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Abstract

“To consult the statistician after an experiment is finished is oftenmerely to ask him to conduct a post mortem examination.

He can perhaps say what the experiment died of.” – R.A. Fisher

While this idea is relevant across research scales, its importance becomes critical when dealing with the inherently

large, complex and expensive process of preparing material for cell-based therapies (CBTs). Effective and economically

viable CBTs will depend on the establishment of optimized protocols for the production of the necessary cell types.

Our ability to do this will depend in turn on the capacity to efficiently search through a multi-dimensional problem

space of possible protocols in a timely and cost-effective manner. In this review we discuss approaches to, and

illustrate examples of the application of statistical design of experiments to stem cell bioprocess optimization.

Keywords: Design of experiments, DOE, Stem cell, Bioprocessing

Background
Stem cells are capable of both replenishing their own

numbers, and giving rise to one (unipotent stem cells) or

more (multipotent, pluripotent or totipotent stem cells)

other cell types. As such, bioprocesses that produce these

cells cost-effectively, in quantity and with the desired

properties, are foundational to efforts to bring tissue engi-

neering and regenerative medicine to the clinic.

Once basic research has provided proof of concept for

specific cell-based therapies (CBTs), applied research into

the conversion of bench-scale protocols into optimized

bioprocesses comes to the fore. Promising early clinical

trials to treat retinal degenerative diseases with embry-

onic stem cell (ESC)-derived retinal pigmented epithelium

have showed encouraging results [1, 2] and have in turn

led to further trials that attempt to use CBTs to treat these

diseases (reviewed in [3]). Insulin-secreting beta-like cells

derived from from ESCs are also undergoing phase I/II
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clinical trials to evaluate their efficacy as a CBT for Type

1 diabetes (trial ID NCT02239354). There are, however,

a number of challenges that must be overcome before

CBTs can become generally available. Biological, techni-

cal and economical factors that need to be addressed have

all been expertly reviewed elsewhere [4–7]. These factors

ought to be kept in mind even at the earliest stages of

stem cell research to facilitate translation towards tech-

nically and economically viable CBTs. Two critical but

often-overlooked metrics for a given stem cell bioprocess

are yield, the quantity of output cells of the desired type

produced, and sensitivity, the robustness of the process in

the face of minor variations in input variables.

Protocol yield – cell production per input cell, per mL of

growthmedium, per unit cost, etc – is not widely reported

in the stem cell literature, but forms an essential step in the

understanding of process efficiency. Where the term effi-

ciency is encountered, it is often conflated with the purity

of the output population. This is a critical metric in its

own right, particularly when as few as 1 in 4000 undiffer-

entiated pluripotent stem cell (PSCs) can lead to teratoma

formation [8] for example, but should be distinguished

from process efficiency. Monitoring and process refine-

ment around yield can enable dramatic improvements,

once this point is recognized [9]. When considering the
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magnitude of cells required for the replacement of cell-

dense organs, estimated to be upwards of 109 cells per

patient per treatment [10], the importance of yield to pro-

cess viability becomes clear. Given a doubling time of

approximately one week during early human fetal devel-

opment [11], a 90-day protocol beginning with onemillion

input cells should theoretically generate in excess of 79

progeny, assuming continuous replication in the absence

of cell death. While this example demonstrates that the

quantities of material required for CBT are attainable in

principle, it must also focus attention on opportunities for

improvement in processes that fall short of these num-

bers. To have impact beyond the laboratory, stem cell

bioprocesses will require yield optimization across a broad

array of input parameters.

In turn, sensitivity directly impacts process repro-

ducibility, currently a major concern in scientific pub-

lishing [12]. Cases of scientific fraud notwithstanding, it

is likely that for the majority of processes that might be

considered poorly reproducible, they exist in a highly sen-

sitive region where small variations in one of potentially

many process inputs (e.g. bioactive cytokine concentra-

tion, oxygen tension) can lead to drastic changes in output

(Fig. 1). Where simple publication of an unreliable pro-

tocol can have negative reputational effects and lead to

lost time and resources, attempts to translate such a pro-

tocol to the clinic can have far-reaching impacts on both

patient health, and the financial viability of the organi-

zation responsible. Understanding to which inputs the

process is most sensitive is essential for both good sci-

ence, and the robust and reliable production of cells for

therapeutic applications.

