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ABSTRACT 
A new and relatively straightforward approach to interpolating and spatially averaging air temperature from 
weather-station observations is introduced and evaluated using yearly station averages taken from the Jones et al. 
archive. All available terrestrial station records over the period from 1881 through to 1988 are examined. Called 
climatologically aided interpolation, or CAI, our procedure makes combined use of (i) a spatially high-resolution 
air-temperature climatology recently compiled by Legates and Willmott, as well as (ii) spatially interpolated yearly 
temperature deviations (evaluated at the stations) from the climatology. Spherically based inverse-distance-weighting 
and triangular-decomposition interpolation algorithms are used to interpolate yearly station temperatures and 
temperature deviations to the nodes of a regular, spherical lattice. Interpolation errors are estimated using a 
cross-validation methodology. 

Interpolation errors associated with CAI estimates of annual-average air temperatures over the terrestrial surface 
are quite low. On average, CAI errors are of the order of 08"C, whereas interpolations made directly (and only) from 
the yearly station temperatures exhibit average errors between 1.3"C and 1 9 C .  Although both the high-resolution 
climatology and the interpolated temperature-deviation fields explain non-trivial portions of the space-time variability 
in terrestrial air temperature, most of CAI's accuracy can be attributed to the spatial variability captured by the 
high-resolution (Legates and Willmott's) climatology. Our results suggest that raw air-temperature fields as well as 
temperature anomaly fields can be interpolated reliably. 
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1. INTRODUCTION 

Air temperature and its space-time variability continue to be examined extensively by climatologists for 
evidence of large-scale climatic change. A wide variety of approaches have been used, from climate-model 
simulations of temperature variability (e.g. Washington and Meehl, 1986) to the extraction of air temperature 
estimates from satellite observations (e.g. Spencer and Christy, 1990) and paleoclimatic records (e.g. Baron, 
1982). Analyses based upon historical station-network records of shelter-height temperature, however, 
continue to be regarded as the most accurate or precise. Observational biases at the station locations have 
been investigated extensively (Mitchell, 1953; Karl et al., 1989). Problems in estimating (i) the spatial 
variability within air temperature fields and (ii) spatial averages from station-network observations, however, 
have received insufficient attention, even though the errors and biases can be substantial (Willmott et al., 
1991; Robeson, 1993; Robeson and Willmott, 1993). Our focus within this paper then is on the spatial estima- 
tion problem; more specifically, we present and evaluate a relatively straightforward approach to the spatial 
interpolation and averaging of air temperature from station observations. As our estimation procedure 
makes use of a spatially high-resolution climatology, we call it climatologically aided interpolation, or CAI. 

Although air-temperature anomalies-air-temperature deviations from station reference temperatures- 
are widely interpolated and averaged to characterize large-scale climatic change (Hansen and Lebedeff, 
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1987; Jones et al., 1986a,b), our primary interest here is in actual air-temperature fields rather than anomaly 
fields. Actual air-temperature fields are more informative than anomaly fields in that they more fully 
represent the thermal state of the near-surface atmosphere. Consider, for instance, that atmospheric radiative 
emission and the phase changes of water depend on air temperature, not on temperature anomalies or 
other derived air-temperature statistics. Anomaly fields are popular because they are relatively free of the 
considerable topography-forced spatial variability that exists within actual air-temperature fields. Anomaly- 
field popularity also rests on two tacit assumptions: (i) actual air temperatures cannot be interpolated with 
acceptable levels of accuracy and (ii) spatial averages derived from the anomaly fields-obtained from 
different station networks and/or time slices of climate-are consistently related to their corresponding 
actual air-temperature fields and spatial averages. It is important to mention that the validity of this second 
assumption, to our knowledge, has not been rigorously demonstrated. Our analysis (below) additionally 
shows that the first assumption may be losing its validity. 

