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1. Introduction

1.1. Stable Isotopes of Environmental Waters

Temporal and spatial variations in precipitation isotope values encode climatic processes that reveal at-

mospheric dynamics, influence of orographic barriers, and temperature controls. As such, δ18O and δ2H 

values of meteoric water are strong candidates to be considered as essential climatic variables (Bojinski 

et al., 2014) that have high utility for investigating modern and past climate. In mid- to high-latitude re-

gions, the δ18O and δ2H values of meteoric waters are strongly related to temperature, which controls both 

the equilibrium fractionation between vapor and condensate (Fricke & O'Neill, 1999; Rozanski et al., 1993), 

and the amount of heavy isotope distillation associated with air mass rainout along an ocean to continent 

cooling path. Stable isotope values vary with air mass evolution within storms and with orographic rainout 

(Lachniet et al., 2016; Poage & Chamberlain, 2001; Rowley & Garzione, 2007; Winnick et al., 2014). Further-

more, stable isotopic changes relating to moisture sources arriving at a location are strongly related to sub-

sequent weather system history and regional geography. The temperature control on meteoric water isotope 

Abstract We show that climate and topography control the spatial distribution of stable isotope 

values on the South Island of New Zealand, based on a spatially dense (n = 193) river isotopic survey. Our 

data show a δ18O minimum in isotope values east of the Southern Alps that demonstrates topographically 

driven continentality associated with the Southern Alps, which intersect the prevailing, moisture-laden 

westerlies. Our data define a South Island surface water line of δ2H = 8.17 (±0.26) × δ18O + 10.57 (±2.04), 

which is identical within 95% confidence intervals to the global and New Zealand meteoric water lines 

established from monthly precipitation samples. The observed river δ18O values are strongly correlated 

with annual temperature range and winter temperature. Strongest correlations are between δ18O and 

mean minimum winter temperatures (r > 0.7 for June, July, August), with gradients of 0.58–0.66‰ /°C. 

Based on a multiple regression analysis of δ18O against climate data, we present a river δ18O model and 

isoscape that demonstrate the control of continentality and moisture source on New Zealand surface 

water isotope spatial patterns. Model validation against previously published river samples shows skill in 

predicting river δ18O values (root-mean-square error = 0.83), confirming that the spatial variations in river 

δ18O (and δ2H) are robust to sampling period and reflect continental, precipitation source and temperature 

effects. Our data suggest that oxygen or hydrogen isotope paleoclimate proxies derived from rivers or 

open-system lakes on the South Island should be sensitive to winter temperature.

Plain Language Summary We investigated the spatial variations in oxygen and hydrogen 

stable isotopes in rivers on the South Island of New Zealand and show that they are strongly controlled by 

the presence of the Southern Alps. Indicators of continental climates, such as seasonal temperature range 

and temperature of the coldest months are strongly related to measured oxygen isotope values of river 

waters. We show that winter temperature and continentality are the dominant control on New Zealand 

South Island river oxygen isotope values, and they result in minimum values in the lee of the highest 

portion of the Southern Alps. We also show that river deuterium excess values are controlled by Pacific 

Ocean versus Tasman Sea moisture sources.
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Paleoceanography and Paleoclimatology

values has led to their wide use in geologic materials, such as lake sediments (Leng & Marshall, 2004), ice 

cores (Brook & Buizert, 2018), soil carbonates (Oerter & Amundson, 2016), and cave calcite deposits (Lach-

niet, 2009; Nava-Fernandez et al., 2020; Whittaker et al., 2011; Wong & Breecker, 2015) as temperature-sen-

sitive paleoclimate proxies. Stable isotopes are also routinely measured in biologic archives, for example in 

tree ring cellulose (Lorrey et al., 2016; McCarroll & Loader, 2004), to understand modern processes gov-

erning plant water use. Further, understanding the controls on modern environmental water δ18O and δ2H 

can be used to better interpret past climatic processes. As such, constraining the quantitative relationships 

between environmental water δ18O and δ2H values relative to a wide range of physical processes is a key goal 

of modern isotope climatology.

Spatial analysis of meteoric water isotope values also allows the production of interpolated maps of the δ18O 

and δ2H composition of waters called isoscapes (Bowen & Wilkinson, 2002; West et al., 2010). A meteoric 

precipitation isoscape has been completed for New Zealand based on a network of 51 collection stations on 

the North and South Islands (Baisden et al., 2016). These data can be used to constrain moisture sources 

and physiographic and climatic controls on precipitation (Baisden et al., 2016; Frew et al., 2011; Rogers 

et al., 2012). The monthly precipitation isotope data were explained by altitude, temperature, and precipita-

tion amount. However, continuous and long-term isotope precipitation collection is costly and time inten-

sive (Blackstock, 2011), and few regions contain a sufficient density of precipitation isotopic monitoring sta-

tions to resolve spatial variability. This problem is particularly acute in regions of high topographic diversity 

like New Zealand. As a result, studies based only on meteoric precipitation monitoring may miss important 

geographic variability in isotope values. A geographic survey of environmental waters from other sources, 

such as rivers, can permit a more comprehensive investigation of spatial variations.

The spatial variations of stable isotopes have powerful geological applications. δ18O contained in natural 

geological archives have been used to constrain mountain uplift and the development of negative isotopic 

anomalies in the lee of high mountain ranges (Mulch, 2016; Poage & Chamberlain, 2001; Rowley & Gar-

zione, 2007). In New Zealand, for example, a 5–6‰ δ18O decrease in authigenic kaolinites in the lee of 

the high Southern Alps of the South Island was used to infer mountain uplift and the establishment of a 

continental rain shadow in the early Pliocene (Chamberlain & Poage, 2000; Chamberlain et al., 1999). The 

modern calibration data set of water δ18O values used to infer isotopic gradients for that study was small 

(n = 24), lacked geographic coordinates for independent verification, and included lakes which may have 

been evaporatively enriched in heavy isotopes and therefore potentially mischaracterized the magnitude of 

the isotopic gradients. A more comprehensive suite of river water isotope values was presented by Stewart 

et al. (1983), who measured δ2H values in 61 rivers on the South Island, with most samples located near the 

coasts. Additionally, Kerr et al. (2015) sampled 29 closely spaced sites in a transect from the Tasman Sea 

to near the alpine divide. These three studies indicate that river isotope values vary significantly across the 

South Island, but large areas remain unsampled. To improve the utility of spatial δ18O variations for climate 

and environmental research applications, more detailed studies based on larger data sets are useful to eval-

uate the climatic control on environmental water isotope values.

Here, we combine 193 measurements of H and O stable isotopes from rivers on the South Island of New 

Zealand collected mostly in November of 2016 to constrain the climatic controls on river water δ18O val-

ues (Table S1). This data set is more than three times larger than previously published data sets and spans 

a greater topographic range and representation in South Island climate districts. We correlated the river 

isotope data with climate data sets to investigate the climatic and physiographic controls on river δ18O and 

δ2H values of our samples. We then built a multiple regression model for the South Island that serves as a 

baseline from which to compare future river sampling campaigns. The objective of this study is to better 

constrain the climatic controls on the spatial variation in river water δ18O, δ2H, and deuterium excess val-

ues. In addition, we develop a spatial representation of river isotope variations that can be utilized in future 

applications for isotope climatology, geo- and bio-forensics, and water resources management, and to guide 

site selection for future paleoclimatic and paleotopographic analysis. Our conclusions have direct bearing 

on the interpretation of isotopic paleoclimate records, and thus serve as a modern constraint on how past 

climate variations could be encoded in variations of oxygen and deuterium isotopes. This paper presents an 

open-access surface water database available to the scientific community for use in more detailed investiga-

tions at finer spatial and temporal scales.