A review by Placzek et al. details many of the design

principles required to translate stem cell bioprocessing

into viable commercial products. Considerations toward

process components such as cells and scaffolds, and

process requirements including automation, characteriza-

tion, harvesting and storage are detailed thoroughly [13].

The complexity of stem cell bioprocessing requires the

examination of these multiple components that must be

controlled to arrive at the correct state of the cell at

the end of the process. Given this, it is important that

careful thought be given to the design of experiments

used to understand stem cell bioprocessing systems.

Statisticians have been giving serious thought to such

issues for many decades, developing a field of research

known as design of experiments (DOE) or experimental

design [14].

DOE methods cover a range of activities that relate to

the logical choice of experiments with which to explore a

system or test hypotheses about a system. In this review

we highlight some important concepts of experimental

design, and show how incorporating DOE techniques

into stem cell bioprocessing can help answer fundamental

questions about stem cell biology and facilitate the trans-

lation of basic and proof-of-concept research in stem cell

bioprocessing.

Design of experiments

Background

In a basic research setting, experiments are commonly

planned in an informal, ‘intuitive’ manner. Traditional

experimentation in stem cell biology, as elsewhere, has

typically been conducted using a one-factor-at-a-time

(OFAT) approach. Under such an approach, attempts are

made to hold every factor (variable) constant except for

the target of investigation as this one factor is varied and

the resulting output measured. This method can elucidate

important biological ‘main effects’, but important effects

from interactions between factors end up as part of the

error term. Additionally, the complexity of stem cell bio-

processing requires the examination of numerous input

variables that must be controlled to arrive at the cor-

rect state of the cell at the end of the process. While

many investigations into optimized stem cell bioprocess-

ing have used the OFAT method to substantially improve

both purity and yield [9, 15–21], the involvement of multi-

ple inputs (e.g., signaling pathways, oxygenation, duration

of individual steps and the overall process, shear effects)

means that understanding the interactions between fac-

tors will be necessary to optimize increasingly complex

protocols.

Consider the optimization of two variables in a stem

cell bioprocess as shown graphically in Fig. 2. An OFAT

approach would take us first in the direction of one axis,

and then once optimized along this axis, perpendicular in

the direction of the other. If we have luck on our side, and

begin our exploration in a sensible place, we can arrive at

the global maximum, thus finding settings of the two input

variables tailored to optimizing our output variable. How-

ever, more likely, at the end of the experimental process

we would find ourselves to be in fact at a local maxi-

mum or pseudo-optimum (as in Fig. 2a). A better solution

to finding the optimum could be achieved by consider-

ing a more thoughtful two factor experiment, or factorial

design (Fig. 2b). Such an approach, as well as leading to

a better estimate of the optimum, also allows interactions

between important variables in the culture to be esti-

mated. A more rigorous process of determining where to

place these experimental points and how to analyze the

response is discussed below.

Response surface methodology

In many situations experimental outputs can be noisy,

and there may be many inputs of interest. In such cases,

statistically-based experimental planning can result in

much more informative data, in the sense that the selec-

tion of data points can be tuned to maximize information
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Fig. 1 Yield and Sensitivity in Bioprocesses. Despite a high purity (top), it is important that the absolute yield (output cell per input cell; bottom) is

also taken into account for a bioprocess to be commericially viable (a). Depending on the sensitivity of the system, the same change in one variable

(here indicated by a shift along the x-axis) can result in very different responses (z-axis), a parameter that is important for reproducibility of a given

process (b)

A B

Fig. 2 Two factor optimization and exploring the design space. Each axis represents a factor to be optimized for a given process whose output is

shown as a contour plot, where each contour line represents a constant response (a, b). Determining the optimum using one-factor-at-a-time