Air-temperature fields are usually estimated at the nodes of a regular grid by spatially interpolating from 
a set of irregularly spaced station observations. Spatial averages, in turn, can be obtained by summing the 
grid-point temperature estimates, where each grid-point value is weighted by the area represented by the grid 
point. Interpolation to the grid can be performed using one of a wide variety of algorithms (Robeson, 1993; 
Robeson and Willmott, 1993), although here we rely primarily on a spherical version of Shepard's (1968) 
inverse-distance weighting method (Willmott et al., 1985) because it is both relatively accurate (Bussieres 
and Hogg, 1989; Weber and Englund, 1992) and cost effective. Renka's (1984) interpolation methods (based 
on a triangular decomposition of the data network on the sphere) also are examined. Our emphasis within 
this paper is on the errors associated with interpolating air-temperature fields by both traditional (simple) 
interpolation methods and by using a spatially high-resolution climatology to aid the interpolation. 

2. SPATIALLY AND TEMPORALLY VARYING AIR-TEMPERATURE OBSERVATIONS 

Jones et al. (1986a,b) published perhaps the most comprehensive study of global air-temperature changes 
over the last century and we make use of their data here. Although both the original station data and their 
estimated gridded form are available (Jones et al., 1991), our interest is in interpolation from stations to 
the nodes of regular lattices and the associated errors; therefore, our analyses begin with the station 
air-temperature data. More precisely, we examine annual average air temperature at all available terrestrial 
stations for each year from 1881 through to 1988. 

Numbers and distributions of the air-temperature stations contained within the Jones et al. (199 1) archive 
are described in some detail in their documentation and elsewhere (e.g. Robeson, 1993). Such discussion, 
therefore, is not repeated here. A few comments about the Jones et al. (1991) station networks, however, 
illustrate several general problems associated with the spatial interpolation of terrestrial air temperature as 
well as the estimation of global climate change from irregularly spaced air-temperature data sets. 

Within the Jones et al. (1991) data base, air-temperature records prior to 1881 were very few in number 
(< 250) and most were obtained from stations in Europe and North America. Station networks for the 
late 1800s continue to overrepresent Europe and North America-relatively speaking. By 1901, terrestrial 
station networks are available for more than 500 stations. Available station records are greatest for the 
period 1951-1970 and nearly 1700 of these records are contained in the Jones et al. (1991) archive. Spatial 
distributions of stations generally become more even through time; although several undersampled areas 
persist, notably in Africa and South America. With this in mind, our analyses of terrestrial station networks 
begin with the 1881 network. 

3. SPATIAL INTERPOLATION OF AIR TEMPERATURE BY TRADITIONAL METHODS 

3.1. Interpolation methods 

Estimating air temperatures at unsampled locations (e.g. grid points) from sampled locations (e.g. tempera- 
ture stations) usually is accomplished by spatial interpolation (Bennett et al., 1984). Although a number of 
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approaches are available (cf. Shumaker, 1976; Gustavsson, 1981 ; Franke, 1982; Lam, 1983; Thiebaux and 
Pedder, 1987), an example from each of two commonly used classes of interpolation methods are considered 
here. Mentioned above, inverse-distance weighting methods are represented by Willmott el al.3 (1985) 
spherical implementation of Shepard's (1968) procedure, whereas triangular decomposition is illustrated 
with Renka's (1984) Co algorithm and, to a lesser extent, his C' procedure. Interpolation errors associated 
with estimating terrestrial air-temperature fields are evaluated for each of these methods. A third class of 
interpolators, functional minimization, is not examined because of the massive number of computational 
cycles required when the number of stations is large (Robeson, 1993). 

Interpolation by inverse-distance weighting remains popular because of its simplicity and relative accuracy 
(Bussibres and Hogg, 1989; Weber and Englund, 1992; Robeson and Willmott, 1993). An air temperature 
at an unsampled location of interest (node i )  can be estimated-by inverse-distance weighting-from nearby 
sampled locations (stations) according to 

where each weight (w i j )  is an inverse function of the distance from a sampled location (j) to an 
unsampled location (i), T j  is an air temperature at nearby station j ,  and ni is the number of nearby 
stations that influence the estimate at  location i. Although the Willmott et al. (1985) algorithm (following 
Shepard, 1968) is based on powers of inverse distance-and therefore qualifies as an inverse-distance 
weighting scheme-it also contains two useful extensions. Outlined by Shepard (1968), biases arising from 
autocorrelation among spatially clustered nearby stations are reduced through the application of a cosine 
weighting function. Provision also is made for extrapolating beyond the range of the nearby stations when 
spatial gradients warrant it. Implementation of these extensions can be made by adjusting the weighting 
scheme in equation (1). Inverse-distance-based interpolation methods that do  not possess some form of 
these two extensions are at a relative disadvantage, as discussed by Willmott and Legates (1991). 

