum 
yields (coefficient of -0.07 tonnes per hectare) and the greatest on rice yields (coefficient of -
0.28 tonnes per hectare). The effect on maize yield of roughly 12 percent loss per °C is 
consistent with estimates of 10 percent in the literature for Sub-Saharan Africa (e.g. Jones and 
Thornton, 2003). The rice and sorghum sensitivities represent roughly 17 percent and 7 percent 
loss per °C, respectively. Time trends are significant only in the rice yield function, where they 
are significant and positive suggesting the presence of ongoing technological progress. 
 
Table 3: Estimation Results for Tanzanian Grains Yield Functions; Dependent Variable is Yield 
(tonnes/hectare) 

Coefficients Maize Rice Sorghum 

Intercept 4.5705 
(9.245) 

-87.5692 
(-4.111) 

2.2699 
(6.345) 

Year  0.0476 
(4.402) 

 

Precipitation (mm/month 
average for Jan-June 

growing season) 

0.0048 
(5.597) 

0.0049 
(4.166) 

0.0021 
(3.909) 

Temperature (°C average 
for Jan-June growing 

season) 

-0.1656 
(-7.364) 

-0.2817 
(-7.318) 

-0.0673 
(-4.062) 

Adjusted R-Squared 0.209 0.181 0.074 

Source: Authors’ estimates 
Note: The t-statistics are in parentheses and all estimates are significant at least at the 0.01 level 
of confidence. 
 

We can now apply climate data to the coefficients estimated to determine climate-
instrumented interannual variation in yields for each of the three grains under consideration. In 
addition to climate data based on the average of the values across the 22 sets of GCM results, 
we also quantify the envelope of yield predictions using output from GCM 02 (greatest increase 
in precipitation volatility and largest decrease in temperature volatility), GCM 06 (greatest 
increase in temperature volatility), and GCM 08 (largest decrease in precipitation volatility). The 
aggregate grains5 yield series associated with each climate series is then obtained by taking the 
weighted average of the yields across the three crops, with the weights being the 2001 
harvested area shares obtained from FAOSTAT (FAO, 2009). 

 
 In contrast to the exception of the grain yield series based on GCM 08, the predicted 
yield series from GCM 02 and GCM 06 exhibit higher volatility in the 21st Century compared to 
the volatility in the 20th Century (columns VIII, Table 2). Figure 1 illustrates these series, whose 
interannual differences we will now implement in our economic simulation analysis to 
determine poverty sensitivity to climate in Tanzania. 

 

                                                 
5
 These three crops collectively proxy for the grains sector that we use in our CGE analysis, aggregated 

from the Paddy Rice, Wheat, and Other Grains GTAP sectors. Details on how the maize, rice, and sorghum 
yields are aggregated to grains can be found in Appendix A. 
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Source: Authors’ processing of Meehl et al (2005) and CRU TS 3.0  
Figure 1: Predicted Grains Yields in Tanzania for the period 1971-2031 Explained Solely by Bias-
Corrected Climate Data and Historically Observed Climate6 
 

4. POVERTY ANALYSIS 
 

4.1 SIMULATION FRAMEWORK 
 
We are now in a position to analyze the poverty impacts of the interannual productivity 

change distributions of the late 20th Century and the early 21st Century. In order to estimate the 
changes in consumer prices and earnings stemming from changes to agricultural productivity 
due to climate effects, we employ a widely used computable general equilibrium economic 
simulation model.  

 
We begin with the GTAP Database Version 6 (Dimaranan, 2006) and use this with a 

modified version of the standard GTAP model (Hertel, 1997). We retain the empirically robust 
assumptions of constant returns to scale and perfect competition, and introduce factor market 
segmentation which is important in countries where the rural sector remains a dominant source 
of poverty following the methodology of Keeney and Hertel (2005). Farm and non-farm mobility 
of factors are restricted by specifying a constant elasticity of transformation function which 
“transforms” farm employed versions of labor and capital into non-farm uses and vice-versa. 
This allows for persistent wage differences between the farm and non-farm sectors, and is the 
foundation of the intersectoral distributional analysis. In order to parameterize these factor 
mobility functions we draw on the OECD’s (2001) survey of agricultural factor markets. We 
assume a constant aggregate level of land, labor, and capital employment reflecting the belief 
that the aggregate supply of factors is unaffected by climate change. 

                                                 
6
 Please see electronic version for color image 
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The model is also adjusted to distinguish between lands with different biophysical 
characteristics, following the approach of Hertel et al (2009a), distinguishing land by Agro-
Ecological Zone (AEZ), based on the data of Lee et al (2009) and Monfreda et al (2009). The 
model is then calibrated such that simulations of estimated historical productivity volatility of 
Grains for the 1971-2001 period replicate observed historical price volatility7. 

