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GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 8, NO. 3, PAGES 279-293, SEPTEMBER 1994 

Climatic, edaphic, and biotic controls over storage and turnover 
of carbon in soils 

David S. Schimel,' B.H. Braswell,: Elisabeth A. Holland,' Rebecca McKeown,' 
D.S. Ojima ,3 Thomas H. Painter,' William J. Parton, 3 and Alan R. Townsend 4 

Abstract. Soil carbon, a major component of the global carbon inventory, has significant 
potential for change with changing climate and human land use. We applied the Century 
ecosystem model to a series of forest and grassland sites distributed globally to examine large- 
scale controls over soil carbon. Key site-specific parameters influencing soil carbon dynamics 
are soil texture and foliar lignin content; accordingly, we perturbed these variables at each site to 
establish a range of carbon concentrations and turnover times. We examined the simulated soil 
carbon stores, turnover times, and C:N ratios for correlations with patterns of independent 
variables. Results showed that soil carbon is related linearly to soil texture, increasing as clay 
content increases, that soil carbon stores and turnover time are related to mean annual 

temperature by negative exponential functions, and that heterotrophic respiration originates from 
recent detritus (~50%), microbial turnover (~30%), and soil organic matter (~20%) with modest 
variations between forest and grassland ecosystems. The effect of changing temperature on soil 
organic carbon (SOC) estimated by Century is dSOCMT = 183e 'ø'øa4r. Global extrapolation of 
this relationship leads to an estimated sensitivity of soil C storage to a temperature of-11.1 
PgøC'•, excluding extreme arid and organic soils. In Century, net primary production (NPP) and 
soil carbon are closely coupled through the N cycle, so that as temperatures increase, accelerated 
N release first results in fertilization responses, increasing C inputs. The Century-predicted 
effect of temperature on carbon storage is modified by as much as 100% by the N cycle 
feedback. Century-estimated soil C sensitivity (-11.1 PgøC4) is similar to losses predicted with a 
simple data-based calculation (-14.1 PgøC'•). Inclusion of the N cycle is important for even first- 
order predictions of terrestrial carbon balance. If the NPP-SOC feedback is disrupted by land use 
or other disturbances, then SOC sensitivity can greatly exceed that estimated in our simulations. 
Century results further suggest that if climate change results in drying of organic soils (peats), 
soil carbon loss rates can be high. 

Introduction 

Soil organic carbon comprises approximately 2/3 of terrestrial 
carbon storage. It has recently been suggested that soil carbon 

may play important roles as source [Houghton and Woodwell, 
1989; Schirnel et al., 1990; Townsend et al., 1992] or sink [Tans 

et al., 1990; Harrison et al., 1993] of carbon in response to 

changing climate and atmospheric CO 2. Several authors have 
used indirect evidence to suggest that soils serve [Wofsy et al., 
1993] or cannot serve [Schlesinger, 1990] as a sink for carbon on 
the timemale of decades; some current direct measurements show 

soils acting as local sources [Oechel eta/., 1993]. Interpretation 
of the role of soils is complicated by the fact that soils contain 
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fractions of nearly inert (turnover times of thousands of years) 
and highly active (microbial biomass) carbon, such that estimates 

of turnover time based on soil CO 2 efflux or primary production 
and total soil carbon are misleading. The modern flux is 

dominated by small, highly active fractions, 'while the stores are 

dominated by the long-lived fractions [Trumbore et al., 1990]. 

The importance of understanding the partitioning between 

fractions with different turnover times has been highlighted in 
recent papers by Trumbore [1993] and Harrison et al. [1993], 

who used isotope techniques and simple models to estimate the 

storage of carbon in soils. Despite the advent of isotope 
techniques, models are clearly required to extrapolate soil 

dynamics globally. Understanding changes in global soil carbon 

is further complicated by the difficulty of estimating the current 
global inventory [Schlesinger, 1977; Post et al., 1985; Eswaran 

et al., 1993]. A widely used inventory is based on an 
ext•apo!ation of soil carbon storage based on climatic and 

vegetation associations [Post et al., 1985; Smith and Shugart, 
1993]. Many studies, however, have shown that carbon stores and 

turnover time are sensitive to a range of factors which are not 

well-correlated with climate, such as soil texture, and which vary 
within vegetation types [Burke et al., 1989; Schimel et al., 1985]. 

Model analyses and better global soil maps [e.g., Webb et al., 
1993] can help to identify needed improvements in estimates of 
the global inventory. 
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In this paper we examine the sensitivity of a model of 
terrestrial organic matter to climate, soil texture, and detrital 
chemistry. The model (Century) includes coupled submodels for 

production and decomposition, linked by nutrient cycling (N and 
P). The model explicitly simulates fractions of soil organic 
carbon that have multiple turnover times and are forced by 

climate, site soil texture, and prescribed plant detritus chemistry. 

The model has been extensively validated against measured net 

primary production (NPP) and soil organic carbon (SOC) storage 
[Parton et al., 1987; 1994] and against isotopic measures of 

turnover time [Parton et al., 1994; Townsen& 1993]. The model 

was integrated to quasi steady state at sites spanning a wide range 

of temperature and rainfall regimes. We refer to the final state as 
a "quasi steady state" because interannual variations in climate 
within the climate record used to initialize the model result in 

small changes in carbon storage and turnover; results used are 
averages over the final simulated decades. At each site we 

analyzed model sensitivity to texture and plant lignin content. We 
examined texture because many studies [e.g., Burke et al., 1989; 

Becker-Heidrnann and Scharpenseel, 1992; Parton et al., 1994] 

have shown texture to be a significant control over SOC 

dynamics, and current global maps of soil texture are very poor. 

We focused on lignin, a complex polymer produced by 

vegetation, because it is a significant control over decomposition 

rates and because lignin concentration is a species-specific 

characteristic [Parton et al., 1994]. Thus the sensitivity of the 

model to changing lignin indicates the model's sensitivity to 

changing vegetation. Many other plant characteristics also 

influence biogeochemistry, such as allocation patterns and 

nitrogen content, but lignin concentration exerts the most direct 

influence and is most readily evaluated [Holland et al., 1992; 

Parton et al., 1994]. Since plant N uptake and tissue 

concentrations are computed variables in Century, plant N cannot 

be directly perturbed. 