LACHNIET ET AL.

10.1029/2021PA004220

2 of 20



Paleoceanography and Paleoclimatology

1.2. River Water Stable Isotopes

River waters inherently capture spatio-temporally averaged processes related to the complex interplay of 

geology, geography, climate, and weather. This means river isotopes can be influenced by mean residence 

time of water in a catchment, changing and variable surface-groundwater proportionalities, contrasting 

inter- and intra-season meteoric water contributions, snowmelt, and reach-specific baseflow changes. River 

water isotopic compositions are related to the δ18O and δ2H values of meteoric precipitation that falls within 

a catchment (Kerr et al., 2015; Lachniet et al., 2016; Mulch, 2016; Stewart et al., 1983). As a result, rivers 

commonly experience seasonal variations in isotopic values that respond to the changes in isotopic values 

of meteoric precipitation that falls into their catchments but are dampened and delayed in time. Rivers are 

thus biased to represent the stable isotopic values of the meteoric precipitation and groundwater entering 

the catchments prior to the period of sampling, and these values may change over time. Ideally, a long-term 

sampling campaign on each river can establish mean δ18O values and estimates of isotopic seasonality over 

time, but such a study becomes difficult to apply for the 193 locations at which we sampled. Fortunately, 

previous studies (Stewart et al., 1983) have shown that the seasonal variations in New Zealand stream water 

isotopes are small. For example, δ2H variations of up to 8–10‰ were observed for catchments with signifi-

cant snowmelt contribution; when converted to δ18O using the global meteoric water line (GMWL), this rep-

resents seasonal variations on the order of 1.0–1.2‰. However, other rivers studied by Stewart et al. (1983) 

have seasonal δ2H variations of only 1–5‰, corresponding to δ18O variations of ∼0.2–0.6‰.

While much attention has been given to the temporal variations in precipitation stable isotope values, the 

spatial variation in river stable isotope values may also reveal important controls from climatic and geo-

graphic processes. Geographic ranges in δ18O values are commonly large relative to the amount of seasonal 

variation, such that spatial patterns of δ18O are robust to the time of sampling. For example, a river water 

δ18O isoscape for Alaska showed spatial changes of up to 14‰, characterized by a decrease in river δ18O 

values with increasing distance from the Gulf of Alaska (Lachniet et al., 2016), with associated minima 

over mountain ranges associated with the lower condensation temperatures over high terrain. A multiple 

regression model for that region against climatic and physiographic data explained river δ18O values to 

better than ±2.0‰ and was consistent with winter precipitation stable isotope values at most sites where 

meteoric waters were sampled. Similar strong correlations between river δ18O values and climatic data was 

evident in the spatial variations in Central American rivers (Lachniet & Patterson, 2006, 2009). A decrease 

in δ18O values of rivers with increasing distance from the Caribbean Sea was interpreted to reflect the pro-

gressive distillation of heavy isotopes as air masses rained out upon traversing Central America (Lachniet & 

Patterson, 2009). A statistical model of river δ18O values based on climate and physiographic data for data 

from Guatemala and Belize explained river δ18O values to better than ±1.0‰. The coherent regional-scale 

river δ18O variations in both Alaska and Central America demonstrate that the noise associated with local 

watershed hydrologic processes are of lesser strength than the signal embedded in the spatial variations. 

The strong correlations between spatial δ18O values and climate variables in these studies demonstrated the 

utility of river water isotope values to encode climatic information, and validation of the statistical models 

with independent data allowed prediction within the ±1–2‰ range for river δ18O, which is considerably 

narrower than the range in spatial δ18O variation. This point should be kept in mind when interpreting the 

data in this study.

Seasonally resolved single site and regional snapshot surface water sampling campaigns provide comple-

mentary data to evaluate climate-isotope linkages. The climatic controls on water δ18O and δ2H values are 

also required to confidently interpret groundwater flow dynamics (Taylor et al., 1989), and they underpin 

paleoclimatic and/or paleoenvironmental proxy record interpretations from caves (Hellstrom et al., 1998; 

Lorrey et al., 2008, 2020; Nava-Fernandez et al., 2020; Whittaker et al., 2011; Williams, 1996) and other iso-

topic registers like carbonates, molecular biomarkers, paleosols, and biogenic apatite (Browne et al., 2017; 

Hinojosa et al., 2019; Lorrey & Bostock, 2017; Mulch, 2016). As such, analysis of closely spaced networks of 

river water isotopes improve our understanding of the geographic variations in stable isotopes and are well 

suited for answering questions about the climatic and physiographic forcing on spatial isotopic variations.

River isotope data should be most representative of spatial variability when local seasonal variations are 

small. Our technique assumes that the relative spatial variations in river water δ18O values are related to 

primary climate processes, even if the absolute values may change over time because of seasonality or 
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climate change. The available data for New Zealand (see above) indicate limited seasonal isotopic variability 

(Stewart et al., 1983), particularly for low elevation catchments without significant snowmelt contributions. 

The potential for variable meteoric source water contributions and water ages to a catchment can also be 

minimized by sampling small drainage basins that contain river water with precipitation sources that are 

located close to the sample site. Furthermore, rivers within small catchments better represent local climatic 

conditions than larger rivers with distant headwaters and sources (Kerr et al., 2015; Stewart et al., 1983). 

Spatial analysis of river water isotopes also supports sampling strategies that account for isotopic idiosyn-

crasies arising from significant topographic complexity, which occurs across the varied terrain of the South 

Island. Inevitably, each river-specific isotopic survey has the potential to add to the historic accountancy of 

surface water resources, which can be used as baselines from which we can establish spatial variability that 

arises naturally, compare on-going observations, and evaluate scenarios of future climate changes.

1.3. Climate of New Zealand's South Island

New Zealand's South Island has a midlatitude temperate and mostly maritime climate. It is positioned 

astride the prevailing southern hemisphere westerlies which interact with high topographic relief of 

>3,000 m to produce abundant precipitation on western slopes and upland terrain (Macara, 2015; Salin-

ger, 1980). The Southern Alps, which began forming ∼5 Ma during the Miocene (Batt et al., 2004; Lorrey & 

Bostock, 2017), present a nearly continuous topographic barrier to incident atmospheric flow that forces air 

masses to rise, cool, and precipitate high amounts of rain and snow upon high terrain. Westerly air masses 

traversing the central Southern Alps exhibit only minimal flow deflection because of the uninterrupted high 

barrier of the Southern Alps (Wheeler & Galewsky, 2017). As a result, the interior South Island east of the 

main divide is characterized by a semi-arid continental climate that is significantly drier than the west coast 

and main divide (Macara, 2015). For example, the mean annual precipitation is <1 m in many areas east 

of the main divide compared to 12 m or more along the alpine slope facing the Tasman Sea and in the high 

Southern Alps (Henderson & Thompson, 1999). Anomalously high precipitation amounts on the South Is-

land occur when there is a strong zonal pressure gradient (high in the north, low in the south), and stronger 

westerly winds which guide cyclonic disturbances to the east across the South Island (Salinger, 1980; Um-

menhofer & England, 2007). The east coast receives some moisture from easterly sources (Macara, 2015; 

Stewart et al., 1983), and southwesterly winds and associated troughs deliver abundant precipitation to the 

south coast of the Southern Island (Macara, 2013).

2. Methods

We collected 193 water samples, mostly from rivers at sites across the South Island of New Zealand (Fig-

ure 1, Table S1), with most (n = 183) taken on a 5,550-km driving campaign November 13–29, 2016. Sam-

ples were collected from a fast-flowing portion of the stream using a purpose-built 3.7 l polyvinyl chloride 

cylinder with 30 m of polypropylene attached to a bail (aka bucket and rope), sterilized after each sampling 

with a concentrated bleach solution, and transferred to 50 ml HDPE plastic bottles with zero air headspace 

and the caps taped in place to prevent exchange with outside atmosphere. Samples ranged from 46.97°S 

to 40.73°S latitude and 167.1°E to 174.1°E longitude at altitudes from 1 to 826 m above mean sea level. 