 
 In order to link price changes in the CGE model to poverty, we use the household model 

of Hertel et al (2004) to examine households in the neighborhood of the poverty line. That study 
used the AIDADS (An Implicitly Directly Additive Demand System) consumer demand system of 
Rimmer and Powell (1996) to determine household consumption and the household’s maximum 
possible utility for a given set of prices and income.  For poverty analysis, the utility of the 
household at the poverty line is then defined as the poverty level of utility. If an adverse climate 
shock pushes households’ utility below this level, they enter poverty. Conversely, if they are 
lifted above this level of utility, they are no longer in poverty.  

 
The framework of Hertel et al (2004, 2009b), and that which this paper adopts, uses the 

AIDADS system to represent consumer preferences. This choice is based on AIDADS’ strength in 
capturing food expenditure patterns across the income spectrum (Verma et al, 2009), and for its 
ability to perform well out of sample when compared to other demand systems (see Cranfield et 
al, 2002, 2003)8. Reflecting its suitability for poverty analysis is that AIDADS devotes two-thirds 
of its parameters to characterizing consumer behavior at very low levels of income. Estimation 
of this demand system is undertaken using the 80 country, per capita consumption data set 
offered by Version 6.1 of the GTAP database, also following Hertel et al (2004). For each 
commodity, we have estimates of subsistence quantities of consumption, from which we may 
infer (for average prices), budget shares at the subsistence level of income. 
 

The poverty line in Tanzania is set to match the observed national poverty headcount 
ratio reported by the World Bank (2006) and this in turn dictates the poverty level of utility in 
the initial equilibrium.  So, in the wake of a change in climate, commodity prices and wages will 
adjust, household incomes will change, as will the consumption profile of households at the 
poverty line, thereby resulting in new utility level. If household utility rises above the poverty 
level of utility, then it is lifted out of poverty. Conversely, if the household utility level falls below 
the poverty utility threshold, then it has become impoverished. 

 
Equations (1) to (3) describe how the model can then be used to predict the change in 

the national poverty rate – the percentage of the population living below the poverty line in 
2001 – in percentage points of poverty. Equation (1) details how we compute the percentage 

change in the poverty headcount ratio in Tanzania, rĤ , in the wake of a shock to the prices and 

wages in the economy (Hertel et al, 2009b):  
 

 p p p

r rs rs rsj rj r

s j

ˆˆ ˆH =- Θ ε Ω W -C         EQ (1) 

 
The term in parentheses on the right hand side of the equation reports the change in 

the real after tax wage rate for endowment j in region r (Tanzania in this case),  by deducting the 

                                                 
7
 Please see Appendix B for details of model calibration 

8
 Please see Appendix C for details of AIDADS formulation and parameterization. 
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percentage change in the cost of living at the poverty line, p

rĈ , from the percentage change in 

the after-tax p

rjŴ . This real earnings term is pre-multiplied by three important poverty-

parameters which deserve additional discussion9.  
 

The first, p

rsjΩ , is the share of earnings type j in total income of households in the 

neighborhood of the poverty line in stratum s of Tanzania. By definition, the earnings shares in a 
given stratum sum to one and serve to determine the impact of a change in wages on household 
income. For example, if there is a 10 percent increase in the wages of unskilled agricultural 
labor, and imputed unskilled wages represents 70 percent of the agricultural stratum’s 
household income in the neighborhood of the poverty line, then this wage rise will contribute 7 
percent (0.70 * 10 percent) to the stratum’s income change at the poverty line.   

 
As seen in this simple example, implementation of equation (1) requires mapping factor 

earnings in the general equilibrium model (e.g., agricultural unskilled wages) to income sources 
obtained from the household survey (imputed returns to self-employed unskilled labor in 
agriculture). In the micro-simulation analysis, self-employed agricultural labor and capital 
receive the corresponding farm factor returns from the general equilibrium model, as do non-
agricultural labor and capital. Wage labor for diversified households reported in the surveys 
presents a problem because information is lacking to assign it to a specific industry. Accordingly, 
we apply the composite wage for skilled or unskilled labor determined by the general 
equilibrium model in these respective labor markets. Finally, transfer payments are indexed by 
the growth rate in net national income.  

 
Summing over the share-weighted change in factor returns yields the total real income 

change for households in the neighborhood of the poverty line for a given stratum-region 
combination. The real cost of living at the poverty line is obtained by solving the demand system 
for the level of income required to attain the poverty level of utility, given a vector of prices. By 
solving this for the initial consumer prices and then for the post-exogenous shock prices, we can 
obtain the change in the cost of living at the poverty line, taking into account price-induced 
changes in the mix of goods and services consumed.  
  