Soil Organic Matter Model 

Model Description 

Century is a simulation model of the biogeochemical cycles of 
terrestrial ecosystems and includes submodels for forests, 

croplands, savannas, and grasslands. It incorporates 
representations of net primary productivity (photosynthesis minus 
respiration), stem respiration, allocation between aboveground 
and belowground tissue and plant chemistry (C:N ratio, lignin 
content). The submodels for the different structural ecosystem 
types are coupled to a common decomposition and soil organic 
matter stabilization scheme. The decomposition scheme is 

described fully by Parton eta/. [ 1987], with important updates 
documented by Parton et al. [1993]. Several other extant 

ecosystem models use a scheme similar to or based on Century 
(G'Day IComins and McMurtrie, 1993], Linkages [Pastor and 
Post, 1986], TEM [McGuire et al., 1992]), the relationships 
among these decomposition schemes are described by Schirnel et 
a/. [1991a]. 

The soil organic carbon scheme is central to this paper; a brief 
description follows (Figure 1 a). Detritus enters the soil or surface 
litter layer following the death of live plant tissue. The 
proportions of plant material in readily ("metabolic") and slowly 
decomposing ("structural") fractions are estimated based on plant 
nitrogen and lignin contents. Surface and root litter 
decomposition are simulated separately because of the different 

microclimatic and nutrient conditions in the soil and surface 

litter. As detritus decomposes, the remaining unrespired carbon 

flows into active soil organic matter fractions primarily 

composed of microbial biomass. A small fraction of the organic 

matter flows immediately into an intermediate turnover time 

compartment ("slow SOC"). Turnover of the microbial 

compartments also contributes to the formation of slow SOC. 

Decomposition rates of all of these compartments are controlled 

by climatic parameters and soil texture. Soil texture influences 

carbon stabilization because the clay particles in soil provide a 
reactive surface area for the stabilization of SOC in 

organomineral forms and because clay particles tend to form 

aggregates which physically protect SOC from decomposition. 
"Passive" SOC is formed from the ramover of microbial and slow 

SOC and is composed of organic compounds which are thought 

to be chemically resistant to further microbial degradation. 
Turnover of active SOC occurs on annual to decadal timescales, 

slow SOC on decadal to centennial, and passive on millennial 

timescales. The equations for the model are presented in detail by 

Parton et al. [1993], along with site-specific parameters for many 

of the sites examined in this study. 

Nutrients are released during the decomposition of the various 

detrital and soil organic matter fractions. Each fraction has a 

range of C:N ratios, varying as a function of the amount of 

inorganic N. This has the effect of narrowing the C:N ratios in N- 

rich sites and increasing turnover rates. Data show that forest 

soils often have wider C:N ratios than grasslands. In Century, 

forest soils are permitted to have wider C:N ratios than 

grasslands in the slow soil organic matter compartment. During 

the decomposition of the several soil and detrital components, 

nutrients are released to an inorganic nutrient pool, associated 

with the emission of CO2. The amount of N released is 

determined by the C:N ratio of the compartment and the rate of C 

loss as CO 2. As part of the microbial growth process 

("iramobilization"), the detrital compartments may also take up 

nutrients from the inorganic nutrient compartments. The 

difference between release (gross mineralization) and uptake of 

nutrients (iramobilization) is known as net mineralization and 

represents nutrient availability to the growing vegetation. 

Mineralization of soil nitrogen and phosphorus is the main source 

of plant-available nutrients, and since most terrestrial ecosystems 

are nutrient limited (added fertilizer will produce a growth 

response [Vitousek and Howarth, 1991]), knowledge of global 

patterns in nutrient availability is crucial to predicting response to 

land use, and climate and carbon dioxide changes [Schirnel et al., 
1990; McGuire eta/., 1992]. 

Experimental Design 

Century has recently been evaluated as part of a Scientific 

Commission on the Problems of the Environment (SCOPE) 

project on primary production and decomposition in temperate 

forests and grasslands. As part of this study, the model was 

compared with data on production and soil C and N storage at a 

range of sites worldwide, with generally good agreement in 

grassland and forest ecosystems. These simulations span 

significant portions of global biotic and climatic gradients (Figure 
lb). Data from these simulations and other validated simulations 

were used in the analyses presented below. Specifically, the 

Century model was run to quasi steady state, forced by observed 

monthly minimum and maximum air temperatures and 
precipitation [Parton et al., 1993]. The model calculates soil 
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Figure la. Compartment structure of the Century model, showing carbon flows and state variables. Controls over 
rate constants are indicated. The compartments combined for microbial (M), detrital (D), slow (S), and passive 

(P) are shown. 

temperature from air temperature, vegetation biomass, and soil 

properties. Soil temperature is used in the calculation of 
decomposition. Turnover times were calculated from 

compartment size and annual CO•. efflux for each SOC 

compartment separately and for total SOC. Equations describing 
the effects of mean annual air temperature (MAT) and texture on 

total SOC and SOC turnover times (averaged over differences in 

seasonality of temperatures, effects of precipitation, and 

vegetation type), were fit using a nonlinear least squares 

procedure. Simulations with increased temperature but fixed NPP 

were carried out at selected sites to test the model's sensitivity to 

the coupling of soil organic matter levels to NPP through the N 

cycle. 

At each site, simulations were performed at eight textures 

(Table 1) spanning a wide range of clay contents (10-50% clay). 
In addition, at eight sites chosen to span the climate range, plant 
lignin contents were varied between +50% and -50% of the actual 
value. We analyzed the effects of changing lignin content on 
SOC storage, SOC turnover time, slow SOC turnover time, and N 
mineralizafion rate. Effects on carbon storage and turnover were 

expressed as change per percent change in lignin from the 
observed value (grams per square meter or years per percent 

change in lignin). 

We did not directly simulate soil organic matter formation in 

peatlands, largely because we are unable to simulate the 
hydrology which leads to peat accumulation. We did, however, 
retrieve turnover times of litter compartments from northern sites 

(similar in composition to peats) to evaluate the potential 

decomposition rates and turnover times of peats if climate change 
causes northern peatlands to dry and become aerobic. Turnover 

times for the separate structural and metabolic litter fractions 

(Figure la) were analyzed separately rather than being 
aggregated. 