Geographic coordinates for each sampling location (commonly taken on bridges spanning the rivers) were 

determined using a hand-held GPS relative to the WGS84 datum in decimal degrees. Sample locations in-

cluded every physiographic region of the South Island, including all coastlines with transitable paved roads, 

with the exception of the temporarily inaccessible stretch between the locations of Kaikoura and Domett 

on the northeast coast resulting from road closures after the November 14, 2016 magnitude 7.8 Kaikoura 

earthquake (Cesca et al., 2017). We primarily targeted streams with small drainage areas that are likely to 

contain a local isotopic fingerprint close to the sample location. As a result, many large rivers on the South 

Island (e.g., the Clutha, Mataura, Waitaki rivers) were omitted from our collection. A few large rivers were 

analyzed but not included in the statistical analyses (e.g., the Waimakariri, Ashley, Hurunui, Awatere, and 

Wairau rivers). The subset of data used for statistical analyses was n = 186 samples. The average spacing 

between streams was approximately 34 km per sample, and our sample density was chosen to best balance 

the trade-off between sample density, spatial extent, and time dedicated to the sampling campaign. To as-

sess the range of seasonal δ18O variations, we used data on 24 streams in the southern South Island, at 
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five different dates spanning a year (Table S2), but not included in our main data set. Our data represent a 

snapshot of river δ18O values at the time of sampling and the focus of this study is to constrain the relative 

spatial variations. Although there are seasonal variations in river δ18O values, we expect, however, that the 

relative spatial variations in river isotopes are largely robust over time.

Water samples were analyzed for δ18O and δ2H using a ThermoElectron high temperature thermal conver-

sion elemental analyzer (TC/EA) coupled to a Delta V Plus mass spectrometer with a ConFlo III interface in 

the Las Vegas Isotope Science Lab at the University of Nevada Las Vegas. Samples were reacted at 1400 °C 

in a glassy carbon tube packed with glassy carbon granules in a stream of ultra-high purity Helium and re-

sulting CO and H2 were separated on a GC column. Each sample from a 2 ml vial with zero headspace was 

injected into the TC/EA with a GC PAL autosampler six times, and δ18O and δ2H values estimated using CO 

and H2 reference gases. The measured δ values were determined on the last three to five injections to avoid 

any memory effect, which tended to be small when geographically adjacent samples were analyzed sequen-

tially. Sample analyses were completed in 2017 within 8 months of collection. An offline correction was 

applied using internal water standards that have values defined on a scale in which δ18O and δ2H of SMOW 

are both 0‰ and SLAP (Standard Light Antarctic Precipitation) are exactly −55.5 and −428‰ VSMOW, 

respectively (Thomas et al., 1996). Each run contained at least two internal standards with bracketing δ 

values (from either pair of LVOW1_2017 and DI-1_2017, or US Geologic Survey [USGS]-45 and USGS-47), 

and one internal standard (KIWI-2017) was processed and treated as an unknown as a check for internal 

reproducibility as defined by an overall standard deviation. Replicate measurements for the KIWI-2017 

standard (n = 31) returned values of −4.57 ± 0.14 and −26.8 ± 1.9‰ for δ18O and δ2H, respectively. Aver-

age values and precisions for LVOW1_2017 were δ18O = 1.18 ± 0.13 and δ2H = −41.8 ± 2.38‰ (n = 18), 

and for DI-1_2017 were δ18O = −11.73 ± 0.17 and δ2H = −95.63 ± 1.53‰ (n = 18) VSMOW, respectively. 
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Figure 1. Map showing South Island surface water sample locations and δ18O values (filled circles, n = 190). The 
digital elevation model from the WorldClim database is transparently draped over a hillshade. Symbol color indicates 
δ18O values. White diamonds are locations of WorldClim stations.
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Average values and precisions for USGS-45 (Biscayne Aquifer, Florida) were δ18O  =  −2.24  ±  0.18 and 

δ2H = −10.3 ± 0.67‰ (n = 11), and for USGS-47 (Lake Louse, Alberta) were δ18O = −19.80 ± 0.09 and 

δ2H = −150.20 ± 0.79‰ (n = 10) VSMOW, respectively. These data indicate overall analytical precisions bet-

ter than 0.2 and 2.0‰ for δ18O and δ2H, respectively. We also calculated deuterium excess (d-excess) values 

by d-excess = δ2H − 8 × δ18O (Figure S1), which ranged from 1.9 to 16.8‰.

To investigate the potential climatic controls on the surface water isotope values, we correlated river δ18O 

to 112 climatic variables, many of them monthly, including from the WorldClim v2 and Bioclim databases 

at 30 arc-second spatial resolution (Fick & Hijmans, 2017), and the Global Aridity Index and potential 

evapo-Transpiration (PET) Climate Database v2 (Trabucco & Zomer, 2018), using least squares regression. 

Although our samples were collected mostly in November, we correlated the measured δ18O values to 

mean monthly climate parameters to test for the strongest potential controls. We also correlated our sur-

face water stable isotope data against an additional five physiographic variables including sample latitude, 

longitude, distance from the coast (in decimal degrees), sample altitude, and catchment altitude (for a 

subset of rivers; n = 157) for a total of 117 different climatic and physiographic variables. The interpolated 

climate data, results of the correlation matrix, including Pearson r, p-values, slopes, and intercepts, are 

shown in Table S3.

The WorldClim database is available open-access to maximize utility to the research community. World-

Clim version 2 represents monthly averaged climate data for 1970–2000  years CE from spatially inter-

polated thin plate splines and is improved in areas of large spatial gradients and rain shadows. For New 

Zealand, the WorldClim data is covered by 598 stations (Figure 1), and shows a high density of stations cov-

ering most of the South Island, with the exception of Fiordland (Fick & Hijmans, 2017). We also used the 

1981–2010 NIWA precipitation coverages (https://niwa.co.nz/climate/research-projects/national-and-re-

gional-climate-maps). These data were made using a trivariate thin plate smoothing spline that included 

latitude, longitude, and an expert-guided map of mean annual precipitation (Tait & Zheng, 2007), and thus 

are likely to be a more accurate representation of precipitation amounts and patterns for New Zealand. 

From the NIWA coverages, we used monthly average precipitation, mean annual precipitation, and season-

al precipitation totals (DJF, MAM, JJA, SON) and calculated precipitation of the wettest and driest months 

and quarters. The catchment parameters were derived from a USGS Earth Explorer digital elevation model 

(DEM) of New Zealand at 30-m spatial resolution, via mapping of drainage networks to delineate the 

upslope catchment of the water sample locations. Several built-in Spatial Analyst algorithms of ArcGIS 

10.3.1 toolbox and a Python program was developed and executed to automate the delineation process. The 

DEM reconditioning was performed where elevation of any sink-hole pixels was raised to match lowest 

neighboring pixels.

The derived stream network provides a detailed surface flow pattern that can be used to delineate 

sub-catchments and upstream hypsometric mean, maximum, as well as catchment relief above the sam-

ple collection site. The stream network of the South Island was mapped in three steps. In the first step, 

a flow direction map was calculated from the reconditioned DEM based on eight-pixel neighborhood 

where the direction of flow at a pixel is toward the lowest neighbor. In the second step, a flow accumu-

lation map was created and thresholded. In a flow accumulation map, a pixel value is the number of 

upslope contributing pixels. A threshold was applied to flow accumulation to identify locations where 

sheet flow becomes concentrated flow, that is, all pixels larger than threshold belong to streams. The 

threshold was chosen iteratively to ensure that the streams of water sample locations were delineated. 