The ensuing change in real income is, in turn, multiplied by the second class of 

parameters in (1): rsε . This is the estimated elasticity of the stratum-specific poverty headcount 

( rsH ) with respect to income which is obtained by evaluating the density of the stratum 

population in the neighborhood of the poverty line. In order to turn these stratum changes into 
the estimated percentage change in national poverty headcount, they must be weighted by 
each stratum’s share in national poverty, the third class of parameters:  

 

     rs rs rs r r rs rs rk rk

k

Θ = POP *H /POP /H = POP *H / POP *H        EQ (2) 

Summing across strata, we thus obtain the percent change in national poverty 

headcount, rĤ . By multiplying rĤ with the national poverty rate we ultimately obtain the 

                                                 
9
 Please see Appendix D for more details on the poverty parameters. 
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percentage point change in the national poverty rate due to changes in factor earnings as well 

as the cost of living at the poverty line, rdh : 

r
r r

r

Hˆdh =H * 100*
POP

 
 
 

         EQ (3) 

 
If this rises by one percentage point, then poverty has risen by one percent of the national 

population, equivalent to more than 344 thousand people. Such a change would indicate a very 
large poverty impact in Tanzania. 
 

4.2 POVERTY IMPACTS 
 

The assessment of poverty vulnerabilities to interannual climate variation over different 
time periods is complicated by the dynamics of the global and Tanzanian economies as we go 
forward from the late 20th Century to the early 21st. By 2031, the composition of Tanzanian 
poverty, as well as the household earnings sources and expenditure patterns will change in ways 
that cannot be fully anticipated. We resolve this complication by treating all economic changes 
as comparative static deviations from the 2001 economy, allowing us to attribute poverty 
changes solely to climate-based agricultural productivity changes, and not any other event that 
may cause vulnerability to change between climates in two different periods. Since we are 
interested in the poverty impacts of interannual variability, we adopt a short run factor market 
closure in which land, capital, and natural resources are immobile across sectors. Thus we 
assume that a farmer has already made planting decisions before the climate outcome for that 
year is realized, and therefore cannot respond to a (e.g.) favorable climate outcome by 
expanding area under cultivation.  

 
Tanzanian poverty vulnerability to interannual climate volatility between 1971 and 2031 

is determined by simulating the interannual productivity change for each year of the four (GCM-
based) predicted yield series, generating a change in the poverty rate for each of those years by 
series. Bear in mind that all simulations are perturbations from our 2001 base year, and the 
resulting poverty rate changes are solely those due to climate realizations. This has the essential 
property of rendering our results comparable across years. For each climate-yield series that we 
consider, we thus have a time series of poverty impacts that are the result of simulating climate-
instrumented productivity changes from 1971 to 2031. 

 
We now analyze the distributions of these series of poverty changes. Based on the 

climate data that are the average across the 22 GCMs, we find that the median poverty change – 
measured as the percentage point difference from the national poverty rate in 2001 – is higher 
in the early 21st Century than in the late 20th Century (panel A, Figure 2). In the 20th Century, this 
median poverty change was -0.06 percent of the population – a poverty decrease. However, in 
the 21st Century, the median poverty change was -0.01 percent – a smaller decrease in the 
poverty rate. The 0.05 percentage point difference is equivalent to approximately 17.23 
thousand people. There are fewer years in the future when climate outcomes would have been 
poverty decreasing than under current climate, as evidenced by a rightward (i.e. poverty 
increasing) shift of the mass of the interannual poverty change distribution. 

 
The ensemble mean of the 22 GCMs (which is bias-corrected to the historical mean and 

interannual standard deviation) thus suggests that changes in temperature and precipitation 
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volatility could have the net effect of increasing poverty vulnerability, with the distribution 
shifting in the positive direction (panel A, Figure 2). However, near-term, decadal-scale climate 
prediction remains one of the most challenging problems in climate science (e.g. Keenlyside et 
al, 2008), and it is thus unclear exactly how Tanzanian climate volatility will actually change in 
the next two decades. Nonetheless, the CMIP3 GCM ensemble does provide some 
quantification of the envelope of potential change based on different representations of climate 
system processes and “initial conditions” (for a discussion of sources of uncertainty in regional 
climate change, see Giorgi et al, 2008). We therefore also analyze the pooled and individual 
GCM realizations that represent the bounds of changes in temperature and precipitation 
volatility. 

 
Panel B of Figure 2 demonstrates the robustness of the ensemble mean results to the 

variation in the climate data across the GCMs that define the bounds of potential changes in 
temperature and precipitation volatility. For each period, the poverty results from GCM 02, 06, 
and 08 were pooled to give a poverty distribution that considered climate data from GCMs 
where climate volatility increased and decreased the most. We continue to find that the mass of 
the poverty change distribution shifts rightward in the future relative to the 20th Century – 
although the shift is more marked than in panel A – implying that climate outcomes in the future 
will be more frequently poverty increasing.  