Results and Discussion 

Soil Carbon Storage 

Model results show strong (and roughly commensurate) 

dependency of soil organic carbon storage on mean annual air 

temperature, lignin, and texture (Figures 2a-2c) over the explored 
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SITES USED IN THIS STUDY 

Figure lb. Map showing sites for simulations. 

ranges of these variables. Note that the soil model is driven by 

monthly soil temperature rather than by MAT. The relationship 

of SOC storage to temperature can be described by a negative 

exponential function of temperature (see (1) and Figure 2c) with 

R2>0.75, averaged over texture (see (1)). The exponent (-0.034) 
is small enough to be consistent with the near-linear 

dependencies observed in some regional studies. Model results 

show C inventories to 20 cm ranging from >10 kg m '2 in far 
northern sites to <3 kg m '2 in tropical systems with sandy soils. 
Much of the vertical scatter apparent in Figure 2c arises from 

differences in precipitation between sites of similar temperature. 

The predicted effects of texture are significant, with C 

inventories varying by 1000-2000 g m '2 at a single temperature 
(Figure 2b). Model results suggest that the effect of texture is 

slightly larger in cold regions than in warm ones. Texture 

affected SOC storage in the model primarily by influencing the 

formation rate of passive C; effects on the soil microbial 

compartment are small [Parton et al., 1994]. Secondary effects of 

Table 1. Soil Textures Used in the Texture Sensitivity 
Analysis 

Sand Silt, Clay 
fraction 

0.25 0.5 0.25 

0.25 0.25 0.5 

0.25 0.65 0.1 

0.5 0.25 0.25 

0.5 0.1 0.4 

0.5 0.4 0.1 

0.75 0.1 0.15 

0.75 0.15 0.1 

texture occur through its influence on soil hydrologic properties, 

which affect the water budget and hence both production and 

decomposition. 

Increasing lignin content increased soil carbon storage linearly 

over the range of lignin values simulated; no relationship was 

apparent between climatic parameters and sensitivity to lignin. 

Effects of lignin content ranged globally from 3.3 to 18 g m '2 (A 
lignin) 4 . 

The joint global effects of temperature and texture are 

described by the equation 

SOC = 6488 (clay fraction) + 5408 (e '0'034T) (1) 

where T is mean annual temperature, SOC is soil carbon storage, 

and clay fraction is the fractional content of clay in the soil. This 

equation was fitted holding lignin constant at the values observed 

at each site. This equation describes the relationship between 

large-scale controls (texture and MAT) and SOC, averaging over 

considerable site-specific differences in seasonality of 

temperature and moisture, differences between air and soil 

temperatures, and vegetation characteristics. Both forest and 

grassland systems follow similar patterns with respect to texture 

and temperature. 

Soil Carbon Turnover Times 

Soil carbon turnover times were strongly influenced by 

temperature and texture. This relationship is described as follows: 

Xso e = -16 + 41 (clay fraction) + 46e 'ø'ø3r (2) 

where 'qoc is the turnover time (years) for SOC. Turnover times 
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Figure 2. (a) Soil organic carbon (SOC) versus mean annual 
temperature (MAT) and clay content. (b) SOC versus clay 
content, averaged over MAT. Lines indicate the range due to 

MAT. (c) Simulated and observed SOC versus MAT, averaged 

over temperature. Line indicate the range due to clay content. 
Data shown are from the U.S. Department of Agriculture 

compilation described by Buol eta/. [ 1990]. 
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Figure 3. (a) Mean SOC turnover time versus temperature and 

clay content. (b) Mean SOC turnover time versus clay content, 

averaged over MAT. Lines indicate the range due to MAT. (c) 

Mean SOC turnover time versus MAT, averaged over clay 

content. Lines show the range due to clay content. 
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Table 2. Sensitivity of Century Estimates of Soil Organic 
Carbon (SOC) and Turnover of Slow SOC (x,) to Changing 
Lignin at Selected Sites 

Site dSOC/d Lignin, d'Cs/d Lignin, 
g m '2 (A Lignin) 'l Years (A Lignin) 'l 

Colorado 5.3 0.06 

Davis, California 7.3 0.06 
Australia 18.5 0.15 

Kenya 3.5 0.00 
Kansas 3.3 0.01 

Mali 4.0 0.00 

Thailand 4.0 0.00 

Siberia 10.6 0.07 

for SOC, computed as the weighted average of the several pools, 

ranged from > 100 years in cold, clay soils to .<20 years in sandy 
tropical soils (Figures 3a-3c). Texture effects were clearly larger 
in cold soils, with differences of >40 years between clay fractions 

of 0.1 and 0.5 (Figure 3b). Tropical soils showed turnover time 

ranges due to texture of <20 years. Increasing lignin increased 
turnover time for SOC, primarily through changes in slow SOC 

turnover, by 0.01 to 0.1 years (A lignin) 'l, a significant effect 
because changes in lignin of 100-300% between vegetation types 

are possible (Table 2). 

It is important to note that the turnover time of total SOC is 

misleading, as it is the average over compartments with turnover 

times ranging in a single soil from ~ 1 year to thousands of years. 

In a soil with an average turnover time of 40 years, -30% of SOC 
will be in a compartment with turnover time of >1000 years. The 
average turnover time is thus merely an indicator of the impact of 
climate on SOC turnover and ignores the dynamics of multiple 
compartments with different turnover times. As noted before, 

texture influences average turnover time by increasing the 
proportion of SOC stored in the passive fraction, thus adding 
more long-turnover time SOC into the average. Changing lignin 
primarily affects the turnover of slow SOC [Parton et al., 1994]. 
The compartment-s•ffic turnover times are discussed below. 

Partitioning of SOC and Turnover Times 

Turnover times for the separate compartments in Century are 
influenced by temperature and were fitted by negative 
exponential curves, reflecting the underlying temperature 

parameterization, in which decomposition rates increase rapidly 
with increasing temperature. For ease of analysis we lumped the 
eight detrital and soil organic matter compartments into the four 
following (see also Figure 1): (1) microbial (M), surface 
microbes plus soil active organic matter; (2) detrital (D), surface 
structural, plus surface metabolic, plus root structural, plus root 
metabolic organic matter; (3) slow; and (4) passive. 