Spatial interpolation by triangular decomposition is similar to distance weighting in that nearby stations 
generally receive more weight than distant stations. The station network, however, is first decomposed into 
triangular elements (usually by a Delaunay triangulation). When interpolating over large areas of the Earth, 
it is important to perform the triangulation and other distance and angular calculations on the surface of 
a sphere, as Renka (1984) has done. After the station locations have been triangulated, a surface can be fitted 
over each triangular element. Any order surface can be used; but, care must be taken to ensure that each 
triangular patch fits with neighbouring patches both seamlessly and smoothly. Such triangulation and 
subsequent surface fitting form the basis of several widely used spatial interpolation routines. Akima's (1978) 
algorithm, for instance, is both well known and available within the IMSL and NCAR Graphics subroutine 
libraries. Like most interpolation algorithms, Akima's method was developed to interpolate data that are 
georeferenced in a plane. It, or other planar-based methods, should not, therefore, be used to interpolate 
spherically geocoded observations without modifications to incorporate the Earth's spherical geometry. 

Unlike most procedures, Renka's (1984) algorithm permits both spherical triangulation and interpolation. 
It also includes both a Co (continuous but not differentiable) and C' (continuous and once differentiable) 
interpolants. Renka's Co method fits a planar surface over each spherical triangle, whereas the C' method 
applies a Hermitian cubic surface (other constraints restrict the surface to be differentiable only once). 
Spatial gradient estimation is required for the C' method and can be accomplished either locally or globally 
(Renka, 1984). 

3.2. Interpolation errors 

When interpolating any climatological field from irregularly spaced station data, it is useful to evaluate 
both the interpolation procedure and the adequacy of the station network. Cross-validation (Efron and 
Gong, 1983) provides a way to do both and it is used here. Our implementation of cross-validation is 
basic. The first step is to remove one observed data point (station air temperature) at  a time from the station 
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network. One by one (with replacement), each removed station air temperature then is estimated by 
interpolation from surrounding station air temperatures. This two-step procedure is repeated for all stations, 
which yields an observed and estimated temperature at each station location. Differences between the 
corresponding observed and interpolated station temperatures (i.e. the interpolation errors) reflect both the 
fidelity of the interpolant and the adequacy of the station network (Robeson, 1993). Although these two 
sources of error can be difficult to separate, comparisons among interpolation methods (e.g. Robeson, 1993) 
can identify the relative accuracy of competing methods. 

Both Willmott et al.3 (1985) and Renka's (1984) Co methods are evaluated using the above-described 
cross-validation analysis. Interpolation errors for the air-temperature data drawn from Jones et al. (199 1) 
are large-mean absolute errors (MAEs) range from ca. 1-3°C for the densest networks to ca. 1.9"C for the 
sparsest ones. Time series of MAE (Figure 1) also exhibit a strong inverse relationship between interpolation 
error and number of stations. Cross-validation errors additionally suggest that the Willmott et al. procedure 
performs better than Renka's Co method for these air temperature data. Differences between Willmott et 
al.3 and Renka's Co methods, however, appear not to be statistically meaningful for a number of years, 
as estimated by boot-strapped 95 per cent confidence intervals (not shown). The cross-validation also 
suggests that a few hundred stations (i.e. station networks from the 1880s) or even 1500 stations (i.e. station 
networks from the 1950s and 1960s) do not represent terrestrial air-temperature variability adequately 
(interpolation MAEs are > 1.3"C). 

The greater accuracy exhibited by the Willmott et al. algorithm, relative to Renka's Co method, most 
likely results from a combination of differences between these two methods, although the inclusion of spatial 
derivatives within Willmott et al. and not within Renka is worth noting. Renka's C' method also was tested 
because it estimates spatial gradients and fits a higher order surface, unlike the Co method. Highly irregular 
station distributions appear to pose problems for both the local and global gradient-estimation calculations 
within the C' method, however. The C' cross-validation errors for some networks consequently have MAEs 
exceeding 3-0°C. 