Lastly, in the third step, a stream ordering algorithm was applied to group the pixels that form a single 

link of the stream network. Our approach resulted in 157 river catchments that could be matched with 

GPS coordinates; many of the other sampled streams were very small and were not captured because 

the resolution of the DEM was too low. In this research, the threshold was chosen through iterative 

adjustments to ensure streams for the maximum number of water sample locations. The water sample 

locations were snapped to the closest streams and their catchments were delineated. The catchment 

parameters for each sampled were mean, minimum, and maximum altitudes and upstream catchment 

area. To determine the altitude effect of stable isotopes, we used the mean catchment altitude instead of 

sample collection altitude.
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3. Results and Interpretation

3.1. Spatial Variations in River Water δ18O and δ2H Values

We observe clear spatial variations in stable isotope values of river waters. δ18O values were high on the Tas-

man Sea slope of the South Island (Figure 1), with a range between −4 and −7‰ for nonglacierized basins 

(e.g., Punakaiki and Nile Rivers). Glacierized catchments on the Tasman slope include an integration of ice 

and snow melt with rainfall up to the highest altitudes (>3,000 m) of the Southern Alps, and these rivers 

have lower δ18O values (e.g., Fox and Waiho rivers with δ18O values of −9.7‰ and −9.1‰, respectively) 

relative to nearby nonglacierized catchments. However, the lowest river δ18O values were found southeast 

of the Mount Aspiring and Aoraki/Mount Cook National Parks, where the continental divide is defined by 

peaks with altitudes higher than 2200 m. The stream with the lowest δ18O value we measured is the nongla-

cierized Luggate Creek (δ18O  =  −12.8‰), which has a δ18O value significantly lower than the glacially 

sourced Tasman River (δ18O = −9.6‰) with headwaters originating on Aoraki/Mount Cook at 3,724 m. In 

broad terms, the river δ18O values decrease from the Tasman Sea to east of the divide, then increase from just 

east of the Southern Alps main divide toward the Pacific coastline where δ18O is mostly between −7‰ and 

−10‰, with the exception of higher (∼−5‰ to −7‰) values around the southeast coast (Figure 1). These 

observations indicate large spatial variations on the stable isotope values of South Island river waters. The 

highest South Island δ18O values occur along the upwind (western) slopes of catchments that drain toward 

the Tasman Sea, while the lowest values are from interior locations in the lee of the highest Southern Alps 

peaks. Intermediate to high δ18O values are also located along the Pacific slope.

Our data define a surface water line (Figure 2) for the South Island of δ2H = 8.17 (±0.26) × δ18O + 10.57 (±2.04), 

which is identical within 95% confidence interval uncertainties to the GMWL of δ2H = 8.17 × δ18O + 10.35 

(Rozanski et al., 1993), and to the New Zealand meteoric water line δ2H = 7.92 (±0.05) × δ18O + 11.07 

(±0.31) defined by (Frew et al., 2011). The δ18O/δ2H slope of 8.16 and intercept of 10.57 demonstrates that 

the river waters have not been significantly affected by evaporation, which, if a strong influence, would 

lower the slope and intercept away from GMWL values. The river waters show a smaller δ18O range than 

that observed in monthly precipitation values spanning 3 years (Frew et al., 2011), and our data range (Fig-
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Figure 2. Surface water line for the South Island of New Zealand. The slope and intercept of the equation suggests 
that surface waters are a proxy for meteoric waters and are very similar to the global meteoric water line of Rozanski 
et al. (1993).
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ure S2) compares better with July–August (mid-to-late winter) precipi-

tation (Baisden et al., 2016). We attribute this to our sampling campaign 

at the end of the spring melt season (November 2016), when rivers con-

tained snowmelt that fell as winter precipitation in the preceding months.

3.2. Climatic and Physiographic Controls on River δ18O Values

We observe strong correlations (Table S3) between river δ18O and month-

ly temperature; all r values are significant at the 0.05 level or higher, 

unless indicated otherwise. Monthly Pearson r values are shown in Fig-

ure  3 reveal that minimum winter temperature (Tmin) is most strongly 

correlated to river δ18O, with average (Tavg) and maximum temperatures 

(Tmax) somewhat less strong. For example, river δ18O values show Pear-

son r correlations of r = 0.63–0.70 with winter (JJA) monthly Tavg and 

0.75–0.78 with monthly Tmin. The temperature gradients and 95% con-

fidence intervals of δ18O versus Tmin range from 0.58  ±  0.07‰ per °C 

(July) to 0.90 ± 0.18‰ per °C (March). The gradients for Tmax are largest 

during late autumn to mid-winter (MJJ) with slopes of 0.42  ±  0.16 to 

0.53 ± 0.13‰ per °C, and for Tavg range from 0.72 ± 0.11 to 0.78 ± 0.14‰ 

per °C across mid-autumn through early spring (AMJJAS). Correlations 

to summer temperatures are weaker. Among the nontemperature vari-

ables, δ18O showed a strong inverse correlation to December potential 

evapotranspiration (r = −0.75), and PET and Tmax were the only ones that 

showed stronger significant correlations to summer climate data. Several 

variables had significant correlations to δ18O but mostly lacked a clear 

seasonal cycle: in order of decreasing strength of correlation, δ18O was 

correlated to vapor pressure (r ≥ 0.62), wind velocity (r ≥ 0.46), then pre-

cipitation (r = 0.32–0.40, NIWA data). Solar radiation had weak correla-

tions to δ18O. In the BioClim data set, the strongest correlations were with 

temperature seasonality (Bio04, r = −0.75), minimum temperature of the 

coldest month (Bio06, r = 0.78), and temperature annual range (Bio07, 

r  =  −0.77) of which each parameter exhibits the most extreme values 

in the continental interior of the South Island. In contrast, correlations 

to precipitation parameters are lower than those for temperature, with 

the strongest correlations to precipitation of the driest month (r = 0.32, 

NIWA data) and precipitation of the wettest quarter (r  =  0.37, NIWA 

data). The strongest correlation with the monthly precipitation data was 

for June precipitation (r = 0.40), which is relatively weak in comparison 

to the winter temperature variables.

Many of the climate variables are collinear and are related to the conti-

nental nature of the central South Island east of the Southern Alps. For 

example, distance from the coast is a strong predictor of minimum winter 

temperatures (e.g., r = −0.83 between July Tmin and distance from the 

coast), temperature seasonality (r = 0.85), and mean temperature of the 

coldest quarter (r = −0.74; see Table S3). In addition, distance from the coast is also a predictor of Decem-

ber potential evapotranspiration (r = 0.76), and several other climate variables change with distance from 

the coast. Taken together, these climate and geographic indicators can be interpreted to reflect the strong 

increase in continentality with increasing distance from the coast, which achieve maximum levels in the 

lee of the highest peaks of the Southern Alps. In the most interior part of the South Island, winter temper-

atures are lowest, summer has the highest potential evapotranspiration rates and temperature seasonality 

is greatest.

A latitudinal transect of samples from the November 2016 samples illustrates the decrease to minimum 

river δ18O values in the lee of the Southern Alps (Figure 4), and that the trends in δ18O values follow climatic 
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Figure 3. Monthly Pearson r values of climatic data to South Island river 
δ18O values. (a) shows correlations between river δ18O and nontemperature 
data; precipitation correlations are to the NIWA data, and (b) are monthly 
correlations against temperature data. Open circles indicate correlations of 
statistical significance (p < 0.05). (c) Slopes, in ‰ per degree C, of the river 
δ18O values against monthly minimum temperatures.
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proxies of continentality, including temperature annual range (most 

extreme shifts in interior), December PET (with drier summers in the 

center of the South Island), and July Tmin (coldest winters in the interior). 