To a first approximation, global variations in the turnover 

times of the above four compartments can be explained by an 
exponential dependence of turnover on temperature. This is a 
direct reflection of the underlying parameterization of microbial 
activity versus temperature, although precipitation and 
seasonality of temperature also influence microbial activity. The 
microbial compartments show a slight dependency on texture, 

M 

MAT < 10C 10C<MAT<20C 20C<MAT<30C 

•c 
w 

o 

MAT < 10C 10C<MAT<20C 20C<MAT<30C 

Slow Passive 

MAT < 10C 10C<MAT<20C 20C<MAT<30C MAT < 10C 10C<MAT<20C 20C<MAT<30C 

Figure 4. Turnover times of Century SOC fractions versus MAT for (a) microbial SOC, (b) detrital SOC, (c) 
slow SOC, and (d) passive SOC. MAT is shown as three zones, MAT<10 ø' 10ø<MAT<20ø; and 20ø<MAT <30 ø. 



SCHIMEI• ET AL.: CLIMATIC, EDAPHIC, AND BIOTIC CONTROLS OF SOIL CARBON 285 

reflecting a parameterization in Century designed to capture 

effects of texture on microbial turnover [Schimel, 1986; 

Gregorich et al., 1991; Juma, 1993]. Figures 4a-4d show 
turnover times for M, D, slow, and passive organic matter 

averaged over textures and further averaged into 10øC MAT 
bands (ñ range over sites and textures), illustrating the 

exponential nature of the relationship. Equations describing the 
relationships between the compartment-specific turnovers, 

temperature, and texture are: 

Xm = -5.3 + 5.2 (clay fraction) + 8.8e 'ø'ø2r (3) 

'c a = -0.1 + 0.6 (clay fraction) + 7.3e 'ø'ø4r (4) • 

-67 + 9.1 (clay fraction)+ 159e 'ø'ø2r (5) 

-3300 + 370 (clay fraction) + 7400e 'ø'ø2r (6) 

where •;•, •;a. •;,. and x r are the turnover times for the compartments o. 
defined above and clay fraction is the fractional content of clay in 
the soil. In Century, lignin is routed to the slow SOC 

compartment, and changing lignin significantly affected slow ø 
turnover at some sites (Table 2). No relationship between 

Century sensitivity to lignin and climate was apparent. 

Partitioning of Respiration and C:N Ratios 

The carbon in heterotrophic respiration originates from three 
primary compartments in Century and is distributed with 

remarkable constancy among those compartments across wide 

ranges of MAT and percent clay but within vegetation types 
(Figure 5a). In virtually all simulations, about half of 

heterotrophic respiration came from decomposition of surface 

and root detritus (D), slightly higher in grasslands, and slightly 
lower in forests (Figure 5b). The difference between vegetation 
types is due to the higher turnover rates of the generally lower 
ratio of lignin to nitrogen detritus in grasslands. An additional 

-30% of heterotrophic respiration came from turnover of the 

surface and soil microbial biomass. The remaining 20% of 
heterotrophic respiration is derived from the slow SOC 

compartment, which has a turnover time varying globally from 

-10 (tropics) to >100 (boreal) years (Figure tic). Note that 

heterotrophic respiration is 50-70% of total soil respiration, the 

remainder being autotrophic or root respiration [e.g., Raich and 
Schlesinger, 1992]. 

C:N ratios were generally higher in forests than in grasslands, 

most notably in detrital and slow SOC compartments (Figure 5c). 
There were significant variations in detrital C:N ratio within 

grasslands. While Century permits the C:N ratios of the soil 

compartments to vary in response to mineral N levels, our 

simulations reveal little variability in C:N ratios of soil (as 
opposed to detrital) compartments (Figure 5c). This is because in 

the natural ecosystems simulated in this series of model 

experiments, nearly balanced processes of uptake and release 
occurred. The variable C:N ratio feature of the model is 

important in simulating decomposition in agroecosystems, in 
which wide variations in soil mineral N occur during fallow 
cycles and in response to fertilization. 

The partitioning of N into organic matter fractions, which in 

Century parallel the carbon fractions, significantly influences the 
response of ecosystems to disturbance or climate change. Only 
the slow SOC compartment offers a significant reserve of 

SOIL CARBON FRACTION BY POOL TYPE 

Grassland Forest 

Slow Passive 

SOIL RESPIRATION FRACTION BY POOL TYPE 

I [• Grassland Forest 

M D Slow Passive 

C/N RATIO BY POOL TYPE 

Grassland Forest I 

Passive 

Figure 5. (a) Fraction of forest and grassland SOC in M, D, slow, 
and passive SOC, averaged over all simulations. Vertical lines 

show standard deviations. (b) Fraction of forest and grassland 
heterotrophic respiration from M, D, slow, and passive fractions. 
Vertical lines show standard deviations. Note that while slow and 

passive fractions dominate the inventory, the active fractions 
dominate the respiration flux. (c) C:N ratios for M, D, slow, and 
passive fractions in forests and grasslands. 
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available N, as the microbial compartments are a very small 

fraction of SOM, the passive can only contribute slowly, and the 
detrital compartments actually serve as an N sink because of their 

wide C:N ratios. Thus the slow compartment serves as an N 

reserve, contributing N fertility when it declines, as in the early 
years of cultivation following land conversion [Schimel et al., 

1985]. If the slow compartment declines in response to 
temperature change, then the N released can contribute to 

increased plant productivity and decreased net ecosystem C 
losses associated with increased decomposition [Schimel et al., 
1990; Shaver et al., 1992] 

Soil C and the Global C Cycle 

There has been considerable discussion of the role of soils in 

the global carbon cycle. Tans eta/. [1990] suggested that carbon 

storage resulting from a large sink for atmospheric CO 2 (deduced 

from atmospheric concentration gradients) might be stored in soil 

or litter, as it had not been identified in inventories of living 
forest components. Schlesinger [1990] responded to this 
suggestion by arguing that soils could not accrete carbon at the 

rates implied by the Tans et al. [1990] scenario based on an 

analysis of rates of carbon accumulation in undisturbed soils 

from chronosequences [Schlesinger, 1990]. Others have 
suggested that future warming should release C from soils 

because the temperature response of heterotrophic respiration 

(carbon loss) is greater than that of photosynthesis (carbon gain) 

[Houghton and Woodwell, 1989; Schimel et al., 1991a,b; 
Townsend et al., 1992]. 

