“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1970-04

Climatological wave data for Colombo, Ceylon

Perera, Edward M. A.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/14905

Copyright is reserved by the copyright owner

Downloaded from NPS Archive: Calhoun

Calhoun is the Maval Postgraduate School's public access digital repository for

‘: DUDLEY research materials and institutional publications created by the NPS community.
ﬂ“m Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first

m“‘ KNOX appointed — and published — scholarly author,

LIBRARY Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library



CLIMATOLOGICAL WAVE DATA
FOR COLOMBO, CEYLON

Edward M. A. Perera






United States
Naval Postgraduate School

THESIS

CLIMATOLOGICAL WAVE DATA
FOR COLOMBO, CEYLON

Edward M. A. Perera

April 1970

This document has been approved fon public re-
Lease and sakle; its distrnibution is unfimited.

T ¢ eyl ¢y O

) ¢ )
NS EDEOED IS







Climatological Wave Data for Colombo, Ceylon

by

Edward M. A.:Perera
Lieutenant Commander, Royal Ceylon Navy
B.Sc., University of London, 1957

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OCEANOGRAPHY

from the

NAVAL POSTGRADUATE SCHOOL
April 1970



ABSTRACT

Deep-water wave statistics for Colombo on the west coast of Ceylon
have been compiled using the Sverdrup-Munk-Bretschneider wave-hindcast
method applied to 12-hourly weather maps of the West Indian and South
Atlantic Oceans for the one-year period from June 1968 through May 1969.

Result; of the wave-hindcast analysis are presented in the form of
monthly and annual height-period-direction frequency distributions. The
predominant waves are in the one to three foot height range, have periods
centered about 13-14 seconds, and arrive from westerly to south-south-
westerly directions. Wave action is most frequent in May through
September and least in December.

The wind waves and local swell on the west coast of Ceylon strongly
reflect the seasonal Monsoons. The principal source of distant swell
for this coast is the prevailing westerly wind belt of the Southern
Hemisphere between Argentina and the longitude of Ceylon (8OOE). The
subtropical anticyclone in the central Indian Ocean is a relatively

quiet source region for swell compared to the Monsoon belt and the

prevailing westerlies.
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I. INTRODUCTION

Ceylon is an island country situated in the South Indian Ocean.
Figuré 1 shows its geographical location. Colombo (7ON, 800E) is her
capital and principal harbor. Lacking major natural resources, the
island's ec;nomy is turning more and more to dependence on the sea.
Plans-are currently afoot for the construction of several small harbors
for C;ylon's infant fishing industry which is concentrated mainly on
the west coast. 1In the design of harbors, wave statistics are needed
for determining breakwater orientations, heights, and construction
materials, and for anticipating sanding problems caused by the effect
of the harbor on littoral drift. It is believed that climatological
wave data will also have other practical military and civil appli-
cations in Ceylon in connection with coastal patrol, shoreline
erosiSn, beach preservation, and related coastal engineering activities.

Statistical wave data for Ceylon are not available and therefore
this study was undertaken in part to compile climatological wave data
for deep water off Colombo. It will be seen that the statistics pre-
sented herein are applicable to most of the west coast of Ceylon.

In carrying out this study various problems were met. and some
innovations were introduced in the application of the wave hindcésting
technique used and in the compilation of the wave statistics. These
are described in the following pages. In addition, the seasonal wave
regime on the west coast of Ceylon is examined in relation to the

synoptic and seasonal weather character of the West Indian and South

Atlantic Oceans.



IT. METHOD OF OBTAINING CLIMATOLOGICAL WAVE DATA

A, AVAIIABLE METHODS

Climatological wave data can be defined as a statistical compilation
of the frequency of occurrence of waves of various height, period, and
direction by months, seasons, or averaged over a year for a given
location at sea or along a coast. The method chosen in this study
for compiling wave statistics is the wave-hindcast method, in which a
series of historical synoptic weather maps are analyzed for their wind-
field characteristics and a conventional technique is applied to fore-
casting the waves produced which arrive at Ceylon.

There are several wave-forecasting methods in existence and a
comparative description of each has been given by Timmie [1969]. In
a broad sense they can be classified into two main groups, the spectral
methods and the non-spectral empirical methods. -

Among the spectral approaches, the Pierson-Neumann-James [1953]
or PNJ method is probably the most widely used. The PNJ method
describes the sea state and the swell characteristics in the form of
an energy spectrum, and enables the forecaster to obtain various height
and period parameters of the waves generated. This method, or variants
of it, is the one most frequently used by scientists interested in the
mechanism of energy transfer and propagation as it gives more informa-
tion on the energy distribution in the waves. However, it has a lesser
degree of acceptance in engineering applications where the dominant wave

heights and periods are mainly used.
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There is also the French spectro-angular densities method by Gelci,
Cazale, and Vassal [1958] which is in common use by European scientists
and engineers, particularly the French and the Dutch. It is not suited
for manual synoptic work as it is extremely time consuming, but it has
been claimed by these authors to give very good results using numerical
analysis.

The most widely used of the non-spectral methods is the Bretschneider
modification of the Sverdrup-Munk [1947] wave-forecasting technique and
referred to as the Sverdrup-Munk-Bretschneider or SMB method [Bret-
schneider, 1952]. This method provides a forecast in terms of a signifi-
cant wave height and a significant wave period. The significant wave
height is the average height of the highest one-third of the waves. The
significant wave period is the period associated with the significant
wave height, and closely approximates the period of maximum energy
concentration.

Evaluations of the PNJ and SMB methods have been made by Timmie
[1969], Rattray and Burt [1956], and Wiegel [1966]. According to
Wiegel (p. 239), "One thing is apparent from the few comparisons of
forecasts with observed waves: no major procedure is appreciably

better than the others in use today."

B. CHOICE OF SMB METHOD
For this study the SMB wave-forecasting technique was adopted mainly
for the following reasons:
(l)'The method is simpler and quicker than other methods and

appears to give forecast results that are equally as good.

10



(2) The applications of this study in Ceylon will involve mostly
coastal engiﬁéering problems in which data on the dominant height and
period are ordinarily adequate.

(3) Even though the PNJ method provides a more complete des-
cription of the sea, its format of wave-hindcast presentation in
several studies in which it has been applied (National Marine Con-
sultants - California Coast [1960], Oregon-Washington Coast [1961])
is identical with that using the SMB method; i.e., the wave statistics
are éfesented in the form of frequency of occurrence of various com-
binations of significant height, dominant period, and wave direction.

A more detailed or complete presentation would be extremely cumbersome
and the time required to compile and prepare the additional data would
be significant.

(4) This investigator anticipates that additional wave studies
will be made in Ceylon under his direction. Therefore, it was desirable

to gain experience in a technique that is both easy to teach and simple

to use.