We therefore interpret the river δ18O values as most strongly responding 

to indicators of continentality on the South Island, and this interpretation 

is confirmed by the strong correlation between river δ18O values and dis-

tance from the coast (r = −0.72).

Compared to physiographic variables, there are weak correlations be-

tween river δ18O and latitude (r = 0.28, p < 0.05) and longitude (r = 0.16, 

p  <  0.05), demonstrating that geographic variables are less important 

than temperature and continentality controls on δ18O values (Table S3). 

We attribute this finding partly to the NE-SW orientation of the South 

Island and the Southern Alps, but also to the lack of a significant latitude 

effect as witnessed by similar values along the entirety of the Tasman 

Sea coast. The correlation to sample collection altitude (r = −0.55) was 

weaker than those related to the temperature variables and distance from 

the coast, but stronger than precipitation variables. However, collection 

altitudes are biased to the altitudes of the road network and are thus not 

likely a robust proxy for the mean catchment altitude, which could have 

a different correlation to δ18O values. To overcome this bias, we also de-

termined maximum and upslope mean hypsometric catchment altitudes 

for a subset (n = 151) of the data, excluding the larger rivers, for which 

ArcGIS could accurately identify drainage basins. Some of the small 

streams in our data set did not result in accurate catchments due to the 

relatively coarse resolution of the elevation model. The correlations be-

tween δ18O and mean and maximum catchment altitudes are r = −0.41 

and r = −0.28, respectively, which are surprisingly weaker than to those 

of sample collection altitude (r = −0.51 for the n = 157 subset). The cor-

relation between δ18O and catchment relief (maximum catchment alti-

tude minus sample collection altitude) was r = −0.14, a relatively weak 

relationship.

We evaluated the spatial distribution of deuterium excess (d-excess) val-

ues obtained for the Tasman and Pacific slope drainages separately to de-

termine if moisture source is another possible climatic control on river 

isotope values. This separation by drainage aspect was suggested by the 

observation of higher d-excess values (±one standard deviation) of rivers 

draining the Tasman (d-excess = 11.0 ± 2.6‰) versus the Pacific coast 

(d-excess = 8.2 ± 2.9‰; Figure 5). The origin of the different d-excess 

signature on the two slopes is somewhat unclear but is likely related to 

precipitation processes, as the strongest predictors for d-excess (Table S3) 

among the climatic variables were precipitation of the coldest quarter (r = 0.48), the aridity index (r = 0.42), 

and June precipitation (r = 0.40). Higher PET in the lee of the Southern Alps may also produce more evap-

oration of river values and result in higher d-excess values. Temperature variables were weak predictors 

of river d-excess (r ≤ |0.23|). The differences in d-excess as a function of Tasman versus Pacific slopes thus 

seem to indicate differences in moisture sources (Pfahl & Sodemann, 2014).

We followed this analysis by determining Tasman versus Pacific slope surface water lines and altitude ef-

fects, as well as investigating whether the difference in isotopic values was related to the presence of glaciers 

in the river headwaters. The respective water lines for the Tasman and Pacific slope surface water line sub-

sets are δ2H = 7.18 × δ18O + 5.7 and δ2H = 7.67 × δ18O + 5.4, respectively. The regression equation slopes 

>7 indicate that a kinetic isotope effect from evaporation is not a strong control on the d-excess differences. 

In comparison to the relatively weak correlation between δ18O and sample collection altitude for the entire 

data set (r = −0.51), we observe stronger altitude-δ18O correlations when the Tasman and Pacific slope data 
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Figure 4. Transect across the South Island. δ18O values (blue) show lowest 
values in the center of the South Island, with higher values along the coast. 
Inset map shows subset of data used in plot. River δ18O values are strongly 
correlated to Temperature annual range, July minimum temperature, and 
December potential evapotranspiration, all three of which are indicators of 
continentality.



Paleoceanography and Paleoclimatology

are treated separately: Tasman slope streams of Δδ18O = −2.17‰ per km 

(r = −0.66; Figure 6), and the altitude effect for the Pacific slope drain-

ages of Δδ18O = −2.23‰ per km is similar but has a weaker correlation 

(r = −0.50). These data support the contention of an altitude influence 

on δ18O values, but this relationship is obscured somewhat in the full data 

set because of the decrease in δ18O across the South Island associated 

with rainout and moisture source mixing. We do not find any clear dif-

ference in glacierized versus nonglacierized catchments with respect to 

δ18O and d-excess (not shown), suggesting that the presence or absence of 

glaciers is not a strong control on the difference in isotopic values of the 

Tasman and Pacific slopes.

Finally, we compare the spatial distribution of d-excess values to the ex-

tent and boundaries of South Island regional climate districts (Figure 7) 

to evaluate potential mechanisms that drive the observed distribution in 

surface water isotopes (Kidson, 2000; Lorrey et al., 2007). Salinger and 

Mullan  (1999) applied rotated principal component (RPC) analysis to 

New Zealand temperature and precipitation station data from the 1930s 

to the 1990s to identify characteristic patterns of interannual variability. 

RPCs were then correlated to regional atmospheric circulation indices 

to evaluate how the interaction of atmospheric flow with topography 

produces characteristic climate zones. Four RPCs with significant cor-

relations to atmospheric circulation indices were identified for the South 

Island. Two of them show how positive precipitation anomalies along the 

eastern margin of the South Island occur due to strong easterly to south-

easterly flow derived from the Pacific Ocean. A third RPC incorporates 

most of the South Island west of the Southern Alps, where anomalous-

ly high precipitation is derived from westerly to northwesterly flow over 

southern New Zealand. The final RPC showed significant correlations 

between rainfall over the northernmost margin of the South Island and 

anomalous northerly flow. Kidson (2000) expanded on that work by iden-

tifying twice-daily synoptic-scale circulation patterns defined by k-means 

clustering, and retained three climate zones for the South Island (Zones 

4–6; Northern, Eastern, and Western/southern South Island; NSI, ESI, 

and WSI). These homogenous regional climate districts provide an inter-

pretive framework for evaluating the d-excess variations in South Island 

surface waters because they are associated with distinct moisture source 

regions. Low d-excess values (7.0 ± 2.2) along the eastern margin of the 

South Island are likely caused, at least in part, by precipitation derived 

from the Pacific Ocean along an easterly flow trajectory. Higher d-excess 

values (10.3 ± 4.2) west of the Southern Alps in the WSI are likely due to 

precipitation that originated south and west of NZ. For the northwestern 

NSI, d-excess values (10.8 ± 2.0) are statistically identical to the WSI, an observation that suggests that pre-

cipitation at northernmost margin of the South Island has a northerly Tasman Sea source. We argue that 

different moisture source conditions, specifically differences in temperature and relative humidity where 

surface ocean water evaporation takes place (Pfahl & Sodemann, 2014), contribute to the variations in d-ex-

cess around the South Island. Small changes in d-excess could also arise from evaporation in rivers or soil 

between the source regions, but this effect would have to be small because the slope and intercept of the 

surface water line (of δ2H = 8.17 × δ18O + 10.57) indicates minimal evaporation of waters.

3.3. Climatic and Topographic Control of South Island River δ18O Values

To create a predictive model of South Island river δ18O values as measured during the November 2016 

sampling campaign, we tested several multiple regression models for δ18O and evaluated their statistical 

fits using the root-mean-square error (RMSE) metric. We screened the data set for only those correlates 
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Figure 5. Deuterium excess plots by slope. The data show distinctly 
higher d-excess values for the Tasman Sea slope (top panel) than for the 
Pacific (middle panel), indicating a different mix of moisture sources for 
these regions. In the bottom panel, box and whisker plots show d-excess 
for both slopes.