Our study speaks to both of these issues. First, in our model 
experiments, 50% to 70% of SOC to 20 cm resides in 

compartments with turnover times of •.100 years. These 

compartments can respond to a changing balance of inputs and 

outputs on timescales commensurate with the anthropogenic CO 2 

perturbation. Century predicts that in 10 years, 50% of tropical, 

25% of midlatitude, and 20% of high-latitude mineral soil SOC 

will turn over. The accretion rates for old landscapes presented 

by Schlesinger [1990] may reflect the time required to 

accumulate profile-integrated passive SOC rather than the time 

required for detrital, microbial, and slow SOC to adjust to 

changing inputs or losses (W.H. Schlesinger, personal 

communication, 1993). Schlesinger's [1990] study assumes that 

young landscapes and disturbed systems, which represent 

nonsteady state conditions and have high rates of carbon 

accumulation, do not cover sufficient area to account for the Tans 

eta/. [ 1990] sink. Young or disturbed soils may have dominated 

changes in carbon storage in recent decades [Harden et al., 1992; 

Parton et al., 1994]. Century simulations and a host of field 
studies demonstrate that increases in soil carbon can occur over 

decades [Parton et al., 1994; Jenkinson and Raynor, 1977; 

Paustian et al., 1990; Nadlehoffer et al., 1987]. We suggest that 

if CO2 or fertilizer and pollutant N increase global NPP over the 

coming decades, soil carbon increases can occur on a 
commensurate timescale. 

Second, the derivative of steady state SOC to 20 cm depth 

with respect to temperature, estimated from our ensemble of 

simulations, ranges from 78 to 200 g m '20c.l as a function of 
MAT (dSOC/dT = 183 e•'ø3nr). This suggests that effects on SOC 
of a 1-4øC temperature change are of the order of 10% of SOC to 
20 cm depth or -3-5% of the total C to 1 m depth. Additional 

warming would have progressively less effect on C storage. The 

estimated effect of warming is sensitive to the feedback between 

primary production and decomposition via the N cycle. We 

compared simulations of warming effects at eastern Colorado 
sites, with NPP held constant at the .control level, to simulations 

in which NPP was computed interactively as a function of 
climate and N availability. SOC losses were nearly doubled when 
NPP was fixed, compared with the normal coupled CENTURY 

simulations (dSOC/dT = -193 versus -102 g m'2), reflecting an 
increase in plant production of 22% in the coupled simulation. 
The increase in plant production arises from the release of 

mineral N from the respired soil organic matter (a 30% increase 
in N availability). 

We used soil area and density information from Eswaran et al. 

[1993] and global mean annual temperature (MAT) data from 

Legates and Willmott [1990] to globally extrapolate the effect of 
temperature on soil carbon storage. We excluded from this 

calculation aridisols (desert soils) because these soils may have 
insufficient SOC to sustain projected losses (-100 g øC'l). We 
also excluded histosols (organic or peat soils) because Century 
does not simulate peat-forming conditions well (but see 

Implications for Peat section below). We estimate the effect of 

warming (Table 3) on steady state SOC storage as -3.1 PgøC'l in 
the tropics and -8.0 in the mid- to high latitudes for a global total 
of-11.1 PgøC'l to 20 cm depth. Most of these losses will come 
from slow (-55% of SOC) and passive SOC (-35% of SOC), in 
proportion to their abundance in the soil, and so -55% of the 

tropical response will occur in tens of years, while the high- 
latitude response requires >100 years (based on the turnover 

times of slow and passive SOC). The full steady state response 
will require thousands of years because of the millenial year 
turnover times of the passive SOC. 

How does this result compare with other calculations? 

Jenkinson et al. [1991] estimated a global loss of-34 PgøC'l 

Table 3. Comparison of Modeled and Observed Change in 
Temperature on Soil Organic Carbon by Zone 

Model Tropical, Extra- Global, Depth 
PgøC'l tropical, PgøC'l 

PgøC-I 

Buol et al. -2.4 -11.7 -14.1 20 cm 

[1990] 

Century -3.1 -8.0 -11.1 20 cm 
Melillo et NA NA -18.8 20 cm 

a/. [1994] 
Townsend -15 -11 -23.2 1 m 

et al. 

[1992] 
Jenkinson NA NA -33.8 1 m 

et al. 

[19911 
Esser NA NA -32.5 1 m 

[•990] 

Friedlingst NA NA -21.0 1 m 
ein 

[1992] 
Potter et NA NA -26.6 30 cm 

a/. [19931 

NA indicates not applicable. 
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(Table 3). A loss to 20 cm depth of -18.8 Pg and a loss of -42.7 
PgøC '• to 100 cm has been estimated using the terrestrial 
ecosystem model (TEM) (J.M. Melillo, personal communication, 
1993). Esser [1990] calculated an effect of-32.5 PgøC '•. 
Townsend et al. [1992] estimated losses of-23.2 PgøC 4 globally, 
with-15 PgøC 4 in the tropics, -11 PgøC 4 in. the temperate zone 
(Table 3), and an estimated uptake of 2.8 PgøC '• in the boreal and 
tundra zones. Friedlingstein's [1992] model has a sensitivity of 
-21 PgøC '• (P. Friedlingstein, personal communication, 1993). 
Potter et al. [1993] calculated a sensitivity of -26 PgøC 4 to 30 cm 
(-21.5 Pg to 20 cm) using Carnegie-Ames-Stanford Approach 
(CASA). This result is of particular interest, as the soil 
decomposition submodel of CASA closely follows Century and 
uses very similar parameterizations. However, in CASA, NPP is 
calculated from intercepted photosynthetically active radiation 
(IPAR) and a growth efficiency œ, which is modified by climate. 
The IPAR estimates are derived from the satellite normalized 

difference vegetation index product [Sellers et al., 1992]. In the 
1 øC sensitivity experiment, increased temperature decreases NPP 
very slightly (from 48 to 47.5 Pg), compared with Century, in 
which a IøC increase causes an average 20% increase in NPP 

through the N cycle. The intercomparison shows broad 
convergence of estimates, although models which assume 
uniform turnover times to 1 m depth or which omit the N cycle 
feedback tend to be more sensitive to warming than Century. 