11
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TITI. SELECTICON OF WEATHER MAPS

A. REGION COVERED

P}ior to the selection of the weather maps to be used in hindcasting
it was nece;sary to determine the regions of origin of ocean waves that
would arrive at Colombo. Figure 2 shows the possible wave-generating
areas based upon great-circle propagation of swell. It may be noted
that swell can be generated as distant as the coast of Argentina,

7500 nautical miles from Ceylon, and that it may transit the entire
South Atlantic Ocean. The potential wave-generating region with
respect to Colombo is bounded directionally on the northwest by the
Indign Peninsula, and on the south by wave refraction across the con-
tinental shelf along the west coast of Ceylon.

A study of weather-map sources indicated that to obtain complete
coverage of the possible wave-generating areas affecting Colombo, two
separate sets of surface weather maps were necessary. The following

two sets were chosen:

1. 12-hourly weather maps (at 0000 and 1200 GIiT) of the northern
Indian Ocean down to 40°S. These maps are in Mercator projection and
were obtainéd from the Fleet Weather Central at Rota, Spain.

2. 12-hourly weather maps (at 0000 and 1200 GMT) of the two
quadrants of the Southern Hemisphere from 90°w through 0° to 90°E.
These maps are in polar stereographic projection and were obtained from
the National Weather Center (NWC) in Washington, D. C. Both sets were
analyzed by the originating agencies. Examples of these maps are shown

in Figures 3 and 4.

13
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B. PERIOD COVERED

P;st work on the preparation of wave statistics (National Marine
Consuitants,[l960 and 1961]; Roper, [1960]) indicates that a coverage
of three full years or more would be desirable in order to minimize the
effect of Yearly variations in wave occurrence and thereby produce
better wave statistics. In this study, however, because of practical
time limitations and the difficulty of obtaining two sets of weather
maps preferably covering the same.interval of time, weather maps

covering the period of one complete year from June 1968 through May

1969 vere analyzed.

C. SETS OF WAVE ANALYSES DERIVED
It was clear at the beginning of the study that two different sets
of wave information would have to be derived from the maps for Colombo--
locally generated wind waves, and swell arriving from distant wind areas.
It was further convenient and useful to separate the swell hindcasted
from both sets of weather maps at 20°S because of (a) basically differ-
ent synoptic wave-generating conditions prevailing on the equatorial
side Qf the subtropical high-pressure cell in the Indian Ocean compared
with the higher latitudes, and (b) frequent lack of data in the lower
latitudes of the Indian Ocean on the Rota maps.
Therefo?e the analysis was done #nd is presented as three separate
sets of wave statistics:
(1) Wind Waves (Sea) at Colombo (from the Rota maps).
(2) Local Swell from the equatorial and tropical zones (25°N to

ZOOS) in the northern Indian Ocean (from the Rota maps).

16



(3) Distant Swell from beyond 20°S in the South Indian and South
Atlantic Oceans (from the NWC maps).

The statistics compiled on all three sets of waves are presented in
the form of monthly and annual height-period-direction frequency dis-
tributions in the tables of Appendices B and C. All heights and periods
presented in these tables are the significant height and significant

period. All of the wave statistics derived apply to deep water directly

off Colombo.

17



IV. HINDCAST PRCCEDURE

A. HINDCAST OF DISTANT SWELL

1. The Wind Field

The fundamental parameter needed for wave hindcasting is the
surface wind. The NWC maps contain relatively few weather reports in
the oceans and it was necessary to derive the surface wind field frém
the surface-bressure analysis. Surface wind reports were used wherever
they were available. Ship reports are also uncommon on the Rota maps,
but weather reports at land stations around the northern Indian Ocean
are comparatively numerous.

In delineating wind areas in the Southern Hemisphere from the
sea-level pressure field, it was assumed thazt the surface wind blows
10° to 15° to the right of the isobar direction. A wind direction
was considered to be capable of producing swell if the wind had a
bearing of 30° or less from the great-circle route to Colombo in the
case of straight and parallel isobars, and 45% or less in the case of
curved isobars.

To facilitate the acceptance or rejection of a possible wind
area (the fetch), a transparent overlay, similar to Figure 2, was
prepared for use with the weather maps under analysis. The overlay
contained great circles drawn from Colombo defining the direction
sectors south (1802-191-1/4°), south-southwest (191-1/4%-213-3/4°), and
southwest (213-3/4Q-236-1/40). Superimposed on the great-circle curves
was a family of orthogonal lines of distance from Colombo spaced at a

200 nautical-mile interval. The overlay was used to determine the




direction of the surface wind with respect to the great-circle route to
Colombo, the direction sector from which the waves from the wind area
would arrive at Colombo, and also to measure the fetch and the decay
distance. It may be noted in Figure 2 that Distant Swell arrives at
Colombo only in the narrow direction range of south to southwest.

The geostrophic wind speed was estimated from the isobar
spacing using a conventional geostrophic wind scale. The surface
wind speed was then computed using the relationship: Vs = Vg x S xC

where VS = Surface wind speed in knots

Vg = Geostrophic wind speed in knots
S = Air-mass stability factor
C = Isobar-curvature factor.

The quantity S was evaluated in the following manner by interpolation
of the set of stability factors presented by Sverdrup and Munk [1951],

which is reproduced below:

Tw_Ta (°F) Stability S
< -7 Stable 0.55
-7 to O Indifferent 0.60
1 to 4 Indifferent 0.65
5 @ I Unstable 0.70
Ll Eg 15 Unstable 075
> 15 Unstable 0.85
where Tw = Water temperature
Ta = Air temperature.

Because of the sparsity of wind observations in the Southern
Ocean, observations of the air and sea temperature were seldom available

for use in obtaining the stability factor. The factor was estimated,

19



however, by making the following assumptions. 1t was reasoned that,
if the air trajectory prior toc entering the fetch lay along a latitude
line or approximately so (i e., the winds were westerly), the air-sea
temperature difference would be negligible and the air mass would be of
indifferent or neutral stability (S = 0.65); similarly, if the wind
trajectory before entering the fetch was directly from the south, so
that the air-mass moved over relatively warmer water as it flowed into
lower, warmer latitudes, the air-mass would be highly unstable (S = 0.80).
A trajectory directly from the southwest was assumed to produce a con-
dition of intermediate stability (S = 0.75). A trajectory directly
from the northwest, in which warm air would be expected to pass over
cooler water, was considered to produce a stable air mass (S = 0.60).
In synoptic situations in which the air flow prior to entering the
fetch curved cyclonically or anticyclonically, the air-mass stability
was estimaﬁed in the same manner. The stability factors associated
with wind tfajectories in the Southern Ocean that can produce swell
which would arrive in Ceylon are shown diagramatically in Figure 5.
Figure 5 also shows the isobar-curvature factor C for the
different wind trajectories. The values have been taken from the set
of curvature factors presented by Sverdrup and Munk [1921], which is

reproduced below:

Air-mass Great Moderate Great
Stability Cyclonic or Straight Anticyclonic
Stable 0.85 1.00 1.05
Indifferent 0.90 1 00 1.10
Unstable 0.95 1.00 1.15

The isobar curvature, defined by Bretschneider [1952], was estimated

visually in practice.