As illustrated above, traditional or simple interpolation algorithms often are inadequate when the field 
of interest is spatially variable and the observational network is sparse. Traditional, simple or univariate 
interpolation refers here to interpolation methods that rely solely on observations of the variable being 
interpolated at a set of sampled locations; that is, the only independent variables are '7;. (in our case), xjr 
and y j ,  where xi represents longitude and y j  latitude. Researchers from several disciplines, however, have 
attempted to use additional independent variables to reduce the between-station uncertainty. Climatologic- 
ally aided interpolation (CAI) is another such multivariate method, and it is presented and evaluated below. 

-.- 1 - Willmott ot 01. (1985) I ---- 
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Figure 1. Time series of spatially intergrated mean absolute interpolation error (MAE) from cross-validation analyses using air 
temperatures. Willmott ef aL's (1985) algorithm (solid line) and Renka's (1984) Co method (dotted line) were used to interpolate air 
temperature to each station from surrounding stations. The number of air-temperature stations through time (dashed line) also is shown. 
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4. CLIMATOLOGICALLY AIDED INTERPOLATION (CAI) OF AIR TEMPERATURE 

Climatologically aided interpolation makes use of a climatological (long-term average) air-temperature field 
to help interpolate an annual air-temperature field of interest. Intra-annual climatic variables (e.g. monthly 
air temperature) also could be interpolated in a similar fashion. As the climatological field represents 
additional information, CAI can be thought of as a type of multivariate method. For multivariate 
interpolation to improve on univariate methods, at least one additional variable must exist that is (i) highly 
collinear in space with the variable of interest and (ii) observed at a meaningfully higher spatial resolution 
or where the variable of interest is unsampled. The CAI method exploits the spatial collinearity between 
recent high-resolution station-based climatologies of air temperature (e.g. Legates and Willmott, 1990) and 
annual temperature observations associated with lower resolution station networks (e.g. Jones et al., 1991). 

Our implementation of CAI grows out of the interdisciplinary interpolation literature as well as several 
years of experiments at the University of Delaware. A number of intriguing approaches have taken form 
within the atmospheric sciences under the somewhat nebulous rubric ‘objective analysis’, and other advances 
have appeared under a wide variety of banners. Multivariate objective methods, for instance, are used to 
adjust numerical weather-model simulations toward consistency with current weather observations (Daley, 
1991). Climatological (time-averaged) information also has been used to refine objective interpolations of 
upper-air fields from soundings (Thikbaux and Pedder, 1987). Ishida and Kawashima (1993) recently 
articulated the advantages of incorporating a high-resolution digital elevation model (DEM) into an 
air-temperature interpolation scheme. Anomaly-based interpolation (e.g. Jones et al., 1986a,b) also makes 
use of additional information, albeit-like CAI-information about the variable of interest but from a 
different time period. 

Our implementation of CAI again makes use of Willmott et al.’s interpolation algorithm as described 
below (section 4.2). Before considering CAI in some detail, however, we summarize the pertinent characteris- 
tics of the Legates and Willmott (1990) high-resolution air-temperature climatology. 

4.1. A spatially high-resolution climatology of terrestrial air temperature 

Among the more spatially extensive air-temperature climatologies that are available is the compilation 
of Legates and Willmott (1990). It contains monthly and annual mean air temperatures for nearly 18000 
terrestrial stations (Figure 2(a)); that is, several-fold more stations than exist within the most complete 
archives of station time-series of air temperature (e.g. Vose el al., 1992; Jones et al., 1986a,b). Unlike 

Figure 2(a). Spatial distribution of the 17986 air-temperature stations of Legates and Willmott (1990). 
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Figure 2(b). Spatial distribution of annual mean temperature (“C) from the climatology of Legates and Willmott (1990). 

air-temperature fields interpolated from just a few hundred stations, the Legates and Willmott climatology 
is able to resolve much of the small-scale spatial air-temperature variability (Figure 2(b)). Features such as 
the Ethiopian highlands and the sharp boundary between the Atacama Desert and the Andes are clearly 
delineated. Its main drawbacks are: (i) it is comprised of climatological averages and therefore cannot 
resolve interannual variability and (ii) it contains selected station averages from differing, albeit usually 
overlapping, time periods-to ensure maximum spatial coverage. For many spatial applications, its high 
spatial resolution outweighs the deleterious effects of variable averaging periods. Preliminary work by the 
authors using precipitation data suggests that interpolation errors (when using traditional interpolation 
methods) are greater when station records from different averaging periods are left out rather than included. 