We also compared our estimated sensitivity with a simple 
empirical model based on data assembled by Buol eta/. [1990] 
(Figure 2c and Table 3). Buol et al. [1990] used data from a U.S. 
Department of Agriculture global soils data base and examined 
soil carbon as a function of mean annual temperature, with 

temperatures aggregated based on the temperature classes used in 
the U.S. Soil Taxonomy. We rescaled Buol et al.'s data by 0.83 to 
take into account the difference in C between 20 and 30 cm 

depths based on examination of a number of soil profiles. We 
fitted an exponential function to SOC versus T and took the 
derivative of that relationship as an estimate of steady state 

sensitivity. The mean estimated sensitivity for the extratropical 
regions was 192 g m '2 ø C 4, leading to a loss of 11.7 PgøC 4 from 
the mid- to high latitudes, well within the uncertainty of the 
Century estimate. Buol eta/. 's [1990] data suggest a loss of 59.5 
g m '2 øC 4 or 2.4 PgøC 4 from the tropics as a whole, again, in 
close agreement with Century. The correspondence of the model 
estimates with Buol et al. 's [1990] data and the extensive site- 

specific validation of Century [Parton et al., 1993, 1994] suggest 
reasonable credibility for simulated SOC storage and turnover 
times and for Century's ability to roughly simulate the magnitude 
and timescale of global soil carbon changes. 

At any given site the effect for temperature changes of <4øC is 
small (-10% of SOC) compared to the effects of disturbance, 
which can be of the order of 30-40% of SOC to 20 cm [Davidson 

and Ackerman, 1993]. Effects of temperature on SOC below 20 
cm will be smaller, since the turnover time of SOC increases with 

depth [$charpenseel and Becker-Heidrnann, 1992], an effect not 
considered in most of the models reviewed in this paper 

[Townsend et al., 1992; Esser, 1990]. However, both model 
experiments and copious field experience indicate that when 
ecosystems are disturbed, significant losses of soil carbon and 
nutrients occur [Parton et al., 1994]. If rapid climate change 

causes ecosystems, or some ecosystems, to "fall apart," the 
simple derivative at steady state suggested by our model 
experiments may be irrelevant. 

Global Turnover and Decay Times 

We fitted Century-simulated mean turnover times (from data 

shown in Figure 3) to MAT and soil texture (clay fraction) using 
the nonlinear fit described above. Mean turnover time is 

computed from SOC divided by respiration and is the average of 

compartment turnover times that range from -1 year to >1000 

years. The mean turnover time is useful in that it integrates the 

climatic and vegetation type effects (which affect the 

compartment turnover times) with soil texture (which affects the 

partitioning between fractions with different turnover times). We 

extrapolated potential mean turnover globally by overlaying the 

Legates and Willrnott [1990] mean annual temperature field on a 

soil texture map derived from the Food and Agriculture 

Organization global soil map [Zobler, 1986]. Note that while 

turnover times were extrapolated spatially, the equations were not 

extrapolated outside the temperature range used in developing the 
equation (the extreme high latitudes are shown as "longer than 70 

years"). In this analysis, large inland water bodies and extensive 

peatlands were excluded. Deserts, where SOC accumulation and 

turnover are significantly limited by precipitation, were not 

excluded, but our extrapolated results in harsh desert 

environments should not be given credence without further 

testing. These regions contribute little to global organic C storage 

or flux [Melillo et al., 1993]. Plate la shows SOC turnover 

mapped with the entire land surface set to a common texture 

(20% clay), thereby isolating the effects of temperature. Note the 

strong zonal pattern of turnover, with estimated turnovers in 

excess of 70 years at high latitudes and <20 years in the tropics. 

The addition of texture changes the geography of turnover rates 

considerably, with dramatic effects in the tropics. Since many of 

the world's fine-textured soils are in the tropics, the influence of 

texture has the effect of increasing the fraction of passive SOC in 

the tropics relative to the expectation based solely on 

temperature, thus increasing the average turnover time. The 

highly weathered clays found in some tropical soils may stabilize 

less SOC than clays typical of temperate regions, modifying this 

response. However, the effects of clay mineralogy are not in the 

current version of Century. 
In order to better understand the effects of model structure and 

zonal turnover rates on SOC dynamics, we computed the decay 

function of the system of equations for detrital, microbial, slow, 

and passive SOC, with inputs set to zero. We computed this two 

ways. First, we computed SOC at time t (SOC(t)) as the sum of 

the separate pools (M, D, S, and P) at each time step from 

SOC(t) = ZwiSOC i (0)e -k't (7) 

where w• is the fraction of SOC(0) in compartment i (i.e., M, D, 
slow, passive), from Figure 5a, with decay constant/q, estimated 
zonally as a function of temperature and texture using (3)-(6). 
Then, we computed 

SOC(t) = SOC(O)e -It (8) 

where k = E(wiki ), the mean decay constant for the four pools, 
applies to an average SOC pool instead of to the individual pools 
(equivalent to a one-pool model). The k's in (7) are estimated by 
zonally averaghng the results shown in Plate lb. 

Figure 6 shows the results. Note, first, the significant zonal 
differentiation in decay times, with initially higher rates in the 
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Plate 1. (a) Potential mean soil carbon turnover times extrapolated globally based on temperature, with texture 

set constant at 20% clay. (b) Potential mean soil carbon turnover rates extrapolated based on temperature and 

texture. Results were extrapolated using equation (2). Areas shown in black in both plates l a and lb are outside 

the temperature range used in developing the equation. Note the significant reorganization of the turnover 

geography which occurs as a result of the bias toward fine-textured (high clay) soils in the tropics. 

tropics (MAT >20øC). Note also that the timescale for decay in 
the four-pool cases is more than thousands of years due to the 
existence of the passive pool. Components of ecosystem response 

are controlled by the dynamics of soil recalcitrant fractions, 
introducing considerable lags, as has also been shown in transient 

calculations with Century under perturbed conditions [Schimel et 
a/., 1990]. 