20
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2. Fetch and Duratioan

On each weather map the pertinent fetches were delineated and
measured using the overlay described above. As there could be more
than one fetch on a given map, the individual fetches were labelled and
each fetch was followed on the subsequent weather maps until its ulti-
mate disappearance due to dying winds.

A fetch was treated as stationary if the fetch front did not move
by more than 3° latitude from one map to the next. 1In these cases the
wind waves at the forward edge of the fetch were hindcasted in the usual
manner by taking both the fetch and the duration into account.

7 In some cases the fetch advanced toward Ceylon with the westerly
wind flow of the higher latitudes, and if the rate of advance of the
fetch front exceeded 3° latitude between 12-hourly maps, the fetch was
assumed to be a moving fetch. A 3° latitude advance of the fetch front
between maps represents a mean velocity of 15 knots, which is the group
velocity of 10-second period waves. In these cases, only the wind
duration was assumed:to control the wave dimensions, and the fetch
length had no significance. This procedure greatly reduced the time
to make the hindcasts and was considered to be reasonably accurate for
the purpose of this study.

Initially, each new wind field generating wave trains was con-
sidered to have been in existence six hours prior to its first appearance
on a weather map (i.e., the wind at the first map time had already been
blowing for six hours). The wind duration as of the time of the next
and subsequent weather maps wis derived using the equivalent-duration
method of Bretschneider [1952] applied to the intervening 12-hour

interval betwecen maps.
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3. Minimum Swell Height

With practical applications in mind, it was decided that waves
arriving at Colombo having a height less than one foot would be of
minor importance. Accordingly, wind waves in any fetch found to have
a height of one foot or less were discarded immediately. It was
realized, in the case of Distant Swell, that it was possible for waves
which were greater than one foot in the fetch to be lower than one foot
upon arrival at Colombo.

In brder to recognize and discard these cases and thereby save
the time of going through the swell-hindcast procedure, the following
table was constructed which gives the decay distance for various com=-
binations of wave height in the fetch, HF’ and minimum fetch, Fm' s

in

that will yield a swell height at Colombo of one foot:

He;gizhi“ Minimum Fetch, F_.  (nautical miles)

Hp (feet) 30 100 200 300 400 600 800
5 525 850 1600 2000 2200 3200 4000
10 1800 3000 5000 6000 7000
15 3100 5000
20 4500 8000
25 6000
30 8000

The minimum fetch, Fmin’ as used in the SMB method, is defined
as the smaller of the two fetches, namely, the actual fetch and the
fetch equivalent to the wind duration (the fetch that would permit a

wind with a particular speed to put into the sea the same energy and

23



hence generate same size waves as would be generated by the same wind

speed blowing for the given duration).

An example of the use of the table is as follows.

10 feet and F
v “min

to one foot after travelling over a decay distance of 3000 NM.

equals 100 M,

If HF is

then the swell height will, be reduced

All

decay distances greater than 3000 NM would produce waves that are less

than one foot high at Colombo.

Therefore, only if the decay distance

is equal to or less than 3000 NM would these waves be considered for

swell computation.

4. Summary of Hindcast Procedure

The steps used in performing a wave hindcast are shown

sequentially in the following table.

reproduction of

Step .

Wave train

Date-time

Isobar spacing

Mean latitude

Geostrophic wind, V
Stability correction, S
Curvature correction, C
Surface wind, V

Fetch, F

Wind duration

Wave direction at Colombo
Height in fetch, H

Period in fetch, TI

Decay distance, D
Minimum fetch, F
Ho/H

Ty /T

Helgﬁt at end of decay, H

min

Period at end of decay, TD

Travel time, At
Expected time of arrival

Obtained from

Weather map

Weather map

Weather map

Weather map
Geostrophic wind scale
Figure 5 & weather map
Figure 5 & weather map
Vg = Vg xS xC
Overlay on weather map
Weather map

Overlay on weather map
Plate D-1

Plate D-1

Overlay on weather map
Plate D-1

Plate D-2

Flate D-2

Piate D-3
Weather map time -+ At

The table is essentially a

the wave-hindcasting data sheet prepared for this study.

Purpose

Identify fetch

Calculate geo. wind
Calculate geo. wind
Calculate surface wind
Calculate surface wind
Calculate surface wind
Determine, H ,ATF
Determine HF’ TF
Determine H T
Final resulg
Determine H

. D
Determine T
Calculate HD, T & Ot
Determine H / T /T
Calculate . D 3
Calculate T
Final resulg
Final result
Estimate arrival time



B. HINDCAST OF LOCAL SWELL

The tropical and equatorial zones of the western Indian Ocean shown
on the Rota weather maps were analyzed for Local Swell. The potential
swell-generating region is bounded by the south and west-northwest
directions (Figures 1 and 2). Due to the sheltering effect of the Indian
Subcontinent, no swell of any significance arrives at Colombo froﬁ
directions to the north of west-northwest. For the purpose of facili-
tating the analysis, an overlay similar to that described earlier was
prepared for the Rota weather maps showing direction sectors and lines
of equal distance (every 150 NM) from Colombo.

In low latitudes the calculation of the geostrophic wind velocity
from the isobaric spacing is unreliable. Hence, the surface wind was
obtained only from reported winds, and, in some cases when wind
observations were lacking, by objectively comparing the isobaric
spacing with adjacent maps in which the pressure field could be related
to reported winds. Except for the manner of obtaining the wind speed,

"the analysis was the same as that described for Distant Swell.

C. HINDCAST OF SEA

As in the case of Local Swell, only observed surface winds were used
in hindcasting wind waves at Colombo. The wind speed on most weather
maps was fairly low, averaging about 10 knots, and usually gave rise to
the condition of the fully arisen sea. When the seas were not fully
arisen, whiéh was sometimes the case with strong winds, the wind duration
ordin;rily controlled the wave dimensions.