(OFAT) method first requires varying one factor (triangles) along the first axis to locate the maximum (red triangle). Once this is determined, a

second set of experiments (stars) is performed by varying the second factor until its maximum is reached (red star). While the output has been

increased, the true optimum in the space has not been reached (a). Conversely, starting with a widely spaced factorial experimental design allows

for the evaluation of both variables in the first experiment (triangles) and statistical analysis can determine the path of steepest ascent (arrow). This is

followed by a second set of experiments (stars) which can better locate the maximum output in the design space (red star) (b)
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content relevant to the research questions of interest. The

typical framework in which the DOE problem is set con-

sists of k factors that are believed to have the potential to

influence a given process output, y. Typically, each factor

is assigned a small integer number of levels, l (e.g, {0,1}

for l = 2, or {-1, 0, 1} for l = 3). The choice of experi-

mental design then depends upon which among the many

possible designs optimizes some criteria quantifying the

amount of information that can be expected. This crite-

rion is often based upon the precision or accuracy of the

input variable estimates or predictions that can be made

from the fitted model about the output variable.

We first consider the relationship between the output y,

and each of our factors x1, x2, ..., xk . In stem cell biopro-

cesses, the exact nature of this relationship is most often

unknown. Instead, we generate an appropriate model of

the system wherein we attempt to describe the output, or

response, of the system based on potentially influential

factors. This ‘response surface’ model is usually a first-

order (linear) or second-order (quadratic) polynomial, and

is generally based on continuous inputs such as tempera-

ture, serum concentration, levels of cytokines, and so on.

Each variable is usually ‘coded’ so as to vary over the same

range (e.g., {-1,0,1}) with mean zero and the same stan-

dard deviation [22]. The appropriate experimental design

and matched analysis together consitute response surface

methodology (RSM).

Sequential experimentation

One of the most important characteristics of RSM is the

ability to design and analyze experiments sequentially. Ini-

tially, the experimenter will have ideas about which factors

likely influence the response. An early stage screening

experiment can verify the role of each factor and elim-

inate unimportant ones. This has the effect of reducing

the number of factors for future experiments to limit the

number of required experimental runs. Similarly, the fit-

ted model is used to determine if the collected data lie

near to an ideal response or at some distance from it.

This allows for an investigation of the problem space and

identification of where subsequent regions of experimen-

tation should take place. At this stage, widely spread data

points aid in developing an overview of the process space

(Fig. 2b). The final round of experimentation takes place

around the true optimum and is designed to generate a

model that more accurately represents the true function

within a reduced problem space (Fig. 3).

Modeling

Each iteration of the experimentation serves to improve

our model of the process. Beginning with a screening

experiment, the important inputs can be determined and

we thus have the building blocks for the model. Math-

ematical modeling of biological systems maximizes the

information available from limited experimental data, and

Fig. 3 Sequential experimentation in RSM. A two-level factorial

design can be used to initially assess the design space for three

factors (x1 , x2 , x3 ; green). A fractional-factorial design would be more

appropriate for processes with many more variables, see text for

details. If model predictions suggest that the optimummay be

outside of this range, an expanded factorial design can then be run

(blue). Once we are confident that the optimum is located within our

design space, a more complex CCD experiment can be run in a

smaller area of the design space to provide a more accurate model of

the process that includes non-linear responses (pink). Finally, the

optimum can be located (orange)

can help answer complex outstanding biological questions

and understand nonintuitive behaviour [23–25]. As men-

tioned, it is important that the experimental data points

are carefully collected. In order to take advantage of the

statistical analyses implicit in RSM, experimental runs

need to be conducted to produce a model that has strong

predictive capabilities.

Experimental designs

Factorial designs

In a factorial design, each experimental run consists of

a combination of levels for each factor. A full factorial

design requires each combination of each factor at every

level to be run, resulting in lk experimental runs (often

2k or 3k). However, such designs can become very large

in size. If we have two three-level factors, the full fac-

torial design consists of nine experimental runs. As we

increase the number of three-level factors, the full facto-

rial requirement increases to 27, 81, 243, 729, 2187, etc.

runs (Fig. 4).

A fractional factorial experiment makes use of a subset

of these runs, lk−p, where p is the size of the fraction of

the full factorial. Fractional factorial designs can be used

to investigate the most important aspects of the design



Toms et al. Journal of Biological Engineering  (2017) 11:35 Page 5 of 10

Fig. 4 Examples of experimental designs with two and three factors.