Second, note the difference between the response of the one- 
and four-pool models. The former model has much faster 

dynamics than the latter, with overlapping trajectories for <25 

model years. Between-model differences are much larger than 
zonal effects. While the one-pool model (similar to Townsend et 

a/. 's [1992] model) shows zonal differentiation, its dynamics are 
almost certainly too fast. It seems unlikely to us that a one-pool 
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model of soil organic matter will yield realistic transient 

responses if any significant departure from steady state occurs. 

Implications for Isotopes 

The zonal distribution of the •513C of atmospheric CO•. is an 
important tracer in carbon cycle calculations [Quay eta/., 1992; 

Tans et al., 1993; Harrison et al., 1993]. Many calculations 

assume that CO•. returned to the atmosphere via respiration has 
the same isotopic signature as recently fixed photosynthate; that 

is, it should have the signature of the photosynthetic pathway 
(roughly -14 or -27%0 relative to Pee Dee belemnite (PDB)) 

modified over decades by the slow change in atmospheric •513C 
due to human perturbation of the C cycle (1.59'oo since the 

beginning of the industrial revolution [$tuiver et al. 1984]). Tans 

et al. [1993] have argued that because soil respiration, an 
important component of terrestrial respiration, comes from a 

compartment with a long turnover time, there will be a lag in 

respired 13CO•. relative to the changing atmosphere. Because of 
this, even if photosynthesis and respiration are balanced overall, 

there will be a positive flux of 13C to the atmosphere. This will 
affect calculations, such as those presented by Quay eta/. [1992]. 
Here we present a brief analysis of the lag effect due to soil 
respiration. 

First, about 30-50% of soil respiration comes from root 

respiration, and this CO 2 should bear the same isotopic signature 

as photosynthate [Raich and Schlesinger, 1992; Peterjohn et al., 
1993]. Our model predicts that of the remaining -50-70% of 

respiration, 25% originates from detrital turnover, 15% from 
microbial turnover, and 10% from slow SOC turnover. Detritus 

with global turnover times (except in peatlands) of <10 years 
should have an isotopic signature lagged by, at most, 0.1%o and 
modified by photosynthetic fractionation relative to the 

atmosphere, given the rate of change of •5•3CO•. (-0.029'00 yr '• 
[Tans et al., 1993]). The microbial biomass is largely derived 
from recent detritus and so should have a similar isotopic 
signature. Only the <20% of soil respiration derived from slow 

SOC should be significantly lagged relative to the atmosphere. 
The turnover time of slow SOC, again excepting peats, varies 
from--15 years in the tropics to -90 years in the high latitudes 
(compared with Harrison et al. øs [1993] suggestion of a global 
mean turnover time of 25 years for slow SOC). This suggests that 

a lag effect could be important, especially in high latitudes. A full 

analysis of the effect of soils on atmospheric 8•3C is given by R. 
Ciais et al. (Partitioning of ocean and land uptake of CO2 as 
inferred by •5•3C measurements from the NOAA/CMDL global 
air sampling network, submitted to Global Biogeochemical 
Cycles, 1994). 

Implications for Peat 

A significant fraction of global SOC is stored as peat. Peat is 
composed of partially decomposed plant detritus, in which 

further decomposition is arrested or greatly slowed by a 
combination of anaerobic conditions, low temperatures, low pH, 
and nutrient impoverishment. Century simulates decomposition 

1.0 

SOIL CARBON IMPULSE RESPONSE CURVE 

0.8 • 

z x\ 

• 0.6 I x 

u.I x rr' • \ \ 

0.2 

0.0 

0 200 400 600 800 1000 

TIME (YR) 

Figure 6. Zonal decay responses, with inputs set to zero, of Century soil organic matter compartments using the 

full model (dashed lines) and a one-pool approximation (solid lines). The three lines for each model correspond 

to the MAT zones of Figure 4, with decay constants estimated as in Figure 6. Note that for both models the decay 

is fastest in tropical soils, slowest in high-latitude soils, and intermediate in the temperate zone. 



290 SCHIMEIJ ET AL.: CLIMATIC, EDAPHIC, AND BIOTIC CONTROLS OF SOIL CARBON 

Table 4a. Lignin to Nitrogen Ratios and Percent Structural 
Carbon (Lignin Plus Cellulose) for Pearland Soils 

Wetland Type Depth, cm L:N Ratio Structural 
Carbon, % 

Fen 0-10 18 57 

10-20 18.5 60 

20-80 18.5 59 

Bog 0-10 28.5 57 
10-20 25.5 60 

20-80 50 62 

Table is adapted from Valentine et al., [1994]. 

under anaerobic conditions and can simulate nutrient 

impoverishment in anaerobic soils. The hydrology typical of 
wetlands, the dynamics of pH and pH effects, and effects of 

anaerobiosis on lignin decomposition [Benner et al., 1984] have 

not yet been incorporated into the model. Some significant 
questions about the mechanisms of decomposition under 
anaerobic conditions are unresolved [Lee, 1992]. However, a 

number of scenarios of global change suggest warming and 

drying of northern pearlands. On the basis of percent structural 

(lignin plus cellulose [Parton et al., 1994]) and nitrogen analyses 

by Valentine et al. [1994] for peats from the Hudson's Bay 
lowlands, we suggest that peats are largely composed of material 

similar to Century's surface structural litter (57-62% of peat is 
lignin plus cellulose; see Table 4a). The turnover time of the 

metabolic fraction of litter (-40% of total) is of the order of a few 

years or less, and so it would be decomposed within a decade or 

so following a change to aerobic conditions. Under aerobic 
conditions the turnover time of surface structural litter is -46 

years (13 to 66 years) at mean annual temperatures of-4 ø to 
8.5øC (Table 4b), suggesting that if climate change results in 
drying of peats and conversion to aerobic metabolism, 

decomposition rates would be relatively rapid and the system 

could respond to changing microclimate in decades. Under this 

scenario, SOC in peatlands would be considerably less stable 

than SOC stored in mineral soils. This is particularly true if 
warming is coupled with changes in hydrology. Changes due to 

temperature could be amplified if the "surface" 20 cm sinks as a 

result of a dropping water table. This effect may have already 
been observed by Oechel et al. [1993]. 