 
The poverty distributions for the 20th and 21st Centuries that are based on the individual 

GCMs that characterize the upper and lower bounds of the climate volatility changes (panels C, 
D and E of Figure 2), demonstrate that we observe the shift in the probability mass in the more 
aggregated climate-poverty results due to shifting median values, the interquartile range, or 
both. The use of individual GCMs also reveals the possibility of even larger poverty headcount 
changes. Poverty results based on GCM 02, 06, and 08 indicate that the years with the greatest 
poverty increases may see more than 2 percent of Tanzania’s total population – equivalent to 
nearly 700 thousand people – become impoverished. 

 
In analyzing GCM 02, which shows the greatest increase in precipitation volatility as well 

as the largest decrease in temperature volatility (Table 2), we see that the median poverty value 
and the left tail of the distribution shift in the positive (poverty increasing) direction, and that 
the right tail of the distribution becomes substantially more positive (panel C, Figure 2). 
Analyzing GCM 06, which shows the greatest increase in temperature volatility (Table 2), we see 
that the right “whisker” of the poverty change distribution is higher for the 21st Century than in 
the 20th Century, , although the left tail and lower quartile both become more negative (panel D, 
Figure 2). This change in the distribution suggests that, in response to the greatest increase in 
temperature volatility, there are many more years with very large poverty increases. This 
highlights the potential importance of changes in climate volatility for poverty vulnerability, 
even when there is essentially no change in the median poverty value.  For GCM 02 and GCM 
06, the median poverty change increases by 0.26 and 0.07 percentage points of the national 
poverty rate, respectively. Based on Tanzania’s 2001 population, these 0.26 and 0.07 percentage 
point increases in the poverty rate would translate into 89.7 and 24.3 thousand additional poor. 

 
The magnitudes of the extreme poverty increasing outcomes are also found to be 

greater in the future under GCM 06. In the 20th Century, the greatest predicted increase in 
poverty was of 880 thousand people (2.6 percent of the population), while in the 21st Century, 
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the highest possible poverty increase was of 1.17 million people, equivalent to 3.4 percent of 
the Tanzanian population. 

 
Alternatively, when analyzing GCM 08, which shows the largest decrease in precipitation 

volatility (Table 2), we see that the poverty distribution is contracted, with the median and right 
whisker being lower in the future than in the 20th Century (panel E, Figure 2). However, even 
though the median poverty change decreased for GCM 08, the mass of the poverty change 
distribution shifted rightward, with the first quartile value poverty change increasing by 0.21 
percentage points of the poverty rate, and the third quartile value increasing by 0.04 percentage 
points. Nonetheless, the results of this GCM realization lie in contrast to those from the whole 
GCM ensemble and from the other boundaries of the ensemble-envelope, highlighting the 
uncertainty in the impacts of climate volatility on poverty. 

 
While the exact realization of the climate system over the next two decades is unknown, 

the poverty results from the overall the CMIP3 GCM ensemble suggest slightly increasing 
poverty vulnerability in Tanzania. However, if the real climate system displays behavior similar 
to GCM 08 over the next two decades, then poverty vulnerability could instead decrease by 
some measures.  Further development of decadal-scale climate prediction techniques could 
help to resolve the climate-based uncertainty, although it is possible that the temporal (and 
spatial) scales being considered exceed the limits of predictability. 
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Sources: Authors’ estimates 
Figure 2: Panels A-E indicate the distributions of percentage point changes in the national 
poverty rate in Tanzania attributable to of distribution of interannual grains productivity 
changes in the 20th Century and 21st Century, based on the source of the climate data used to 
estimate the grains productivity changes. The middle dark lines indicate median values, while 
the edges of the boxes describe the first (Q1) and third (Q3) quartiles. The left whiskers indicate 
the greater of the lowest values and Q1-1.5*(interquartile range). The right whiskers indicate 
the lesser of the greatest value and Q3+1.5*(interquartile range). 
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5. CONCLUSION 
 
Climate volatility in Tanzania could increase in the future as greenhouse gas 

concentrations increase (Figure 1, Table 2), with agricultural productivity expected to become 
increasingly volatile as well. For agriculture-dependant developing countries, where poverty is 
sensitive to food production and food production is sensitive to climate (as is the case in 
Tanzania), rising climate volatility could have important implications for poverty vulnerability. 