Factorial designs are constructed by testing every factor at each level,

and can lead to large numbers of experimental runs as the number of

factors increases. Box-Behnken designs reduce the number of

experimental runs, but interactions between factors at ‘extreme’

levels are not included (i.e., the ‘corners’). Box-Wilson or Central

composite designs (CCDs) combine factorial designs with ‘star points’

(shown in blue) to estimate second-order (quadratic effects).

Modifications to the CCD result in face-centred (CCF) or inscribed

(CCI) designs when the design space must be constrained

space with considerably less effort and cost than would

be required for a full factorial experiment. In general, we

choose a fractional factorial design where some of the high

order interactions are assumed to be negligible, but we can

still estimate main effects and lower order interactions.

Provided the same signaling pathway is not targeted by

multiple variables, we would not commonly expect third-,

fourth- or higher-order interactions between the variables

to significantly affect biological changes [26]. Instead, by

modeling first- and second-order interactions, we capture

the most critical components of the bioprocess.

Central composite designs

Moving from full or fractional factorial designs we begin

to encounter five-level experimental designs commonly

refered to as Box-Wilson, or central composite designs

(CCDs) [27]. These designs allow for the efficient esti-

mation of second degree polynomial and quadratic

responses [27]. Central composite designs attempt to

balance the design, through the use of coded variables,

to achieve rotability. By removing directional bias in the

design, rotable designs predict output values with the

same precision at all factor levels a constant distance

from the centre of the design. These designs possess

a high level of orthogonality, which means that each

coefficient estimate is independent from one another

[27]. Starting with a fractional factorial design, CCDs

extend the range of each variable through so-called ‘star

points’ that allow for the estimation of curvature. There-

fore, CCDs are a five-level design, {−α,-1, 0, 1, α}. Two

important classes of CCD with regards to stem

cell bioprocessing are those designs that limit the

experimental space to known regions rather than

extending α (star points) potentially outside of real-

istic ranges (e.g. negative cytokine concentrations).

These are known as central composite inscribed

(CCI; whereas the original designs were circumscribed)

and face-centred (CCF) designs. Examples of CCD, CCI

and CCF designs for two and three factors are shown

in Fig. 4. Importantly, in all types of CCDs, the uncer-

tainty of the model predictions increases markedly as

factor levels approach the upper and lower ends of the

ranges investigated [28]. This highlights the advantage of

sequential experimentation to re-centre the design and

generate a more accurate model around the suspected

optimum.

Advanced experimental designs

With continuing increases in computer power, more com-

plex designs for nonstandard scenarios and models can

also be produced. In the designs described above, the

number of runs used is generally constrained by math-

ematical considerations. For example, in a five-factor,

two-level factorial scenario, the full factorial design con-

sists of 32 runs. It is trivial to construct half fraction

factorial designs of 16 runs, or quarter fraction designs

of eight runs. However, it is not easy to construct a

design of say 15 runs using such methods. However, in so-

called optimal design, an optimality criterion is selected,

usually based upon the precision of the parameter esti-

mates or model output. The computer is then used to

carry out a search of possible designs for a set number

of runs chosen by the user. This can be computation-

ally intensive, but allows the user a much greater deal of

flexibility in setting their design parameters. For exam-

ple, any set number of runs can be chosen according to

logistical constraints of the process or system being exam-

ined, and in situations where various factor level com-

binations are infeasible, irregular design spaces, which
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do not include such factor level combinations, can be

constructed.

Further, when we wish to fit nonlinear/polynomial mod-

els (e.g., theoretically derived growth curves for biological

processes) to our experimental data, an added compli-

cation to the design problem is that the optimal design

will now depend upon the parameters of the underlying

model. This poses a circular problem since we are wish-

ing to construct a design to estimate the parameters of the

underlying model, but we need to know the parameters of

the underlying model in order to find the optimal design.

A typical approach to such problems is to use Bayesian

optimal design (e.g., [29]), in which a prior distribution

has to be placed on the model parameters, expressing the

user’s belief and uncertainty about the parameters before

the data was observed. Such approaches can be carried

out in a sequential manner so that at subsequent iterations

of the design and analysis process, we can hone in on the

salient regions of the design space and improve upon the

quality of the fitted model.