Paleoceanography and Paleoclimatology

that explained more than 5% of the variation. We limited our model to 

the first four strongest variables to avoid over-fitting and collinearity, but 

inclusion of additional variables would yield marginally stronger corre-

lation statistics. To provide a robust model RMSE and regression coeffi-

cients, we completed 1000 multiple regression iterations in a jackknif-

ing approach by withholding randomly selected subsets comprising 20% 

(n = 38) of the data set.

First, we completed a multiple regression on the subset of samples 

(n  =  151) that included the catchment parameters of hypsometric 

mean, maximum, and minimum altitudes, and catchment relief (max-

imum minus minimum altitude above sample location). This jacknifed 

multiple regression included the variables April vapor pressure, annu-

al evapo-transpiration, mean annual temperature, and catchment relief 

and returned r = 0.89 (p << 0.05). Because the creation of an input grid 

for isoscape construction is computationally expensive (hypsometries for 

∼1.5 million pixels would need to be generated to create an input grid for 

isoscape construction), the catchment parameters were not considered 

further for the isoscape model at this time; future work could explore this 

idea in more detail. Second, we used variables with suitable input grids 

in a jacknifed multiple regression that included four variables (Novem-

ber solar radiation, December potential evapo-transpiration, minimum 

temperature of the coldest month, and latitude), which has similarly high 

explanatory power (r = 0.88, p << 0.05) and accounts for 77% of the var-

iance in South Island river δ18O values:
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The RMSE based on the withheld data is 0.68‰. Bivariate plots of the in-

put variable correlations and the final model correlation to measured δ18O 

values are shown in Figure 8. The multiple regression model captures the 

∼8‰ variation across South Island river δ18O values. A map of the residu-

als shows that sites with residuals between +1 to 2‰ are evenly distributed across the South Island, whereas 

there is a general clustering of sites with residuals between −1.0 and −2.0‰ around the highest portion of 

the Southern Alps (Figure S3). We suspect that the larger number of samples with residuals that exceed 

±1‰ around the Southern Alps may reflect the more complicated hydrology associated with snow, glacier 

ice, and liquid precipitation; however, there is no clear relationship between mean residual values or distri-

butions for glacierized versus nonglacierized basins, suggesting that the cause is not due to the presence or 

absence of glacial ice in the basin catchments. In our model, the residuals were uncorrelated to the modeled 

δ18O variations (Figure S4a), suggesting that the model is robust to the predicted δ18O variations. However, 

because our multiple regression model contains residuals that are correlated to the measured δ18O values 

(Figure S4b), we applied a “hybrid” approach (Bowen, 2010) to produce a residual-corrected isoscape of the 

November 2016 river δ18O values (Figure 9). To create the residual-corrected map, we linearly interpolated 

the residuals across the South Island and tapered them to zero along the coastline, then added back the 

residuals. Both the original and the residual-corrected isoscapes display the same geographic variations, so 

our following interpretations are not affected by the choice of residuals treatment; both models are available 

in GeoTIFF format as supplementary information (Figure S5), as is a derivative δ2H isoscape (Figure S6).

3.4. Model Validation

The utility of any model is assessed by its ability to predict river δ18O values collected in different places 

or different times. Because there are many possible influences on river δ18O values, it is difficult to test the 
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Figure 6. Altitude effects by drainage slope. The Tasman Sea and Pacific 
Ocean drainages exhibit altitude effects of about −2.2‰ per km, but with 
different intercepts that reflect the enhanced continental effect for the 
Pacific samples.
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model utility based solely on the internal statistics. To illustrate, we consider that if there are significant 

local watershed effects including variable runoff, ages, or water sources (snow vs. rain vs. groundwater), 

or large seasonal variability in the river δ18O values, and so on, our model may not have wide applicability 

beyond the November 2016 sample interval and we would expect to have large differences in predicted ver-

sus measure stable isotopic values. This case would represent the “signal” being smaller than the local scale 

“noise.” On the other hand, if our model can predict river isotope values within a reasonable uncertainty 

then it would suggest that our data have wider applicability beyond the interval of the sample campaign, 
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Figure 7. Deuterium excess variations on the South Island. The Tasman slope has significantly higher dx values than 
the Pacific slope, suggesting a difference in moisture sources for these two regions. Modified homogenous climate 
districts (solid blue lines) from Kidson (2000) are shown, with the original Eastern South Island/Western South Island 
boundary shown as a dashed line. DEM, digital elevation model.

Figure 8. Modeled versus measured South Island river δ18O values. (a) shows the strong correlation between modeled 
and observed δ18O values (r = 0.88), with the four predictors of the multiple regression model, arranged in decreasing 
r values being (b) minimum temperature of the coldest month (r = −0.78), (c) December potential evapotranspiration 
(r = −0.75), (d) November solar radiation (r = −0.42), and (e) latitude (r = −0.28). Slopes (m) are noted for each 
variable with respect to δ18O.
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and that the dominant climatic and physiographic controls on our data set are applicable on longer time 

scales, that is, the signal is stronger than the noise. With this question in mind, we ask how well is our mod-

el—based on samples collected over a short time interval of November of 2016—able to predict the δ18O 

values of independently collected archived samples across all seasons spanning the 1980s through 2010s? 

We first look to a subset of rivers (n = 24) collected from the South Island (Table S2) that were sampled 10 

times over a year, to assess the degree of seasonal δ18O variation. The standard deviations of the seasonally 

varying δ18O values for the individual rivers range from 0.1 to 1.6‰, with a mean standard deviation of 

0.33‰. Taken together with the 0.3–0.6‰ seasonal standard deviations of the Stewart et al.  (1983) river 

data, these data show that the expected seasonal variations of δ18O values in New Zealand streams should 

be less than ∼1.0‰ for most rivers, and considerably less for some others. Because the signal in our spatial 

δ18O variations of ∼8‰ is sufficiently larger than ∼1.0‰ possible seasonality, then the relative spatial var-

iations are likely robust.

To further assess model performance, we compiled 127 independently measured streams with δ18O and/or 

δ2H values from the published literature (Blackstock, 2011; Kerr et al., 2015; Stewart et al., 1983) including 

the 24 rivers reported above (Table S2) to calculate the statistical fit, and mean and standard deviation of 

the residuals. The Stewart et al. (1983) δ2H data, collected in the 1970s and 1980s, were converted to δ18O 

values according to our local surface water line equation from Figure 2. We omitted the Waimakariri River 

data from Blackstock (2011) because it is a large river sourced in the Alps that was sampled near the Pacific 

coast, but we used the other smaller rivers in this data set. The river samples were collected at different 

months within the year, and thus contain variability associated with the seasonal cycle, and their measured 

versus predicted values provide a preliminary estimate of how well our statistical model can predict the δ18O 

values of South Island rivers. We emphasize that our model and isoscape is publicly available to permit ad-

ditional testing against archived or future river isotope values by other workers, which would be particularly 

helpful should currently unpublished data eventually be made publicly accessible. First, we compared the 

measured δ18O values of 30 rivers analyzed by Stewart et al. (1983) and Kerr et al. (2015) for which we also 
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Figure 9. South Island δ18O isoscape. The data show highest δ18O values along the Tasman coast and a pronounced 
decrease in δ18O in the lee of the Southern Alps. The isoscapes is based on the multiple regression model, corrected for 
interpolated residuals.
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have measured δ18O data. The mean δ18O difference for this comparison is 0.09 ± 0.68‰. This comparison 

suggests that there have been only small variations in river isotope values over three to four decades, at least 

for this data subset. The small δ18O differences support our observations (above) that seasonal δ18O variation 

in South Island streams were also small.