The deep-water location for which the wave hindcasts were prepared

lies off the continental shelf some 15 NM seaward of Colombo; however,
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the wind-wave hindcasts effectively apply over the shelf as well and
do not have to be decayed to a selected coastal site. Of course, both
wind Qaves and swell must be modified for the effects of shoaling and
refraction in order to obtain their characteristics at Colombo or at

any other selected site in shallow water.
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V. STATISTICAL WAVE DATA

A. METHOD OF COMPIIATION

1. Monthly Frequency Distributions of Sea, Local Swell, and Distant
Swell

Separate sets of wave data were compiled for Sea, Local Swell,
and Distant Swell. This was considered necessary and convenient, as
discuss;a earlier, due to the necessity of using two sets of weather
maps and to thé relative lack of data on the Rota maps, particularly
with regard to hindcasting Local Swell. The statistics were compiled
so as to show the frequency of occurrence of waves by significant
height, significant period, and direction (H, T, and ¥). Tables B-1
to B-12 in Appendix B present these statistics as monthly distributions,
and Table B-13 shows, in a similar forﬁat, the annual distribution of
waves éue to Sea alone.

For the most accurate computation of wave statistics, the time
distributions of H and T for each wave train arriving at Colombo should
.be plotted, and notations made of the direction of arrival. From such
graphs, the duration of occurrence of waves within different increments
of H, T, and ¥ could be measured. This exceedingly time-consuming
process was circumvented by the procedures described in the following
paragraphs.

A gi;en fetch, for as long as it existed, yielded one hind-
casted set of waves (H, T, and {) arriving at Colombo for each 12-
hourly weather map. Thus, for the life of the fetch, two sets of wave

data per day were produced. In preparing the table of Sea (wind wave)

statistics, each set of waves hindcasted was considered to have a
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duration of 12 hours. Accordingly, for a 31l-day (744-hour) month with

complete weather coverage, one wave set would have a frequency of

' 12

occurrence of Y x 100 = 1.6% of the month. In the case of months with

some missinglweather data, the percentage was arrived at by a slight
modification. For example, the Sea statistics for September (Table B-9)
were based on 44 12-hourly weather maps, whereas there are actually 60
12-hourly intervals in the month. This means that in September, 16
weathe£ maps had no data. In computing the frequencies of occurrence,
it was assumed that the percentage frequencies for the entire month
are the same as those for the 44-interval month. Therefore each wind-
wave set would have a frequency of occurrence of Ti—igzz x 100 = 2.3%
of the month. The table in Appendix A shows the number of 12-hourly
weather maps containing wind data on which the compilation of the wave
statistics for Sea, Local Swell, and Distant Swell was basedd .

In the case of swell, particularly the Distant Swell, the two
sets of waves generated each day (one per weather map) arrived at
Colombo some days later with arrival times that were sometimes chrono-
logically reversed from their order of generation, were occasionally
nearly simultaneous, or followed one another by several days. Each
swell set was tabulated by its date of arrival at Colombo. The number
of swell sets arriving on any given day varied from nore to 7, and this
number equated to 24 hours was considered to determine the duration of
each set on that day.

It was assumed that when there were two or more arrivals of
wave sets of one foot or greater on a given day (from one or more wind

areas) there would not be a '"calm" period on that day; if there was only

one occurrence of waves of one foot or greater, then there would also be
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one occurrence of waves under one foot during that day, or one '"calm"
interval of 12-hours duration; finally, if there were no occurrences
of waves of one foot or more, then that entire day was considered
"calm'". By "calm'" is meant the occurrence of waves under one foot in
height.

The method used to calculate the swell frequency for a given
month is best illustrated by an example. In February (see Table B-2)
Distant Swell was based on 52 12-hourly weather maps, of which 10
intervals were found to be 'calm'". During the remaining 42 intervals
there were 59 swell trains from various fetches of height one foot or

greater. Knowing that the 59 swell sets occurred in 42 12-hour inter-

42 x 12
59

5

vals, the effective duration of each swell set was = 8.54 hours,

and the frequency of occurrence in percentage of the month was

8.54 x 100 _ | 4q

T x 12 In February there was one Distant Swell set that

arrived at Colombo with the combination H = 5-6 feet, T = 17-18 seconds,

and =‘éSW; hence, the frequency of occurrence of these waves is 1.4%

6f the month, as shown in Table B-2 for this combination. The frequency

figure of 1.4% means that during February (56 12-hourly intervals), waves
having these épecifications can be expected to occur 1.4% of the time, or
nearly 9.4 hours (1.4% of 56 x 12).

2. Monthly Frequency Distributions of Combined Waves

The Sea, Local Swell, and Distant Swell sets for each month
(Tables B-1 to B-12) have been combined in Tables C-1 to C-12 to give
the probable monthly occurrence for all waves in deep water off Colombo.
As each of the three sets did not contain an equal number of days of data
(see Appendix A), it was necessary to standardize the three wave sets

before combining them. Thus, in cases where the wave information was
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based on a fewer number of days than are contained in a month, the
frequency of occurrence of all available data within that particular
wave set were proportionately increased by a factor equal to the ratio
of the number of 12-hourly intervals in the month to the number of 12-
hourly intervals of observed data. This procedure implies that the
wave sgatistics obtained from a partial month of weather maps are
representative of the entire month.

The method used to combine the tables can again be illustrated
by an example. The derivation of Table C-2 from the three wave-data
sets in Table B-2 will be reviewed for the combination H = 5-6 feet,

T = 17-18 seconds, and ¥ = SSW. When all of the wave data were com-
piled chronologically through the month according to their arrival time
at Colombo by the method described in the previous section, the number
of intervals of "calm" (i.e., waves under one foot) was again found to
be 10 (this was a coincidence because in most months the combined wave
arrivals reduced the number of "calm'" intervals). Thus the number of
12-hourly intervals of waves in February is 46 (i.e., 56-10).

Pertinent hindcast information for the three wave categories is
as follows:

Sea: 29 12-hourly weather maps contained data which
yielded 3 wave sets.

Local Swell: 22 12-hourly weather maps contained data
which yielded 13 wave sets.

Distant Swell: 52 12-hourly weather maps contained data
which yielded 59 wave sets.

The standardizing factors required to equate the number of wave sets to

a month of complete weather data (56 12-hourly intervals) are gg = 1.93,
56 _ 56 . .
37 2.55, 5y = 1.08, respectively. Accordingly, the number of wave sets
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that would be expected if there were no missing weather data are
3 x 1.93 = 5.79 Sea sets, 13 x 2.55 = 33.15 Local Swell sets, and
59 x 1.08 = 63.72 Distant Swell sets, giving a total of 102.66 wave

sets in February. Therefore, each of the 102.66 wave sets had a

duration of é%a%-%% = 5.38 hours, or occurred with a frequency of
éggggﬁi%gg = 0.80% of the month. The frequencies of occurrence of

each wave set was obtained using the standardizing factors as follows:

Sea: 1.93 x 0.8% = 1.5b of the month,

Local Swell: 2.55 x 0.8% = 2.0% of the month,

Distant Swell: 1.08 x 0.8% = 0.9% of the month.
The enéry in Table B-2 for the combination H = 5-6 feet, T = 17-18
secondél and § = SSW is 2.9%, which was obtained by combining the
single Local Swell occurrence of this combination (frequency = 2.0%)
with the only Distant Swell occurrence of this same combination in
February (frequency = 0.9%). The frequency value of 2.9%, of course,
means that during February waves with the given specifications can be
expected to occur 2.9% of the time during the month, or for a cumulative

period of nearly 19.5 hours.