Design of experiments and stem cell bioprocessing

Stem cell growth and expansion

Given the ability of DOE approaches to model complex

behaviour, many aspects of stem cell bioprocessing would

benefit from the application of these techniques. Although

the adoption of DOE into stem cell bioprocessing has been

limited, its use has started to expand in recent years. Of

particular note are those investigations looking at stem

cell production.

An early investigation into the 10-day in vitro expan-

sion of haematopoeietic stem and progenitor cells

(HSCs/HPCs) isolated from adult mouse bone marrow

used a two-level full factorial design to screen the effects

of cytokines, and the incubation temperature [30]. Follow-

ing this initial screen, a more detailed analysis of interac-

tive effects on the desired cell population was undertaken

using response surface methodology [30]. This was used

to develop an empirical model describing HSC repopu-

lation, colony formation, and total cell expansions as a

function of three cytokine concentrations. Each of the

fractional factorial designs was composed of 16 experi-

mental units plus four replicated points (center points),

to obtain an independent estimate of the intrinsic vari-

ability (pure error) in the data [30]. Synergistic inter-

actions between interleukin-11 and flt-3 ligand on total

cell production was also detected, as was a negative

third-order interaction between all three cytokines. These

negative interactions reflect the fact that the combined

effect on total cell and colony-forming cell production

was less than the sum of their individual effects [30]. This

study extended other single factor studies and identified

important interactions in a complex multiple interacting

cytokine culture system.

With the goal of defining the operating space for

economic passaging of human ESCs, a three-level, three-

factor (i.e., 33) Box-Behnken experimental design was

applied to evaluate the effects of seeding density, media

volume and media exchange time [31]. Experimental data

were subsequently used to model two-process responses:

ESC expansion performance at the second passage and

at harvest (24 h later) [31]. The authors found that lack-

of-fit tests were not significant, indicating that additional

variation in the residuals could not be removed with

a better model [31]. Initially, three Box-Behnken RSM

cell culture experiments, incorporating the chosen factors

at software-specified design levels, were conducted over

36-, 48- and 60-h passage periods, although analysis of

the models with a 48- and 60-h passage period did not

provide outcomes that met critical optimization criteria

[31]. Interestingly, they applied mathematical multiple-

response optimization routine (desirability analysis) to

visualize the region where both responses were simultane-

ously within optimization criteria [31]. While the authors

of this paper acknowledged the use of T25 flasks during

their ESC culture, they support the use of this method

as a direct step-up to automated T-175 processes, as the

cells were passaged using a single-cell method amenable

to automation.

It is indeed of critical importance to be able to

automate the process, as traditional planar culture is

labour-intensive and will make CBTs unrealistically time

consuming and expensive. Thomas et al. used an auto-

mated system combined with a full factorial design

to optimize media concentrations for the expansion of

humanMSCs. Their use of a full factorial was necessitated

by a need to avoid confounding interactions with main

effects [32]. An alternative approach could have been an

initial fractional factorial experiment, to identify those

factors most important in the expansion of this cell pop-

ulation, before switching to a more refined, composite

design that would permit investigation of both interac-

tions and quadratic effects in the system. Nonetheless,

this proved to be an interesting study that examined key

components necessary in the expansion of MSCs includ-

ing cell seeding density, serum percentage, media volume

per flask, and culture time [32]. Interestingly, they found

that seeding density and serum level had negative inter-

actions, yet high levels of one or the other improved

cell growth. The use of automation and robotic culture

allowed for improved randomization of runs and removed

many sources of variation from human processing of

each flask.

While automated planar culture may prove sufficient

for CBT development, particularly relating to monolayer

tissues such as the retinal pigmented epithelium, the

production of large numbers of stem cells has largely been

left to stirred suspension bioreactors. Their capacity for
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empirical scale up, compared to other systems, and the

ability to precisely regulate the culture environment in real

time makes them ideal candidates for DOE applications.