4.2. Interpolation of air temperature using CAI 

Long-term station means from a high-resolution climatology (Legates and Willmott’s climatology in 
this instance) first are subtracted from the annual-average station temperatures at all stations available for 
a year of interest (from the Jones et al. archive in this case). In this way, an annual temperature deviation 
(6T) is obtained for each station. When a climatological mean does not exist for a station, it can be 
interpolated from nearby climatological means. Station deviations from long-term station means (6T) then 
are interpolated to a spherical lattice. At each node of the grid, our CAI estimate (Ti) is obtained by 
adding the interpolated deviation (Q) to Legates and Willmott’s long-term average (70, where each Ti 
was previously interpolated from Legates and Willmott’s 17 986 long-term station averages. When LjT is 
interpolated by inverse-distance weighting, we can write 

n n 

= 4- i W i j i q /  i wij (2) 
j =  1 j =  1 

In this way, our implementation of CAI includes both the spatially high-resolution information within 
the climatology as well as observations for a given year or other time-period of interest. 

Although inconsistencies arising from station observational biases (e.g. time-of-observation differences 
among countries, differential urban heating, and station records that span variable time periods) exist within 
Legates and Willmott’s climatology, CAI indirectly damps their deleterious influences on the interpolated 
yearly temperature fields in the following way. Our 6T,  fields represent not only the climatologically forced 



CAI OF TERRESTRIAL AIR TEMPERATURE 

2.00, 1 

n 9 1.75- 
v 

L 

L 2 1.50-' 
W 

0 ) ' .  3 1.25- 

0 
u) 

- 
9 1.00: 

c 
0 
Q) 0.75- I 

1 

227 

, .E. 9: ;:, . . . .  : ..: 
: ..: . :: . . < '. 
j "i .... .... . 5 . ;& 2;;: :, $5 :. :I 

: 
.: :.. : ............... ..... 

, ~, :...*: ,.!. .< . .. ... .~ .:-::;; ..... . i': 2' 
Simple Interpolation ' ' :'i . 

Jusl Climololoqy ,* 
; .. . ..:. ... 

~ . . . . . .  . . , :a  i . i: ... i .. _. ., 
! 

...-...- 
! CAI - 

0.50 . . .  , . . . . . . . . . . .  , . . .  , . . .  
1870 1890 1910 1930 1950 1970 1990 

Yeor 

Figure 3. Time series of spatially integrated mean absolute interpolation error (MAE) from cross-validation analyses of (i) Willmott 
er al.'s (1985) interpolations from Jones et ul.'s yearly station data (dotted line), (ii) climatologically aided interpolation (CAI) again 

interpolating with Willmott ef al. (solid line), and (iii) climatology alone (mixed dashed and dotted line). 

differences between the interpolated Legates and Willmott (Tj) and Jones et al. (7J temperatures at station 
j ,  but they also contain information about station biases that influence differences between Tj and ?j. When 
the t3q field is interpolated from the 6q field, it (the a'& field) then contains interpolated bias-correction 
information; in turn, when the ST field is added to the estimated Ti field, the grid-point estimates 
approximate the Jones et al. station values in quality, albeit at a much higher spatial resolution. It is this 
aspect of our somewhat unusual anomaly fields that allows CAI to effectively make use of the inhomo- 
geneous-but spatially high-resolution-station records that reside in Legates and Willmott's climatology. 

4.3. Interpolation errors for CAI 

Cross-validation was performed (as in section 3.2) for CAI using Willmott et al. (1985) to interpolate 
both the Tj and the S?. Substantial improvements over the simple interpolation results (using only yearly 
air temperatures) are apparent (Figure 3). Interpolation errors are reduced by over 50 per cent, and approach 
interpolation errors associated with more standard anomaly data (Robeson, 1993). Scatter plots (Figure 4) 
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Figure 4. Scatter plots of observed air temperature versus cross-validation estimates for 1962 using (a) Willmott ef al.'s algorithm 
with the yearly station data only and (b) climatologically aided interpolation (CAI). 
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provide further convincing evidence of the superior performance of CAI even for densest station networks 
(ca. the 1950s and 1960s). 