3. Annual Distributions

Table B-13 shows the frequency of occurrence of Sea compiled
for the entire year. Each value in the table was derived by summing
the frequencies of occurrence shown in a given H-T-{ combination for
all 12 months of Sea and dividing by 12. In a similar manner, the
monthly frequency distributions of the combined waves (Tables C-1 to
C-12) have been averaged to produce Table C-13, which presents the
probable frequency distribution of all waves that can be expected to

occur in a given year.

31



B. WAVE STATISTICS GRAPHS

1. General Properties

F;om the statistical wave tables in the Appendices, summary graphs
of the monthly and annual frequency distributions of height, period, and
direction have been plotted (Figures 6-11). Figure 6 presents a histogram
of the annual distribution of wave heights. The mosé frequently occurring
waves at Colombo are in the 1-2 foot height range. This pattern is preva-
lent most of the year. In July, August, and November, however, the most
frequently occurring waves are in the 2-3 foot height range (Figure 7)
and are dhe to local seas at Colombo. Figure 6 also shows a cumulative
frequency distribution, from which may be read directly the percentage
of the year when waves greater than a specified héight will be exceeded.
As an example, it may be seen that waves in excess of 3 feet occurred
20% of the time. The monthly wave-height distribution graphs in Figure
7 indicate that the highest incidence of the most frequently occurring
waves (l-2 foot height range) is in May and June, ané-that the least
wave action at.Colombo is experienced in December. The largest waves
hindcasted were in the 13-14 foot range, and occurred in April, May,
and July.

Figure 8 presents the annual distribution of wave periods. The
histogram may be seen to approximate a normal frequency distribution
and to be peaked in the 13-14 second period band, reEresented by swell
waves. The 4-5 second peak at the short period end of the distribution
is due to wind waves at Colombo. This unequal bimodal distribution of

periods may also be scen in some of the monthly histograms of Figure 9.

It may also be noted in Figure 9 that short-period wind waves are

negligible in December. The longest periods hindcasted were in the 23-24

second range and occurred in July.
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Figure 10 shows the direction of wave arrival at Colombo to be
largely 1imited to the south-southwest and southwest. The westerly
direction is due mainly to wind waves at Colombo. The monthly graphs
(Figure 11) show that waves from the west occur most frequently from
May through September. The figure also shows wind waves, dominantly

from the west, are negligible in December.

2. Characteristics of Sea, Local Swell, and Distant Swell

Examination of Tables B-1 to B-12 shows that Sea at Colombo is
characterized by 2-3 foot high waves with periods of 4-5 seconds arriving
mostly from the west. Seas are most frequent during the months of May
through September.

local Swell arrives at Colombo mainly as 1-2 foot waves from
the southwest to west-northwest with periods ranging from 8-14 seconds.
It occurs most frequently during the months of May through August.

Distant Swell is restricted to the three dlrections south,
south-southwest, and southwest. The waves are very often in the 1-2
foot range. The periods range from 9-24 seconds, but a high percentage
of the energy is contained in the 14-16 second period band. The
occurrence of Distant Swell generally increases from December to May
and decreases thereafter.

3. Peak Values

The highest wave set hindcasted for the year occurred in a May
sea generated by a westerly wind with a speed of 25 knots. The signifi-
cant height and period in deep water off Colombo were 13.8 feet and 10.0

seconds, respectively. The wave height also exceeded 13 feet in April

and July.
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The longest period was one of 23.7 seconds in July which originated
in a 56-knot wind field off the Weddell Sea, 6500 nautical miles from
Colombo. Those swell arrived from the south-southwest and had a signifi-
cant height of 5.4 feet.

The furthest distance from Colombo at which any significant wave
train originated was 7500 nautical miles. A train generated in this area
by a ZS-Rnot wind arrived from the south-southwest in deep water off
Colombo 15-1/2 days later with a significant height of a little over one

foot and a period of 13.4 seconds.

The most frequently occurring wave set was H = 1-2 feet, T = 12-13

seconds, and y = SSW. It arrived at Colombo for a cumulative duration of

3.3% of the year, or 12 days.
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VI. WAVE CLIMATOLOGY OF WESTERN CEYLON

A. REGIONS OF WAVE GENERATION
The spatial window for waves arriving at Colombo includes the

western Indian Ocean and extends completely across the South Atlantic
in the zone of westerly winds (Figure 2). Wave generation throughout
this window occurs in three main atmospheric circulation belts:

(1) Trade Wind (Monsoon) Belt (ZOON - 2008),

(2) Subtropical High Pressure Belt (20°S - 40°S),

(3) Westerly Wind Belt (40°S - 65°S).
These wind belts are shown diagramatically in Figure 12, and their
seasonal variations are illustrated in Figures 13 and 14. Together
they determine the annual wave regime at Colombo and along the west

coast of Ceylon.

B. TRADE WIND BELT

The most distinctive feature of the Trade Wind Belt over the Indian
Ocean is its pronounced Monsoon circulation system, which is character-
ized by a seasonal reversal in the prevailing wind directions caused by
differential heating between the Asian land mass and the northern
Indian Ocean. The phenomenon of the Monsoon is brought about in the
following manner.

The trade winds of both hemispheres meet in the equatorial low-
pressure belt at a zone of convergence known as the Intertropical
Convergence Zone (ICZ) or the Doldrums (Figure 12). 1In the Indian
Ocean area this zone migrates over a wide range of latitudes in the

year, as may be seen in Figure 15. It reaches its most southerly
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position (near the Equator at the longitudevof Ceylon) in February and
its most northerly position (~ 3OON) over the Himalayas in August. During
the months of December through March the ICZ lies to the south of Ceylon,
and the Northeast Trade Winds, referred to as the Northeast Monsoon, blows
over Ceylon from the Bay of Bengal. At this season of the year the winds
blow dominantly offshore along the west coast of Ceylon, and away from
Ceylon over the northwestern Indian Ocean. During the months of June
through September the ICZ lies to the north of Ceylon. The Southeast
Trades at this time of the year cross thequuator and move well into
southern Asia, and in doing so are deflected by the coriolis effect so
as to become a southwesterly wind, the Southwest Monsoon, over the north
Indian Ocean, Ceylon, India, and Southeast Asia. The ICZ passes over
Ceylon on its northward migration in May and southward again in October-
November. These months will be referred to here as the transition months.
As may be expected, the wave statistics for Sea and Local Swell at
Ceylon, both of which originate in the equatorial and tropical Indian
Ocean, reflect the seasonal change in wind direction associated with the
Monsoons. In Figures 16 and 17 are shown the frequency of occurrence of
waves of one foot or greater due to Sea and Local Swell, respectively.
The figures clearly reveal the influence of the onshore winds of the South-
west Monsoon during June through September, and the dominantly offshore
winds of the Northwest Monsoon, as well as the irregular wind directions
of the transition months, during the remainder of the year. The isolated
peaks in the Local Swell in February and November may be attributed to the
fact that the wave statistics compiled are based on insufficient data for
these months (see Appendix A). The dominant wave direction of Sea during

the Southwest Monsoon is from the west, as may be seen in Figure 11.
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C. SUBTROPICAL HIGH PRESSURE BELT