Because of variations in impeller design and the precise

geometries of each bioreactor, little consistency is found

between published protocols for the expansion of stem

cells using bioreactor technologies. Hunt et al. under-

took a full factorial design (32) to investigate the effects

of inoculation density and agitation rate on the produc-

tion of human ESCs. It was found that the interaction of

these two factors had a significant effect on growth rate,

and to a lesser extent the maximum density [33]. Inter-

estingly, higher inoculation densities negatively affected

the fold increase [33]. While this study was limited in its

scope, it revealed important interacting effects that may

not have been uncovered using a typical OFAT approach.

In both planar cultures and stirred suspension bioreactor

systems, DOE can be applied early on to understand the

process and this may subsequently advise for or against

one particular system. When a particular production sys-

tem is chosen, further application of DOE will allow for

optimization of the bioprocess depending on the specific

outputs desired.

Biomaterials

Most often, experimental design has been applied to

biotechnologies that have considerable chemical and engi-

neering components. For instance, Zhou et al. used sev-

eral designs to optimize the degradation of gelatin-PEG

composite hydrogels [34]. After first screening factors

with a Plackett-Burman design, these same factors were

used in a Box-Behnken central composite design to under-

stand the interaction between them and generate response

surfaces for systematic optimization [34]. While they did

analyze the survival of MSCs seeded onto these hydro-

gels, only the degradation rate was used as an output

parameter. With the model established, it would have

been interesting to include viability of MSCs seeded as

a response output to better understand the design space.

Nih et al. also used a DOE approach to create a com-

plex in vitro matrix environment with varying peptide

motifs and growth factors [35]. Neural precursor cells

derived from iPSCs were encapsulated in hydrogels and

exposed to combinations of brain-derived neurotrophic

factor (BDNF) and BMP-4 using in vitro neural cell

survival as an output before the optimized gels were

tested in vivo in an induced stroke mouse model [35].

As a brief data communication, there was little discus-

sion of the effects of using DOE to generate a hydrogel,

although heparin modification of the hydrogel interacted

with the concentrations of growth factors, showing that

low BDNF and low BMP-4 was beneficial when heparin

was bound as opposed to high BDNF in non-heparin

conditions [35].

A more thorough investigation of hydrogel formulation

was demonstrated using modular self-assembling pep-

tide ligands to generate synthetic extracellular matrices

(ECMs) [36]. Jung et al. exploited the modularity of the

system to undertake factorial experiments and RSM, and

avoid the compositional drift that occurs when chang-

ing the concentrations of one molecule without affecting

the concentration of others. They first began by test-

ing each ligand alone to determine independent effects

on endothelial growth. This was followed by a facto-

rial design to identify interactions between ligands before

using a CCI design to optimize their formulation [36].

At each stage of experimentation, the design space was

shifted towards the perceived optimum. This study ele-

gantly demonstrated a sequential experimentation strat-

egy that was able to significantly improve cell growth on

their optimized synthetic ECM upwards of 30% over their

pre-optimized formula [36]. Interactions between nearly

all ligands was found to be significant, with the strength

of the effect of one ligand dependant on the concentration

of another [36], lending more weight to the desirabil-

ity of avoiding OFAT approaches to optimize biomaterial

formulations.

Stem cell differentiation

Whereas most multifactorial studies look at stem cell

expansion and survival, Chang and Zandstra, and Glaser

et al. have showed that models of the differentiation

process can also be fitted and optimized using DOE

techniques.

Directing the differentiation of ESCs towards a defini-

tive endodermal fate, two rounds of experiments using

factors from the literature were conducted [37]. These

were: glucose, insulin, basic fibroblast growth factor

(bFGF), epidermal growth factor (EGF) and retinoic acid

(RA), and the output of the system was measured in terms

of the percentage of cytokeratin-8 and hepatocyte nuclear

factor-3β double-positive cells obtained after thirteen

days [37]. After identifying the most important factors

in a two-level, five-factor factorial experiment (25), the

authors conducted a refined three-level, two-factor facto-

rial experiment (23) to identify synergistic and quadratic

effects of RA and EGF, holding the other factors fixed. As

this study’s purpose was to identify a quantitative screen-

ing technology, differentiation protocols were not further

optimized [37]. This study, did nevertheless reveal inter-

esting interactions between these factors that had varying

effects on each of the different outputs, namely total cells,

total endoderm cells and the percentage of endoderm cells

with RA and the interaction between glucose and RA

negatively impacting all three processes [37].