 
We develop an analytical framework which allows us to estimate the interannual 

changes in grains sector productivity that can be attributed solely to temperature and 
precipitation. We then simulate these interannual changes in a comparative static general 
equilibrium simulation model, to derive the poverty responses of the 2001 Tanzanian economy 
to each of these changes. This enables us to determine how the distribution of poverty changes 
attributable to climate volatility in a given 30-year period could change in the future. We apply 
this framework to Tanzania’s climate in the 20th Century and 21st Century, and find that changes 
in climate volatility are likely to render Tanzanians increasingly vulnerable to poverty episodes 
through its impacts on staple grains production in agriculture.  

 
Under scenarios with the greatest increase in precipitation volatility and the largest 

changes in temperature volatility the median climate outcome in the future may lead to 24.3 to 
89.7 thousand additional poor than the median poverty outcome under current climate. 
Individual GCM results show climate-induced interannual poverty increases as high as 700,000 
in some cases. Further, since there is the possibility that climate volatility could increase further 
as greenhouse gas concentrations rise beyond those prescribed here, there is a danger that the 
poverty vulnerability identified could intensify beyond the horizon of our analysis.  

 
Several factors not considered in the current study may also be important for refining 

adaptation strategies to adapt to climate impacts in Tanzania. One is that crops may be more or 
less sensitive than the values inferred by our yield estimation, as these statistical estimates are 
subject to some uncertainty. Although most studies, including this one, focus on uncertainties in 
climate scenarios, uncertainties in crop responses can be equally important for projecting near-
term impacts (Lobell and Burke, 2008). 

 
In addition, food prices in Tanzania will be affected to a large degree by changes in crop 

productivity throughout the world, as these will influence local prices. The current analysis 
implicitly assumed negligible impacts in other regions, as a way of focusing on the question of 
how much poverty volatility could be driven by changes in local production. However, 
international linkages are clearly important for projecting poverty changes (Hertel et al, 2009c), 
and will be incorporated into future work.  
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APPENDIX A: CLIMATE AND YIELD PROJECTION  
 

We use climate data from two different sources: the CRU TS 3.0 database (CRU, 2008) of 
historically observed climate data and from 22 models of the CMIP3 archive of GCM-generated 
climate predictions for the SRES A2 scenario. From these sources we retrieve hat lets us 
calculate monthly average temperature and rainfall under current and future climate for the 
January to June growing season. We specify these as: 
 

 Tobs (year)= observed temperature between 1971 and 2001 

 Pobs (year) = observed rainfall between 1971 and 2001 

 Tcurrent, model (year)= Model simulated temperature between 1971 and 2001 by GCM 

 Pcurrent, model (year) = Model simulated rainfall between 1971 and 2001 by GCM 

 Tfuture, model (year) = Model simulated temperature between 2001 and 2031 by GCM 

 Pfuture, model (year) = Model simulated rainfall between 2001 and 2031 by GCM 

 T model (year)= Model simulated temperature between 1971 and 2031 by GCM 

 P model (year) = Model simulated rainfall between 1971 and 2031 by GCM 
 

Now, the GCM generated- climate data is systematically biased, and so we adjust the 
climate data so that the moments of the simulated climate for the present day match those of 
the historic observations from the CRU dataset.  We bias correct the means, following equations 
A1 and A2. This will adjust the GCM based climate data such that the mean values in the period 
1971-2001 will match the historically observed mean from the CRU series. Equations A3 and A4 
then adjust the mean bias-corrected climate data such that their late 20th Century interannual 
volatility matches the historically observed volatility, following Ramankutty et al (2006).  
 

obs current,model

year year

model

T (year)- T (year)

mean corrected

model Number of Years Observed
T (year)=T (year) +

 
 
 
 
 

     EQ (A1) 

 

model

obs

yearmean corrected

model
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year

P (year)

P (year)=P (year)
P (year)
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     EQ (A4) 

 
23 different series of yields for each crop can now be calculated using the yield 

estimates described in Table 3 and the climate data from equations A3 and A4. The first series 
uses the historically climate data from CRU to generate a series from 1971 to 2001, while the 
remaining 22 series uses the bias-corrected GCM climate data to give us 22 series from 1971 to 
2031. The GCM-data based yield series are then bias-corrected following the same strategy used 
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in equations A3 and A4, to generate predicted yields of maize, rice, and sorghum. For each 
GCM-based series, an aggregate grains yield series is then obtained by taking the weighted 
average of the yields across the three crops, with the weights being the 2001 harvested area 
shares obtained from FAOSTAT (FAO, 2009). 
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APPENDIX B: MODEL CALIBRATION 
 

We calibrate the GTAP economic simulation model parameters for Tanzania to be able 
to replicate historical grain price volatility when historical grains productivity is simulated, 
following the approach of Valenzuela et al (2009). The approach used can be summarized as 
broadly following the steps below: 
 

 Volatility Estimates: Estimate output and price volatility for a given commodity, with 
volatility referring to the standard deviation of interannual percentage changes in the 
variables. The estimated standard deviations are then used to determine the endpoints 
of a symmetric triangular distribution. 