Unlike the errors associated with simple interpolation, CAI cross-validation errors are not highly 
correlated with the number of stations. Explanation lies in the somewhat counter-intuitive fact that the 
spatial variability within the climatology accounts for most of the temporal (yearly) between-station 
air-temperature variability. For typical yearly station networks, in other words, more between-station 
variability is spatial than temporal. The CAI method works especially well for air temperature because the 
high-resolution climatology indirectly accounts for topography as well as the spatial variability in the 
average characteristics of climate. Our results also strongly suggest that air temperatures-not just 
air-temperature anomalies-an be interpolated reliably, even from sparse station networks. 

Although CAI reduces cross-validation errors for yearly air-temperature data, it is useful to examine the 
separate roles that the interpolated deviation field and climatology play. When climatology alone is used as 
the cross-validation estimate at each station (i.e. f, = T,, where "',is interpolated), it is clear that its relative 
contribution is substantial (Figure 3). Interpolation errors for just the climatology, in fact, are of the order 
of a half degree lower than the average error incurred in simple interpolation from the yearly air-temperature 
station networks. Once again, the primary reasons why Legates and Willmott's climatology explains such 
a large portion of the spatial variability in yearly temperature are that (i) its average station density is 
roughly tenfold greater than the station densities of most climatologies containing only homogeneous (in 
time) station records, and (ii) much of the space-time variability in yearly mean temperture is spatial and 
occurs at scales below the station-network resolutions of most temporally homogeneous climatologies. A 
non-trivial portion of the spatial variance (cu. 0.2"C) also is explained by the interpolated 6T field. It is 
intriguing that (i) the high-resolution climatology is the most important component of CAI and (ii) CAI is 
dramatically superior to simple interpolation for all the station networks evaluated (Figure 3). 

5. SUMMARY AND CONCLUSIONS 

Several interpolation methods were applied to the spatial estimation of yearly air-temperature averages for 
stations drawn from the Jones et ul. (1991) data set. Traditional or simple interpolation methods were 
represented by the inverse-distance weighting algorithm of Willmott et ul. (1985) and Renka's (1984) 
triangular decomposition methods. A new approach termed climatologically aided interpolation (CAI) also 
was evaluated and compared with the traditional methods. All interpolation procedures and all yearly 
station networks within the Jones et ul. (1991) archive were used to interpolate annual-average station 
temperatures. Cross-validation was used to estimate the interpolation errors. 

Interpolation errors for the simple interpolation methods ranged from 1.3"C to 1*9"C, approximately. 
Errors associated with our implementation of CAI were considerably lower-of the order of 0.8"C. Most 
of the improvement exhibited by CAI (relative to simple interpolation) can be attributed to the spatially 
high-resolution station network contained in the Legates and Willmott climatology. When it alone was 
used to estimate the yearly station temperatures, interpolation errors were of the order of 1°C. The 
interpolated deviation field then accounted for about 0.2"C of the spatial variability. Although both the 
climatology and the interpolated air-temperature deviation fields explained significant portions of the yearly 
spatial variance in air temperature, the spatial variabililty captured by the high-resolution climatology 
appears to be considerably more important. 

Our sense is that the use of additional independent variables in spatial interpolation (i.e. multivariate 
interpolation) will increase dramatically as the number and quality of available high-spatial-resolution data 
bases increases. Satellite and high-resolution archives of other important climatic variables, in particular, 
should measurably improve our ability to interpolate, map, and evaluate climate and climatic change. 
Spatially high-resolution estimates of average lapse rates-made from high-resolution digital elevation 
models (DEMs)--also should significantly improve the accuracy and resolution of our interpolated 
air-temperature fields. The CAI of air temperature provides one example of the substantial increases in 
accuracy that are possible. Such methods also should improve spatial interpolations of climate variables 
at smaller spatial scales. 
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