Using their previously published chemically defined

protocol for generating endothelial cells from ESCs,

Glaser et al. included a number of factors in their
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optimization: time, cell seeding density, matrix substrates

and cytokines [25]. They used a two stage differentia-

tion protocol to direct endothelial cell fate, first generating

mesodermal vascular progenitor cells (VPCs) before final

endothelial cell (EC) differentiation, each run as a full

factorial experiment and assessed by the expression of Flk-

1/KDR+ VPCs (mouse and human marker, respectively)

and VE-cadherin+ ECs [25]. Fibronectin and seeding at

10,000 cells/cm2 was shown to generate the greatest num-

ber of VPCs in both human and mouse ESCs. Interest-

ingly, this group also assessed the importance of time in

differentiating pluripotent cells and found that induction

of Flk-1/KDR occurred within a short time window before

receding [25]. Lower seeding ofmouse VPCs (5000-10,000

cells/cm2) on fibronectin with high concentrations of

bFGF (50 ng/ml) resulted in up to 95% ECs, whereas

human VPCs generated ECs at a rate of 57% when seeded

on gelatin with considerably lower bFGF (10 ng/ml).

While vascular endothelial growth factor was shown to

be statistically unimportant at all stages of EC differ-

entiation, significant interaction effects between seeding

density or bFGF concentrations and culture matrix were

observed [25]. Follow-up experiments using the gener-

ated model-based predictions were not tested directly,

but rather lined up with the closest experimental run to

determine the optimal conditions for generation of ECs.

However, this investigation did provide a considerably

larger set of variables to be optimized for directing stem

cell differentiation.

Conclusions
Amajor strength of DOEmethodology – and RSM in par-

ticular – lies in the ability to build on carefully designed

experiments in a sequential manner. In stem cell bio-

processing, these sequential experiments can lead to the

construction of an empirical model that can elucidate

fundamental processes related to cell biology as well as

provide a foundation from which future experiments and

translational research can take place. Generating math-

ematical models of the process with carefully planned

experiments maximizes information about the system.

As detailed above, models of a given system are of

great value to understanding the nature of stem cell biol-

ogy, and have revealed important insights that can be

missed with traditional OFAT methods of experimenta-

tion that are less able to study interactive effects between

various growth parameters [30]. When applied to the

complex systems of stem cell biology, DOE provides an

important tool to unravel important interactions. Equally

important in science more generally is the ability for

experiments to be replicated. Understanding the design

space, the importance of specific parameters on the out-

come and how robust the entire process is, provides

guidance on the reproducibility of the system. Adoption

of DOE techniques to help model the system inherently

provides a means to test sensitivity and an understand-

ing of how reproducible a given result is likely to be.

This in turn will facilitate the translation of fundamental

research into viable CBTs. Industrial processes, including

the production of cells as therapies, will require robust

operating parameters to deal with inevitable variation

in batches of input cells, for example. Understanding

the system’s sensitivity, or pressure points, is neces-

sary to engineer safeguards preventing failure during

production runs.

Continued research into stem cell bioprocesses will

greatly benefit from the application of DOE methods.

There are, however, still challenges with its implemen-

tation in a high throughput manner, particularly with

regard to identifying suitable cell outputs, such as marker

expression or functional assays. Traditional assessment

of cell behaviour by immunostaining, for example, are

generally considered unsuitable for large scale screens.

However, recent advances in high-content screening

have begun to make this a viable analytical method

[37, 38]. Development of biosensors and ’omics technolo-

gies and their integration into stem cell bioprocessing

pipelines will help to overcome these challenges. Cou-

pled with real time monitoring of bioreactor cultures and

automation of routine cell culturing procedures, it should

soon be possible to screen large numbers of inputs to gen-

erate robust stem cell bioprocesses built on DOEmethod-

ology. The use of DOE in other bioprocessing fields such

as the production of enzymes and other proteins has con-

tinued to grow [39]. As CBTs move towards the clinic,

the incorporation of DOE into stem cell bioprocessing

will provide a stable foundation upon which therapeutic

applications may confidently by constructed.
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