 

 Simulation: Conduct systematic sensitivity analysis (SSA) using the Gaussian Quadrature 
based approach of Pearson and Arndt (2000), specifically to determine the sensitivity of 
grains prices with respect to output changes. The extreme value for the grains output 
SSA is the estimated endpoints of the symmetric triangular distribution described above. 

 

 Comparison and recalibration: If the variations in the simulated grains prices for a region 
are inconsistent with the estimated variations, then the model requires recalibration. In 
the case of grains prices, the substitution parameters of the model’s demand equation 
are recalibrated 

 
 Agricultural productivity is difficult to observe, and so we use interannual output 
changes as a proxy. An alternative would be to use yields. However, in the available data sets, 
yields are defined as production divided by harvested area. Since harvested area is also subject 
to climate volatility (some planted area may not be harvested in a bad year), we view the 
interannual random change in production as a better measure of climate induced productivity. 
To determine the standard deviation of the interannual output changes, production data is 
obtained for three Tanzanian grains – maize, paddy rice, and sorghum – from FAOSTAT  for the 
years 1971 to 2001 (FAO, 2009). These three crops collectively proxy for the grains sector that 
we use in our CGE model analysis. The interannual percentage changes are then calculated for 
the aggregate and tested for time trends, with none being found. The standard deviation of the 
interannual percentage changes over the time-series is determined to be 21.97.  

 
The price volatility for each aggregated crop is then determined through a more 

complex approach, involving data from a variety of sources for the period 1990 to 2003. The 
time series for the price volatility estimation is smaller than the series for the productivity 
volatility estimation due to the unavailability of reliable data necessary for the estimation.  The 
three different types of data used are: 
 
Qtir – Production data in tonnes from FAOSTAT for disaggregated crop i.   
Ptir – Price data from before 1991 in LCU/tonne from price data of Morrissey and Leyaro (2007). 
Dtr – GDP deflator from the IMF’s International Financial Statistics (IMF, 2009). 
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A composite real price for grains in US dollars can then be calculated following 
equations B1-B4: 

 

tir
tir

tr

P
RealP =

D
          EQ (B1) 

 tr tir tir

r

TotalValue = RealP *Q        EQ (B2) 

tir tir
tir

tr

RealP *Q
ValueShare =

TotalValue
        EQ (B3) 

tr tir tir

i

PAggCrop = (ValueShare *RealP )       EQ (B4) 

  
As before, no trends were found in the price series and the price volatility is estimated 

as the standard deviation of the interannual percentage changes in price. This is found to be 
28.77. However, when stochastic simulations of the estimated productivity volatility are 
implemented, the price volatility is found to be excessively high. In order to reduce the domestic 
grain price volatility in Tanzania, it is necessary to increase their own price elasticities of 
domestic demand for grains. This is achieved by reducing the substitution parameter for grains 
in the model’s utility function, which in turn increases the magnitude of the compensated own-
price demand elasticity of grain. Once the simulated price volatility matches the estimated 
volatility we can be confident that the model is able to accurately delineate grains price 
sensitivity to productivity changes. 

 
Figure B1 illustrates the volatilities of grains productivity and prices.  It can be seen that 

in the last 30 years of the 20th Century, Tanzanian grains price and productivity had similar 
volatilities. 
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Source: Authors’ estimates 
Figure B1: Grains Productivity and Price Volatilities in Tanzania Characterized as Mean-Zero 

Normal Distributions of Interannual Percentage Changes, 1971-2001 ( Productivityσ =21.97, 

Pricesσ =28.77) 
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APPENDIX C: AIDADS FORMULATION AND PARAMETERS 
 

The AIDADS utility function is assumed to be common across all individuals within a 
country – Tanzania in the case of this paper – with consumption patterns varying solely as a 
function of income level. A household micro-simulation model can then be specified by 
maximizing per capita utility, subject to a per capita budget constraint, and based on household 
endowments. 
 

The household model can then be characterized as a constrained maximization 

problem, choosing  1s is nsx ,...,x ,...,x  , where i indexes the commodities and s households, to 

maximize us subject to constraints C1 to C4:  
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In this formulation, equations (C1) to (C2) define the AIDADS utility function with 

parameters i i iα ,β ,γ and A. iα  and iβ are the AIDADS marginal budget shares of commodity i at 

the subsistence and high incomes, respectively. iγ characterizes AIDADS subsistence 

consumption of i, and A is a scaling parameter in the utility function. The marginal budget share 
is thus defined by (B3). Equation (B4) is the per capita budget constraint, with income inclusive 

of any transfers. fW  is the wage paid to endowment k

fE  , and kT  is the transfer rate for 

household k, which is assumed to be a constant share of net national income, Y. 
 