The Subtropical High Pressure Belt (ZOOS to 4008) is the nearest
source region for Distant Swell arriving at Colombo. This belt is
represented in the central Indian Ocean by a quasi-permanent high-
pressure cell centered at a mean latitude of 30°S around which the
wind circ;lation is anticyclonic (counter-clockwise). The air flow
around th; nortﬁ side of the anticyclone is the Southeast Trade Wind,
and on the south side becomes a part of the Westerly Wind Belt. The
exposure of the-west coast of Ceylon to the wind direction in this
circulation is such that waves are not generated on its north or west
sides. 1In addition, the winds in the central part of the high cell
are normally weak and variable, so that this region‘is likewise not a
source region for any significant amount of swell arriving at Colombo.

The general lack of suitable swell-generating conditions in this
weather belt in contrast to the Westerly Wind Belt of the more southerly
latitudes, is reflected in the Distant Swell statistics for these two
regions. Figure 18 shows the percentage of Distant Swell-arriving at
Colombo that originated in the latitude belts of 20°s - 40°S and
40% - 65%s. As may be seen, only about 7% of the swell originated
within the Subtropical High Pressure Belt. It may thus be seen that,
with regard to waves arriving on the west coast of Ceylon, the Sub-
tropical High Pressure Belt is a comparatively quiet zone lying between

two zones of significant wave noise.

D. WESTERLY WIND BELT
The Westerly Wind Belt (40o - 6508) is the major source region for

Distant Swell arriving on the west coast of Ceylon, and is essentially
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Figure 16: MONTHLY OCCURRENCE OF SEA
Waves of one foot height or greater.

Figure 17: MONTHLY OCCURRENCE OF LOCAL SWELL
Waves of one foot height or greater.
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Figure 18: PERCENTAGE COMPOSITION OF DISTANT SWELL
Waves of one foot height or greater.

Figure 19: MONTHLY OCCURRENCE OF DISTANT SWELL
ARRIVING FROM THE WESTERLY WIND BELT
Waves of one foot height or greater.
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an unbroken belt extending some 8500 NM from Argentina (60° W) to the
longitude of Ceylon (SOOE). It is a region of intense cyclonic storm
systems which are advected castward with the mean air flow across the
Southern Ocean, and which are the principal source of swell emanating
from this region.

Figure 18 shows that approximately 93% of the Distant Swell arriving
at Colombo is produced in this region. This high incidence of Distant
Swell fromﬂthese southerly latitudes indicates the importance of the
Westerly Wind Belt as a source of waves arriving on all of the northern
and eastern coasts of the Indian Ocean. From Figure 19 it may be seen
that there is a seasonal variation at Colombo of the occurrence of
swell greater than one foot propagated from the Westerly Wind Belt,
which reaches a maxima during December to May.

The hindcast results revealed that a predominance of the Distant
Swell originated in the eastern South Atlantic to the south and west
of Africa. Possible reasons for this are that this region has shorter
decay distances to Colombo than the western South Atlantic, and also
that the Indian Ocean to the south of Ceylon produces less swell in
the direction of Colombo because the swell are generated by south

winds on the west side of the eastward-moving cyclonic storm systems.
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VII. UTILITY OF THE WAVE STATISTICS

This’study is the only detailed climatological wave investigation
on Ceylon that is known to the author. Although prepared for Colombo,
the wavéwstatistics presented in the appendices may be applied to deep-
water locations with reasonable judgement along most of the west coast
of Ceylon. The wave data for directions of arrival from south through
west can be applied without modification to any deep-water location along
the coast. Wave statistics for directions from west to north are affected
by the shelter of the Indian Peninsula. Along the coastal area to the
north of Colombo, the frequency of occurrence of waves from the west-
northwest must be reduced, whereas along the coast to the south of
Colombo-these frequencies should be increased. There will also be
additional wave energy arriving from the northwest at stations along
the southern half of the coast that does not reach Colombo, and which
is not contained in the statistical tables.

In order to apply these statistics to a shallow-water site, shoaling
and refraction modifications must be made. These procedures are given
in "Shore Protection, Planning and Design' [Technical Report No. 4,

U. S. Army Coastal Engineering Research Center, 1966] and in other
standard references on shallow-water wave transformation.

In applying the wave statistics to coastal sites in the vicinity of
Colombo, or elsewhere along the west coast of Ceylon, the user should be
aware of the following limitations related to their preparation:

1. Adequate weather data for use in hindcasting the Local Swell,

in particular, were lacking in most months, except during the period May
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through August (see Appendix A). 1In September through January and in
April the wave statistics are based on less than six days of available
weather data per month.

2. Simultaneously arriving wave trains were not combined using
energy addition to provide a resultant wave of higher significant height.
However, in the case of small waves, as is the usual situation off
Colombo, this would not appear to constitute a source of appreciable
error.

3. The representativeness of the particular 12-month period
selected for the study is not known. One or more additional years of

wave data would be desirable to give more reliable long-term wave

statistics.
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APPENDIX A

NOTES ON THE USE OF THE STATISTICAL TABLES

Frequency Values

The values entered in the statistical wave tables indicate the
percentage of the month (or year in the case of an annual table) that
the particular wave combination is likely to occur. For example, the
frequency figure of 1.4 for the wave set H = 1-2 feet, T = 9-10 seconds,
and § = SSW listed under Distant Swell for January (Table B-1, Appendix
B) means that these particular waves can be expected to occur 1.4% of

the time in January, or nearly 10.4 hours (1.4% of 24 x 31).

Wave Height and Period

The height and period ranges listed in the table are abbreviated
to conserve space, and actually extend from the lower class mark of
a height or period interval up to but not including the upper class
mark. Thus, a wave height range of 9-10 feet means 9.0 - 9.9 feet.
All heights are significant heights and all periods are significant

periods.

Data Coverage

Although 365 days of weather maps were available, weather data
were missing on some maps; accordingly, the wave statistics were
determined only from the maps with data available. 1In preparing the
statistical tables, it was assumed that the frequencies of occurrence
of waves of each H-T-{ combination that were hindcasted for a partial

month are representative of the full month, so that the percentage
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frequencies of occurrence are identical. The number of 12-hourly weather
maps each month from which the wave hindcasts were made are listed in

the following table.