Second, we interpolated model δ18O values for each sample in the validation data set using the δ18O isoscape 

(Figure S4) derived from the residual-corrected multiple regression model, and calculated residual δ18O val-

ues for every river in the validation data set in Figure 10 (measured δ18O minus modeled δ18O). The results 

of this analysis return a RMSE of 0.81‰ (r = 0.83, n = 127). For comparison, the spatial variations in river 

δ18O across the South Island are ∼8‰ (the signal), significantly larger than the 0.81‰ RMSE values (the 

noise). These data demonstrate that our river δ18O isoscape can predict within ∼1.0‰ the values for rivers 

that were sampled at other locations and at other months within the seasonal cycle. This result is only possi-

ble if the spatial patterns in river δ18O values across the South Island are robust over time and are reasonably 

well captured by the samples collected in November 2016. The low δ18O RMSE values conclusively show 

that watershed scale complications are not sufficiently strong to efface the spatial δ18O signal.

LACHNIET ET AL.

10.1029/2021PA004220

14 of 20

Figure 10. Predicted versus measured δ18O values. (a) is the measured versus predicted δ18O values for the validation 
river data set (n = 127; blue filled circles), and our full data set (n = 192, light orange) are provided for context. Our 
residual-corrected model predicts (r = 0.83) the δ18O values of the validation data set with an root-mean-square error 
(RMSE) of 0.81‰. (b) Histogram of the residuals for the validation data set. (c) shows the predicted values of JJASON 
precipitation (arithmetic mean) of the CDRP isotope stations on the South Island (Frew et al., 2011). Our nonresidual-
corrected model predicts (r = 0.85) the δ18O values of JJASON arithmetic average δ18O values with an RMSE of 0.74‰. 
(d) Histogram of the residuals for the CDRP data set for JJASON. These data show that the ∼8‰ island-wide variability 
encoded in river δ18O values are captured by the model and represent dominant processes that are applicable on longer 
timescales.
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Finally, we compare the river δ18O isoscape to meteoric precipitation (Figure 9). This exercise is not to sug-

gest that river water sampling campaigns should be used to infer meteoric precipitation δ18O—that should 

be done by precipitation sampling—but it serves to test how well the robust spatial variations recorded by 

rivers are related to patterns in meteoric precipitation. As discussed earlier, if the rivers are strongly affected 

by seasonality and basin-scale complications, their δ18O values should bear little resemblance to meteoric 

precipitation δ18O values. However, if the river values encode primary climatic information that is robust 

over time, they should compare well to meteoric precipitation δ18O values. Thus, we compared the δ18O 

values of annual and seasonal means meteoric precipitation from the CDRP data set of Frew et al. (2011) 

to our river δ18O multiple regression model, by interpolating predicted δ18O surface water values for the lo-

cations of the isotope monitoring stations that have data spanning 2007–2010 (Table S4). The RMSE of the 

predicted values from the surface water isoscape versus the arithmetic mean of precipitation δ18O for the 

South Island stations is 0.68‰ (r = 0.83, p << 0.05; Figure 10), but that for weighted precipitation was con-

siderably worse (RMSE = 1.49, r = 0.71, p << 0.05). We then compared the arithmetic and weighted mean 

meteoric precipitation δ18O values of June through November (JJASON) to the surface water isoscape val-

ues interpolated to the meteoric station locations, under the supposition that these months approximate the 

months that are most relevant for the November sampling dates of rivers. The statistics showed a good fit, 

with RMSE values of 0.79 and 0.76 for the arithmetic and weighted JJASON means, respectively (r = 0.82 

and 0.85, respectively, both p << 0.05).

This model validation exercise demonstrates that our South Island river water multiple regression model and 

isoscape can predict δ18O values of independently collected rivers to better than 0.80‰, and the river data 

are strongly related to the seasonal (JJASON) meteoric precipitation δ18O values to better than ± 0.80‰. For 

comparison, the island-wide δ18O variability we see in our data set span ∼8‰. These data conclusively show 

that the spatial river δ18O values in our data set contain strong climatic and physiographic controls that are 

also present at other times and places in surface and meteoric waters.

4. Discussion

Our study demonstrates that South Island river δ18O values are controlled by climate and topographic ef-

fects, and these data can help constrain the dominant climatic processes that influence δ18O in modern and 

ancient settings. The ∼7‰ magnitude of δ18O decrease in the isotopic rain shadow is evident by comparison 

of δ18O values from small drainages on the Tasman slope of ∼−5‰ (e.g., the Punakaiki, Nile, and Waiman-

garoa rivers) to ∼−11 to −12‰ in the isotopic rain shadow (e.g., Motatupo, Sonora Creek, and Luggate 

Creek). We suggest that the large temperature drop from the Tasman sea to the region in the lee of the 

Southern Alps drives isotopic distillation of heavy isotopes out of air masses, which in turn produces the 

lowest values in areas with the lowest minimum winter temperatures. Furthermore, the region with coldest 

winters in the central South Island (Central Otago) is also the least affected by delivery of moisture from the 

Pacific Ocean with higher δ18O values.

There are strong winter temperature correlations with river δ18O values, with lowest δ18O values in the 

most continental region with the coldest temperatures. The δ18O-temperature gradients of 0.58–0.65‰ /°C 

(for July and August minimum temperature, respectively) are similar to the gradient for global stations in 

the 0 °C–20 °C temperature range of 0.58‰ /°C (Rozanski et al., 1993). Similarly, the isotopic temperature 

gradients closely bracket the gradient from midlatitude sites in winter meteoric precipitation, of 0.58‰ /°C 

(Fricke & O'Neill, 1999). The similarity in the isotopic temperature gradients for the midlatitude New Zea-

land rivers and for the midlatitude meteoric precipitation is strong evidence of a winter temperature control 

on South Island river δ18O values.

The river data expand upon and complement early work on precipitation and surface water samples 

that demonstrated the existence of an isotope rain shadow in the lee of the Southern Alps (Chamberlain 

et al., 1999; Kerr et al., 2015). We measured river δ2H in the isotopic rain shadow as low as −80 to −90‰, 

significantly lower than the −72% measured by Chamberlain et al. (1999). We have shown that the develop-

ment of the isotopic rain shadow is associated with indicators of continentality, which include high temper-

ature seasonality, low rainfall, and increased distance from the coasts. These continentality indicators have 

their strongest expression for all of New Zealand in central Otago and Canterbury in the lee of the Southern 
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Alps (Macara, 2015). This situation arises from the rain shadow effect associated with rainout of westerly 

air masses and the foehn effect that develops from descending air that warms as it passes over the Southern 

Alps main divide and travels downslope. The driest valleys in the isotopic rain shadow have a semi-arid 

climate with median annual precipitation amounts less than 600 mm/yr, compared to >6,000 mm/yr along 

the crest of the Southern Alps (Macara, 2015). Our map of δ18O variations (Figure 1) shares similarities 

with the precipitation isoscape derived from a multiple regression of precipitation-weighted mean annual 

isotope values against temperature, precipitation amount, and elevation (Baisden et al., 2016). Both maps 

capture heavy isotope depletion in the lee of the central Southern Alps and higher values along the Tasman 

and Pacific coasts. However, differences in sample density across the South Island results in more detailed 

spatial variability in the surface water data.

The wide spatial extent of the isotopic rain shadow suggests that shielding of inland central Otago by coastal 

mountain ranges limits the delivery of easterly Pacific-sourced moisture, and that the source of river waters 

in the rain shadow is dominated by the Tasman Sea. A smaller area of heavy isotope depletion is predicted 

in the northeast South Island in the Kaikoura region where several topographic peaks exceed 2,000 m in 

altitude (Figure 9). Higher δ18O values along the eastern coasts of the South Island indicate that an easterly 

Pacific moisture source is contributing less-fractionated moisture due to shorter transport distance than 

inland locations, reiterating previous observations (Stewart et al., 1983).