The poverty line in Tanzania is set to match the observed national poverty headcount 

ratio reported by the World Bank (2006). This is used to calibrate the poverty level of utility in 
the initial equilibrium.  So, in the wake of a change in climate, commodity prices and wages will 
adjust, household incomes will change, as will the consumption profile of the household and 
consequently its new utility level.  If household utility rises above the poverty level of utility, 
then it is lifted out of poverty. Conversely, if the household utility level falls below the poverty 
utility threshold, then it has become impoverished. 

 
Hertel et al (2004), in their analysis of the poverty impacts of trade liberalization, solve 

this micro-simulation model for representative households in 20 income vingtiles in each of the 
seven population strata. They then report growth incidence curves showing the impact across 
the entire population spectrum. The advantage of this approach is that it allows assessment of 
impacts across the entire population. However, in the context of the present analysis, wherein 
the focus is on poverty impacts, and the simulation methodology involves repeated solution of 
the model to produce an entire distribution of outcomes, this is overly burdensome.  
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We thus adopt the simpler approach utilized in Hertel et al (2009b), which summarizes the 
household behavior modeled from Hertel et al (2004) in the neighborhood of the poverty line 
via a highly disaggregated poverty elasticity based analysis.   
 

The results generated by the household micro-simulation module depend on the 

parameter values for i i iα ,β ,γ ,and A in the AIDADS utility maximization problem. The values 

for i iα ,β , and iγ  are reported in Table C1, while the value of A is 0.3139. 

  
Table C1: AIDADS parameter values 

 α  β  γ  

Crops 0.2757 0.0000 0.1624 
Meat and Dairy 0.1187 0.0605 0.0000 

Other Food and Beverages 0.3587 0.1924 0.0291 
Textiles and Apparel 0.0600 0.0691 0.0000 
Household Utilities 0.0126 0.0246 0.0000 

Wholesale and Retail Trade 0.0795 0.3579 0.0135 
Manufacturing 0.0427 0.1443 0.0514 
Transport and 

Communications 
0.0262 0.0454 0.0188 

Financial Services 0.0014 0.0120 0.0049 
Other Household Services 0.0245 0.0939 0.0152 

Source: Golub (2006) and Dimaranan et al (2006) 
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APPENDIX D:  POVERTY PARAMETERS  
 
While conceptually simple, this approach to poverty analysis is actually quite data 

intensive and requires careful processing of the Tanzanian household survey data. Table D1 

illustrates the estimated earnings shares in the neighborhood of the national poverty line ( p

rsjΩ ) 

in Tanzania, with earnings sources disaggregated into ten categories. These categories are 
agricultural land, self-employed agricultural labor (both unskilled and skilled), self-employed 
non-agricultural labor (both unskilled and skilled), wage labor (both unskilled and skilled), 
agricultural capital, non-agricultural capital, and transfer payments.  
 

The most difficult part of estimating these earnings shares derives from the need to 
impute returns to factors of production when the source of income is self-employment. This is 
achieved matching self-employed household members with similar wage-earning individuals in 
the survey and assigning the average earned wage for this class of workers (ideally, same sex 
and age, same skill level, same sector, same region). The residual earnings are assigned to 
capital in the case of non-agricultural income and shared between capital and land in the case of 

farming. To split non-wage income between capital and land, we use the factor payment 
shares from the GTAP database, which are based on econometric studies of cost shares 
in agriculture. 

 
As can be seen, the wages of unskilled labor are important for households at the 

poverty line nationally, with this reflected in across the various strata. In the case of the 
agricultural stratum, in which households earn more than 95 percent of their income from 
agricultural self-employment, the bulk of their income (77 percent) is imputed labor income. 
Non-agricultural, self-employed households in the neighborhood of the poverty line, appear to 
control relatively more capital, as the imputed earnings share is lower than for farming. 

However, the imputed wage share is an underestimate, and capital and land shares are 
overestimates due to the lack of data on purchased inputs in the household survey. This 
means that we overstate net income from self-employment, thereby leaving a larger 
residual once imputed wages have been deducted. 
  

Turning to the wage labor households, we see that the share of income coming from 
skilled labor is higher in urban areas. This is perhaps not surprising, as increased education and 
training is often required in order to access the formal urban labor market. On the other hand, 
the rural and urban diversified households are just that – highly diversified. This diversification is 
further accentuated by the fact that we have created this earnings profile by taking all 
households within +/-5 percent (i.e. 10 percent of the total stratum) of the poverty line in each 
stratum. This diversified group earns income from agricultural activities, as well as non-farm 
activities, it receives transfer payments and also receives income from capital. 
  