Table 4b. Turnover Times of Aerobic Surface Structural 

Detritus (Lignin plus Cellulose), Estimated by 
Century Model. 

Site MAT, Turnover Time, 
øC Years 

Tuva 3.4 66 

Shortandy 1.4 41 
Otradno}-e 4.0 67 
Kursk 5.5 13 

Sidney 8.5 44 

MAT is mean annual temperature. 

Depth Considerations 

Century simulates organic carbon dynamics of the upper 20 
cm of soil, a depth which normally contains about 35-50% of the 

1 m inventory [Parton et al., 1987; Schimel et al., 1985; Yonker 

et al., 1988; Brown and Lugo, 1990]. The 20 cm depth was 

chosen because of decreasing C and N mineralization rates 

[Schimel and Parton, 1986] and increasing isotopic turnover 

times occurring with depth [Scharpenseel and Becker-Heidmann, 

1992; Harrison et al., 1993]. Most of the "actively cycling" C 

and N is found in the top soil layers [e.g., Harrison et al., 1993; 

Scharpenseel and Becker-Heidtnann, 1992], although the depth 
of the active layer and its variability with climate and other 

factors are very uncertain. A key research issue is to develop a 

basis for modeling SOC turnover as a function of depth rather 

than modeling SOC turnover within a single layer [Veldkamp, 

1993]. Given the results shown in Figure 6, it seems crucial to 

separate the millennial timescale SOC at depth from the actively 

cycling surface pools. Processes governing C and N 

accumulation and potential losses at depth are poorly understood 

[Parton et al., 1994]. As noted by Harden et al. [1992], turnover 
of C for the whole soil is of the order of millenia, and residence 

times of 4000-8000 years are common in deeper soil layers 

[Yonker et al., 1988]. 

While differences in the depth increment between models may 

explain some of the differences between models in Table 3, the 

SOC at depth is largely passive and should not respond 

dynamically to environmental changes (except, possibly, in deep 

tropical soils (S.E. Trumbore, personal communication, 1994)). 

Conclusions 

Globally, rates of soil carbon turnover vary widely, with 

turnover times significantly shorter in tropical than in high- 
latitude soils. While variations in total SOC turnover times are 

significant, variations within specific detrital and soil organic 

matter fractions are even more dramatic; for example, slow SOC 

turnover ranges from -10 to >100 years. While simpler models 

[Townsend et al., 1992; Melillo et al., 1993] can produce the 

same steady state as Century, transient simulations require 

consideration of the multiple timescales of response inherent in 

the soil system (Figures 4 and 6) [Parton et al., 1994; Jenkinson 
et al., 1991]. 

The similar effects of temperature, soil texture, and lignin 

content on SOC storage (1000-6000 g m '•' over the ranges of 
lignin, temperature, and clay content simulated) suggest that in 

global simulations, climatic, edaphic, and biotic factors are all 

important as controls. This study did not address variations due to 

soil moisture changes, which are more complex. While across a 

limited domain, one factor may appear to dominate (e.g., 

temperature in the U.S. Great Plains [Jenny, 1980; Schitnel et al., 

1990]), global models must be multifactorial. This conceptual 

view of controls over SOC accumulation was originally proposed 

by Jenny [1941]; our model implements and quantifies a subset 

of Jenny's conceptual equations. Specifically, while soil carbon 

storage is controlled, in part, by geochemical interactions with 

climate and soil minerals, it is also linked to plant community 

composition and physiology through detrital chemistry (and other 

factors, such as allocation patterns [Holland et al., 1992]). 

Climate change and direct human effects on vegetation 

distributions will likely have an equal or larger influence than 
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direct effects of temperature on soil carbon at affected locations 

based on our sensitivity analyses to changing lignin. Movement 

of climatic boundaries between ecosystems whose life-forms 

have substantially different lignin contents, such as at forest- 

grassland or tundra-taiga transitions, could significantly affect 

soil C, as could human-induced conversions of forests to pastures 

or grasslands to woodlands. Changing atmospheric CO•_ could 

also influence SOC storage and temperature sensitivity. 

Ecosystem models including Century [$chimel et al., 1990; 
Ofima eta/., 1993], OMB lesser, 1990] and TEM [Melillo et al., 

1993] all suggest that increasing CO•_ will reduce the effect of 
warming on carbon stores because increasing CO•_ increases C 
inputs and widens detrital C:N ratios, retarding decomposition. 

The N cycle appears to be crucial to understanding the 
temperature response of ecosystems [$chimel et al., 1990]. In 

Century, as decomposition increases with warmer temperatures, 
N cycles more rapidly. As soil organic matter is lost, more N 

becomes available for plant growth, which results in more soil 

organic matter formation, acting as a negative feedback. The 

nitrogen feedback which moderates SOC temperature sensitivity 

can be described by the following, as production minus 

decomposition: 

where •Nmin/•T is the release of N associated with SOM loss 
from warming, L the fractional loss of that N to trace gases and 

leaching, and C:N the carbon to nitrogen ratio of incremental 

biomass produced using the released N. The last term, 

o•NPP/o•r, is the effect of temperature on decomposition 
summed over all pools, each containing a fraction w t of total 

SOC, with decay constants k i (as in (8)). In this formulation, 

considerably simplified from the actual mechanisms in Century, 

climatic and chemical forcing of the atmospheric and hydrologic 
systems associated with outputs produced via L must also be 

considered as part of the environmental impact of warming. 

When the N cycle feedback was artificially eliminated from 

Century by fixing NPP levels at current levels in simulation 

experiments, losses of SOC doubled. A similar difference in 

sensitivity exists between Century (-11.1 PgøC'•) and CASA (- 
21.5 PgøC'l ), which simulate decomposition with broadly similar 
algorithms. However, in CASA, NPP is fixed by satellite 

measurements and does not respond to increasing N 

mineralization rates. If biomass is removed by crop or forest 

harvesting, burning or herbivory, or where NPP is restricted by 

some other effect (e.g., ozone [Reich, 1987]), the nutrient 

feedback may, in reality, be weakened and SOC losses could 

accelerate. The contrast between the positive and negative 

nutrient feedback model experiments suggests that a simple 

representation of the N cycle is essential for even first-order 
calculations. 
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