Because of the strong correlations between winter temperature and river δ18O, paleoclimate proxy records 

that are linked to South Island surface waters, such as open-system lakes with hydrogen-bearing lake sedi-

ment (for δ2H analyses) or carbonates (for δ18O) should thus be sensitive to winter minimum temperatures. 

Aquatic and riparian vegetation that taps into river water should also be sensitive to temperature-driven 

variations in δ2H and δ18O values. Similarly, sites with the largest degree of temperature seasonality and 

temperature annual range are also inversely correlated with lower river δ18O values. The strong correlations 

to winter temperatures suggest that isotopic proxy records associated with river systems may be robust 

paleotemperature indicators.

Our data have implications for the site suitability of paleoclimate proxy data. Paleoclimatic records from the 

South Island have been used to reconstruct climatic variability and atmospheric regimes related to increased 

frequency of low pressure systems embedded in this prevailing westerly flow (Lorrey et al., 2014, 2007). 

However, the sensitivity of different locations on the South Island to variability of the westerlies is under-

defined, and generation of δ18O and δ2H isoscapes may be used to better guide site selection for modern and 

paleoclimate isotopic studies and provide a means to make more informed paleoclimate interpretations 

from downcore data. The δ18O data indicate that sites along the east coast reflect a mix of low-δ18O Tas-

man- and high-δ18O Pacific-sourced moisture. Changes in the relative amounts of westerly versus easterly 

sourced precipitation over time could thus have a strong influence on δ18O-based climate and environmen-

tal change proxies located east of the Southern Alps. Such changes in the atmospheric flow have been noted 

in the observational record (Salinger & Mullan, 1999), where easterly wind anomalies are associated with 

higher rainfall east of the Southern Alps. Rainfall from this direction would tend to diminish the magnitude 

of the isotopic rain shadow because Pacific-sourced moisture experiences less orographic rainout along a 

trajectory into the interior of the Island. The isoscape also identifies the location having the least amount of 

Pacific-sourced moisture in central Otago (lowest δ18O values), and proxy records from the eastern margin 

of the δ18O-low region may be most sensitive to small changes in the contribution of Pacific moisture over 

time. Further, the amount of heavy isotope depletion may have varied over time with changes in the specif-

ic humidity of Tasman-sourced air masses. For example, speleothem isotopic evidence was interpreted to 

indicate that the Last Glacial Maximum (LGM, ∼21,000 years ago) had weaker winter westerlies and higher 

δ18O values than at present (Lorrey et al., 2020; Whittaker et al., 2011). Less Rayleigh distillation of heavy 

isotopes associated with weaker westerlies may have resulted in a decrease in the trans-alpine isotopic gra-

dient during the LGM.

Targeting contemporaneous paleoclimate proxy sites from the Tasman slope and isotopic rain shadow 

regions east of the main divide may help further constrain changes in the spatial δ18O gradient over 

time and allow better testing about hypotheses of westerly wind strength and changing moisture sourc-

es. Comparisons to reactive transport models that explain δ18O gradients as functions of topography 

and energy balance appear well suited to quantify the possible causes of spatial changes in δ18O at 
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different times (Kukla et al., 2019). For example, changes in effective precipitation recorded at a net-

work of proxy sites located on different sides of the main divide, and especially eastern regions which 

incorporate signals of wetting and drying relative to present-day conditions reflecting changes in conti-

nentality, can support detailed assertions about synoptic type and climate regime changes (e.g., Lorrey 

et al., 2007, 2008). For example, an increase in blocking regime occurrence (Kidson, 2000), which is 

known to produce more frequent northerly and easterly flow across the country, may change the spatial 

isotopic gradient at times of different circulation dynamics. The minimum δ18O values in the isotopic 

rain shadow might also change over time as moisture sources shift, for example, a more easterly mois-

ture source delivering precipitation to inland areas would plausibly increase the δ18O values of surface 

waters because there are less orographic barriers in the transport pathway compared to air masses that 

pass over the Southern Alps. For records that can preserve deuterium excess variation like ice cores, 

such data could also implicate changing proportions of Tasman Sea versus Pacific Ocean sources over 

time.

Our focus in this paper was primarily on the relative spatial variations in river δ18O values, and in the 

quantification of δ18O-temperature gradients. Our data represent a spatial “snapshot” of river δ18O 

values that can be used as a baseline to test for changes over time with future sampling campaigns. 

Evidence from previous measurements on river δ18O and comparison to our data suggests that absolute 

δ18O values are accurate to generally better than ±1.0‰, but the spatial patterns—in particular, the low 

δ18O values in the Southern Alps rain shadow—are likely to be robust to small changes in seasonality 

and/or climate change. Because we currently lack comprehensive island-wide data constraining the 

seasonal or inter-annual differences in river water δ18O values, the isoscape patterns should be test-

ed and refined against future sampling campaigns which may improve our understanding of isotope 

climatology processes. Such a comparison would be useful, for example, to test for changing moisture 

sources under regional warming associated with anthropogenic climate change. In addition, strong 

spatial signatures may arise due to changes in major ocean-atmosphere modes of variability that im-

pact on New Zealand rainfall like the El Niño/Southern Oscillation (Jiang et al., 2013), the Southern 

Annular Mode (Ummenhofer & England, 2007) or just interannual δ18O variability. The δ18O data pre-

sented in this work are best viewed as a first attempt to determine river water spatial variations upon 

which future work can build. Our comparison with limited isotopic data from the 1970s and early 

1980s suggests relatively small changes in isotopic values over time. However, a more robust test of 

anthropogenic climate influenced on river water isotope values would require resampling of the net-

work over time. We hypothesize that δ18O values would increase over time due to the temperature-de-

pendent fractionation effect as the South Island warms due to a poleward movement of westerly storm 

tracks and expansion of the subtropical ridge, as is predicted for future drying of New Zealand due to 

a more positive Southern Annular Mode under the high-emissions RCP8.5 scenario (Lim et al., 2016; 

Yin, 2005).

Finally, our data also show the utility of short duration but areally extensive surface water sampling 

campaigns to constrain climatic controls on oxygen and hydrogen stable isotopic values. Despite the lim-

ited time interval for such sampling campaigns, such data reveal robust spatial variations and that have 

predictive ability. The conclusion that spatial surveys of surface water isotopes encode primary climatic 

controls is remarkable given the wide variety of potentially confounding processes that may influence 

surface water δ18O values. That a simple multiple regression model, collected over a short time interval, 

can predict δ18O values of independently collected samples at different times and places with a precision 

of better than ±0.80‰ (out of an island-wide range of 8.0‰) is strong substantiation for the validity of 

our approach. The data presented here for the South Island of New Zealand extend and confirm surface 

water tours in other regions spanning the tropics to the high-latitudes that have also shown strong pre-

dictive ability (Kendall & Coplen, 2001; Lachniet & Patterson, 2006, 2009; Lachniet et al., 2007, 2016; Li & 

Garzione, 2017). Furthermore, the surface water isoscape shows a reasonable ability to predict meteoric 

precipitation δ18O values (with an RMSE = 0.76 for weighted JJASON), an observation that is robust de-

spite the complications that arise from river δ18O seasonality, residence times, and watershed hydrologic 

processes.
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Data Availability Statement

All data, including measured isotope values, climatic data for each sample location, and statistical tables are 

available in the Supporting Information. River stable isotope data are archived in the WISER Database for 

the Global Network for Isotopes in Rivers database of the IAEA (https://nucleus.iaea.org/wiser/index.aspx) 

and can be accessed by searching “New Zealand” under the “GNIR-Synoptic” Group.
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