As we have seen from equation (1), the earnings shares translate wage changes into 

income changes, but it is the poverty elasticities, rsε , that translate the latter into poverty 

changes, by stratum. Table D2 reports these stratum-specific poverty elasticities for Tanzania. 
These are so-called “arc elasticities”, obtained by examining the change in income as we move 
across the stratum decile surrounding the poverty line. As these are expressed in elasticity form, 
we expect these elasticities to diminish as the total poverty headcount in the stratum rises (i.e., 
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it is harder to reduce poverty by one percent when it represents nearly half of the population, as 
in the agricultural stratum, as opposed to less than 10 percent in the urban labor and diversified 
households. Accordingly, in the urban diversified stratum, the poverty elasticity reaches 1.75. By 
applying the earnings source shares from Table D1 to these elasticities, Table D3 reveals the 
income elasticities of poverty by earnings source and stratum.  
  

The final piece of data required to implement equation (1) is the stratum share of 

national poverty, rsΘ , which was previously reported in Table 1, where we saw that the bulk of 

poverty in Tanzania resides in the rural areas. With these pieces of data and parameters in hand, 
we are now ready to evaluate the impact of climate volatility on poverty in Tanzania.  
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Table D1: Earnings Shares at the National Poverty Line in Tanzania, by Stratum 
 

 Stratum 

Earnings Source Agriculture Rural Labor 
Rural 

Diversified 
Non-

Agriculture 
Urban 
Labor 

Urban 
Diversified Transfers 

Agricultural Land 5.45 0.12 3.14 0.02 0.01 1.99 0.00 

Self-Employed Agricultural Labor - Unskilled 65.04 0.13 32.87 0.13 0.12 19.38 0.07 

Self-Employed Agricultural Labor - Skilled 0.21 0.00 0.17 0.00 0.00 0.32 0.00 

Self-Employed Non-Agricultural Labor - Unskilled 0.04 0.00 11.29 63.50 0.06 19.81 0.14 

Self-Employed Non-Agricultural Labor - Skilled 0.00 0.00 0.04 2.03 0.00 0.34 0.00 

Wage Labor - Unskilled 0.02 95.42 11.02 0.04 86.12 14.10 0.00 

Wage Labor - Skilled 0.00 4.17 0.36 0.00 13.51 1.31 0.00 

Agricultural Capital 29.00 0.12 15.76 0.12 0.06 10.32 0.00 

Non-Agricultural Capital 0.05 0.00 18.35 34.00 0.02 18.69 0.00 

Transfer Payments 0.21 0.04 7.00 0.15 0.11 13.74 99.79 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Source: Authors’ estimates based on data from NBS (2002) 
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Table D2: Arc Income Elasticities of Poverty by Stratum in Tanzania 

Stratum Elasticity 

Agricultural 0.41 

Rural Labor 0.74 

Rural Diverse 0.59 

Non-Agricultural 0.79 

Urban Labor 0.78 

Urban Diverse 1.02 

Transfer 0.48 

Source: Authors’ estimates from NBS (2002) 
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Table D3: Income Elasticities of Poverty by Stratum and Earnings Source 

 Stratum 

Earnings Source Agriculture Rural Labor 
Rural 

Diversified 
Non-

Agriculture 
Urban 
Labor 

Urban 
Diversified Transfers 

Agricultural Land 0.0225 0.0009 0.0184 0.0002 0.0001 0.0203 0.0000 

Self-Employed Agricultural Labor - Unskilled 0.2688 0.0010 0.1928 0.0010 0.0009 0.1977 0.0003 

Self-Employed Agricultural Labor - Skilled 0.0009 0.0000 0.0010 0.0000 0.0000 0.0032 0.0000 

Self-Employed Non-Agricultural Labor - Unskilled 0.0002 0.0000 0.0663 0.5025 0.0005 0.2021 0.0007 

Self-Employed Non-Agricultural Labor - Skilled 0.0000 0.0000 0.0002 0.0161 0.0000 0.0035 0.0000 

Wage Labor - Unskilled 0.0001 0.7016 0.0646 0.0003 0.6719 0.1438 0.0000 

Wage Labor - Skilled 0.0000 0.0306 0.0021 0.0000 0.1054 0.0133 0.0000 

Agricultural Capital 0.1198 0.0009 0.0924 0.0010 0.0004 0.1053 0.0000 

Non-Agricultural Capital 0.0002 0.0000 0.1077 0.2691 0.0001 0.1907 0.0000 

Transfer Payments 0.0009 0.0003 0.0410 0.0012 0.0009 0.1402 0.4758 

All Endowments 0.4132 0.7353 0.5867 0.7914 0.7802 1.0200 0.4768 

Source: Authors’ estimates based on data from NBS (2002) 
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