Full Month Sea Local Swell Distant Swell
January 62 18 5 57
February 56 29 22 52
March 62 37 23 59
April 60 40 10 58
May 62 54 33 61
June 60 57 29 60
July 62 59 43 50
August 62 62 31 45
September 60 44 5 45
October 62 56 1 50
November 60 30 11 55
December 62 22 4 56
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APPENDIX B -

MONTHLY FREQUENCY DISTRIBUTION OF SEA, LOCAL SWELL, DISTANT SWELL

ANNUAL DISTRIBUTION OF SEA
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APPENDIX C

MONTHLY AND ANNUAL

FREQUENCY DISTRIBUTIONS OF ALL WAVES
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APPENDIX D

WAVE HINDCASTING CURVES

80



0002

(zse61

HIVID ONILSVOTIOA VIS WS
S3IUN VIILNVYN NI ‘3 ‘IINVLISIO HOL3S

00» 00t 052 002 05!

00!

‘IJ9pTouyosyaig woiy)

:1-a @3eld

08 09

oy

331 3 ‘woisuo0 p seu
206 ‘31 ‘WOI3} 10 pus |0 POIIND IO ——
‘4 I Wi P PUd 10 bRy MO —— —
‘W UonoUNp wusy

AZTINNIE ‘VINNOSITYD JO ALISHIANN
HOUVISIN ONINIINIONT 40 ILNLILSNI

NOILVH3N39 3JAVM ¥OJ
S3AH¥ND ONILSVIHOS

/

i)

ot

Yy
N
7

77
S8

(0 0,"]

002 Qo0

008

"4 Oo¥
Y
]

—3 X 05

SIONXM NI ‘N ‘ALIDON3IA ONIM

[/

81



LHOIIH JAVA IAILYIIY “In/0N
n b o ~ =
o ? o

®
(<]

=
(=]

-
(]

S3Im WIILNYN 002 * "3 ¥O4

(ZG6T ‘a°prouyds3Iaag wWoig)
HAVYD HONILSVIHY0d TTIMS WS :¢-d *3eld

VINNOJITVI 40 ALISHIAINN

JONVLSIO AVO30 40 ON3 LV LHOIIH 3AVM 3AILVIIN “*H/%M "%y 0 ONJ LV LHOIIH JAVM INVIIIINOIS 1334 "M
gy N0y 270" oM piQR G0 IO QLuwlltONIEQIO”  WEiONN Ol ]
LX) “WE, T35 GNI JV M 20 S3N VA B0J IONVASIO Aro30 OL 1034530 HUM
‘7% 'LHOIIH 3MM 0 3SVIYIIQ 3AILYIIW - O D14 o
/V// 00001 S v
- "
/ NN K = = =% TGI ——
1t
AN = =z===
— [ 1 oon
W AN 2 o [ S
AR 2 — 1 [t ——
e oo
/ N .// // 2 —11 i |
A //A % > L — \\(1
//A/// //nvyvv;v i ol B .
/ N fL’.’t/ P_oot ] ‘0
/ ‘N N H 1
%, ‘N i/ / z 002
/& KN / ,/ m 90
A" N /AU 13 T
= / 5
L x 10
// 2 \qn
g 150 9250 | 3 4+
EEI-N ST e A/ teonw 1oonmew 00 N N N ~ | |
‘sopw 190180% 0000 "%} Sl¢ K I VSMYXI §
SIWW IVIILNYN 0001 OL 06"y / / | —*
ONY S$37IW IVIILNYN 0023 / V L—] A
0 ‘MM/%H 'LHOIIH IAVA IAILTIIY ~
ML NIIMLIE AHHSNOILYIIN - 0 914 os o

[=]
-

NN\ 7 4
|
|

QOju3d IAVA IAILYIIN “L/9

. XTI T O
‘0271291791 ‘sopw 9sritev 00VSY ‘Sapw
1SoyRse 000Z +0 ‘9308 010 %L (3 1GMYX D A ]
$3W IVIILNYN 3 1
000! OL 05*™"3 ONV S3 N - \ ® |
IWININYN 002 ™™, ‘478 \ E "] ——
[ WP RUVLY % — —1
‘00134 JAVM 3AILYVIIM 3HL v \ 2R [ —1 —t
S = e [t
NIZM139 JIHSNOILLYIIN - 8 013 \ ml” H\\\ F\\\\\“\m\
\\ / e e e e
A Y7/ i = ;
2 000" |1 |1 L
A \ yaV v, &k \\\\nu ]
L 7 oodt e A
e \ \\ \\ { % s —— | |
/ AL A e e Sl .
\ \ \ \ 000’ $37W 1WN 002+*™3 40 ON3 3HL 1V
4 / / Y // 4L 40 $3INTVA ¥O4 IONVISIO AVI
£ 7 s o7 WL 70| T o el 01 193453% HilM “41/Y ‘0034
: & ﬁ.\, %\,&..\aw.\«mw.\hwﬂw‘\' _ _ IAVA NI 3SYINOM 3AILVIIN - V 014 :
T BT LA 7 3T TT 0 T XAl {—Y L B — T R L L V!

3ONVLSIO AVOI0 4O ON3I L1V GOIN3d 3IAVM 3JAILVIIN ‘“4/9% ™4 30 ON3 LV 00IN3d 3JAVA LNVDIJINOIS 'SONODIS 4

LHOIIN JAWR JAILYIIN ““H/%

* "3 o4
82

$37Uw vIoILNYN 002

= & I
001M3d AWM JAILVIIN “4/9



Doy A

04 4.

FOR: gostAEUC‘rol::I; MILES I/: V // ) .
sure, /L AN Ao

: YN VAT

| A7 LA b7 74

i | j_,‘ L A, //// // /‘/ e
R : ;2;?{ AN VA,
| | \;fj / ,\b\ 0&%// 4 vz Wz .
- NI T
ERERD//7 0 Nap AP

= AN WA VA A

. ///T// // l/ // @ I /// 00

; / //C/Cj/j/‘/// :/// e ,/;} I 4/’1::2200

i /// ////, //// /}g)ﬁ(/// 2000
N A A Y| T
WA AT AP = A RPN
T o e

v /////Ar/// ,/)/// — 1o I .l /12005
0 0 T A T ool
YVt i O e B s
V%?/ /J/// '/'/// | { 9 | ""soo;
e e R oo
%%/:/L’// 10 hra 20°§
4/7 8 10 12 ; 4 16 18 20 2? §

WAVE PERIOD AT END OF DECAY, Ty, IN SECONDS

Plate D-3: SMB SWELL TRAVEL TIME GRAPH
(From Bretschneider, 1952)

83



REFERENCES

Bretschneider, C. L., 1952. Revised Wave Forecasting Relationships.
Proc. Conf. on Coastal Engineering, Council on Wave Research,
University of California, p. 1-5.

Bretschneider, C. L., 1952. The Generation and Decay of Wind Waves in
Deep Water. Trans. Amer. Geophy. Un., V. 33, No. 3, p. 381-389.

Gelci, R., H. Cazale, and J. Vassal, 1958. The Spectro Angular Method
of Forecasting Ocean Waves. Translation by Fleet Numerical Weather
Central, Monterey, from Min. de Trav. Publ. et des Trans.

National Marine Consultants, 1960. Wave Statistics for Seven Deep Water
Stations Along the California Coast. Prepared for the Los Angeles
and San Francisco Districts, U. S. Army, Corps of Engineers, 20 pp.

National Marine Consultants, 1961. Wave Statistics for Three Deep Water
Stations Along the Oregon-Washington Coast. Repared for the Portland
and Seattle Districts, U. S. Army, Corps of Engineers, 17 pp.

Office of the Chief of Naval Operations, 1958. Meteorology for Naval
Aviators. U. S. Government Printing Office, Washington, D. C.,
NAVAER 00-80U-24, 300 pp.

Pierson, W. J., G. Neumann, and R. W. James, 1955. Practical Methods
for Observing and Forecasting Ocean Waves by Means of Wave Spectra
and Statistics. H. 0. Pub. 603, 284 pp.

Rattray, M., and W. V. Burt, 1956. A Comparison of Methods for Fore-
casting Wave Generation, Deep Sea Res., V. 3, No. 2, pp. 140-144,

Roper, W., 1960. A Study of the Wave Climatology of the Gulf of Siam.
Naval Postgraduate School, MS Thesis, 73 pp.

Sverdrup, H. U., and W. H. Munk, 1947. Wind, Sea and Swell: Theory rof
Relations for Forecasting. H. O. Pub. 601, 44 pp.

Sverdrup, H. U., and W. H. Munk, 1951. Techniques for Forecasting Wind
Waves and Swell. H. O. Pub. 604, 38 pp.

Timmie, R., 1969. The Adequacy of Forecasting, Hindcasting, and the Use
of Ocean Surfacc Wave Information. National Security Industrial
Assoc., Tech. Rept., 152 pp.

U. S. Army, Corps of Engineers, 1966. Shore Protection, Planning and
~ Design. Coastal Engineering Research Center, Tech. Rept. No. 4,

U. S. Government Printing Office, Washington, D. C., 401 pp.

Wiegel, R. L., 1966 Oceanographical Engineering. Prentice-Hall Inc.,
532 pp.

84




INITIAL DISTRIBUTION LIST

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

Department of Oceanography
Naval Postgraduate School
Monterey, California 93940

Professor Warren C. Thompson
Department of Oceanography
Naval Postgraduate School
Monterey, California 93940

Assistant Professor Edward B.

Department of Oceanography
Naval Postgraduate School
Monterey, California 93940

LCDR E. M. A. Perera
Naval Headquarters
P. 0. Box 593
Colombo, Ceylon

Oceanographer of the Navy
The Madison Building

732 N. Washington Street
Alexandria, Virginia 22314

Captain Paul M. Wolff
Commanding Officer

No.

Thornton

Fleet Numerical Weather Central

Monterey, California 93940

Mr. Joseph M. Caldwell, Technical Director
Coastal Engineering Research Center

5201 Little Falls Road, N, W.

Washington, D. C. 20016

Captain of the Navy
Royal Ceylon Navy
P. 0. Box 593
Colombo, Ceylon

85

Copies

20



10.

L,

12.

13.

14.

15.

No.

The Secretary

Institute of Engineers of Ceylon
C/0 Public Works Department
Colombo 1, Ceylon

The Director
Public Works Department
Colombo 1, Ceylon

The Chairman

Department of Civil Engineering
University of Ceylon

Colombo 1, Ceylon

The Librarian
University of Ceylon
Peradeniya, Ceylon

The Chief Hydrographer
C/0 Indian Navy Headquarters
New Delhi, India

Library, Code 0212

Naval Postgraduate School
Monterey, California 93940

86

Copies




Security Classification

—
DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be entered when the overall report is classilied)

ﬁORIGlNA TING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION

Naval Postgraduate School Unclassified

2b. GROUP

Monterey, California 93940

. REPORT TITLE

Climatological Wave Data for Colombo, Ceylon

. DESCRIPTIVE NOTES (Type of report and, inclusive dates)

Master's Thesis; April 1970

5. AUTHOR(S) (First name, middle initial, last name)

Edward M. A. Perera

. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
April 1970 88 13
8. CONTRACT OR GRANT NO. 9a8. ORIGINATOR’S REPORT NUMBER(S)

b. PROJECT NO.

c. 9b. OTHER REPORT NO{S) (Any other numbers that may be assligned
this report)

d.

0. DISTRIBUTION STATEMENT

This document has been approved for public release and sale;
its distribution is unlimited.

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School
Monterey, California 93940

3. ABSTRACT

Deep-water wave statistics for Colombo on the west coast of Ceylon have
been compiled using the Sverdrup-Munk-Bretschneider wave-hindcast method
applied to 12-hourly weather maps of the West Indian and South Atlantic
Oceans for the one-year period from June 1968 through May 1969.

Results of the wave-hindcast analysis are presented in the form of monthly
and annual height-period-direction frequency distributions. The predominant
waves are in the one to three foot height range, have periods centered about
13-14 seconds, and arrive from westerly to south-southwesterly directions.
Wave action is most frequent in May through September and least in December.

The wind waves and local swell on the west coast of Ceylon strongly
reflect the seasonal Monsoons. The principal source of distant swell for
this coast is the prevailing westerly wind belt of the Southern Hemisphere
between Argentina and the longitude of Ceylon (BOOE). The subtropical anti-
cyclone in the central Indian Ocean is a relatively quiet source region for
swell compared to the Monsoon belt and the prevailing westerlies.

—

D v 1473 (A 1

/N 0101-807-6811 87 Security Classification

A-31408




~  Security Classification

KEY WORDS

LINK A

LINK B

LINK C

ROLE wT

ROLE WT

ROLE wT

Climatological wave data
Ocean wave statistics for Ceylon
Wave statistics for Ceylon

Wave climatology of Ceylon

DD "°*™ 1473 (8ack)

S/N 0101-807-6A21

88

Security Classification
















Thesis
P335 Perera

c.l Climatological wave
data for Colombo,
Ceylon.

i.
;’

118282




33333333
Climatological wave data for Colombo, Ce

T

32768 001 97969 3
DUDLEY KNOX LIBRARY




