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Abstract. The Community Long-term Infrared Microwave

Combined Atmospheric Product System (CLIMCAPS) re-

trieves vertical profiles of temperature, water vapor, green-

house and pollutant gases, and cloud properties from mea-

surements made by infrared and microwave instruments on

polar-orbiting satellites. These are AIRS/AMSU on Aqua

and CrIS/ATMS on Suomi NPP and NOAA20; together they

span nearly 2 decades of daily observations (2002 to present)

that can help characterize diurnal and seasonal atmospheric

processes from different time periods or regions across the

globe. While the measurements are consistent, their informa-

tion content varies due to uncertainty stemming from (i) the

observing system (e.g., instrument type and noise, choice of

inversion method, algorithmic implementation, and assump-

tions) and (ii) localized conditions (e.g., presence of clouds,

rate of temperature change with pressure, amount of water

vapor, and surface type). CLIMCAPS quantifies, propagates,

and reports all known sources of uncertainty as thoroughly

as possible so that its retrieval products have value in cli-

mate science and applications. In this paper we characterize

the CLIMCAPS version 2.0 system and diagnose its observ-

ing capability (ability to retrieve information accurately and

consistently over time and space) for seven atmospheric vari-

ables – temperature, H2O, CO, O3, CO2, HNO3, and CH4 –

from two satellite platforms, Aqua and NOAA20. We illus-

trate how CLIMCAPS observing capability varies spatially,

from scene to scene, and latitudinally across the globe. We

conclude with a discussion of how CLIMCAPS uncertainty

metrics can be used in diagnosing its retrievals to promote

understanding of the observing system and the atmosphere it

measures.

1 Introduction

Instruments onboard satellites observe the global Earth at-

mosphere with unprecedented regularity in space and time.

For any given scene on Earth today there are multiple obser-

vations from a range of different instruments measuring any

number of atmospheric variables. While the record of hy-

perspectral infrared measurements spans nearly 2 decades,

differences in technology and instrumentation pose a signif-

icant challenge to data continuity (Smith et al., 2013). Two

space-based systems may observe the same atmospheric vari-

able but at different view angles, different times of day, and

different spatial or spectral resolutions, measuring different

aspects of the Earth’s atmosphere. The challenge in inter-

comparing different sources of remote observations is well

documented (Stubenrauch et al., 1999; Rodgers and Con-

nor, 2003; Wylie et al., 2005; von Clarmann and Grabowski,

2007; Smith et al., 2013, 2015; Hearty et al., 2014; Gaudel et

al., 2018). Straightforward side-by-side comparisons of dis-

parate data sets can fail to yield meaningful insights because

their differences cannot be explained by natural variability

or instrument capability alone. Uncertainty masks the mea-

sured signal. Only with rigorous quantification and deliber-

ate propagation of uncertainty through all data processing

steps can a degree of transparency in space-based observa-

tions be achieved so that the measured signal can be distin-

guished, uncertainty can be characterized, and data set differ-

ences can be understood (Pougatchev et al., 1996; Ceccherini

et al., 2003; Pougatchev, 2008; Ceccherini and Ridolfi, 2010;

Hulley et al., 2012; Xiong et al., 2013; Merchant et al., 2017,

2019).

Pougatchev (2008) classified uncertainty in remote obser-

vations into two primary sources, namely (i) “state noncoin-

cidence” or scene-dependent effects, such as spatial hetero-
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geneity and temporal variation, and (ii) “characteristic dif-

ferences” or observing system effects such as spectral res-

olution, footprint size, and retrieval algorithm design. Un-

certainty, irrespective of its source, can be random (unrepro-

ducible) or systematic (reproducible). Random uncertainty

can average out when data are aggregated, but systematic

uncertainty propagates through analysis steps and obscures

the measured signal in final results (Smith et al., 2015). It

is therefore imperative to characterize systematic uncertainty

as rigorously as possible.

In this paper we focus on satellite sounding systems that

retrieve atmospheric variables as vertical profiles from top-

of-atmosphere radiance measurements, more specifically on

the Community Long-term Infrared Microwave Combined

Atmospheric Product System (CLIMCAPS; Smith and Bar-

net, 2019). CLIMCAPS is the National Aeronautics and

Space Administration (NASA) system for sounder instru-

ments on the polar-orbiting satellites Aqua (2002–present),

Suomi NPP (2012–present), and NOAA20 (2017–present)

that is the first of the Joint Polar Satellite System (JPSS) se-

ries of four satellites scheduled to maintain operational orbit

through 2040. CLIMCAPS implements Bayesian optimal es-

timation (OE) (Rodgers, 2000) as an inversion technique and

employs explicit background error quantification with uncer-

tainty propagation. Other sounding systems offer variations

of the OE approach in practice, depending on their respective

data product requirements (Susskind et al., 2003, 2014; Fu et

al., 2016; DeSouza-Machado et al., 2018; Irion et al., 2018).

We designed CLIMCAPS to achieve and maintain consis-

tent observing capability across different satellite platforms

so that we can generate a long-term, continuous record of

satellite soundings for a nearly 2-decade period of hyperspec-

tral infrared (IR) observations from space.

Smith and Barnet (2019) described how CLIMCAPS

quantifies and propagates scene-dependent uncertainty us-

ing error covariance matrices (ECMs) in a sequential re-

trieval approach that starts with retrieving clouds, followed

by temperature, water vapor, and the trace gas species O3,

CO, CH4, CO2, N2O, SO2, and HNO3. Averaging kernel

matrices (AKMs) characterize the degree to which each of

the retrieved variables depends on information contributed

by the measurements about the true state of that variable.

Averaging kernels have value in data intercomparison stud-

ies (Rodgers and Connor, 2003; Maddy and Barnet, 2008;

Maddy et al., 2009; Gaudel et al., 2018; Iturbide-Sanchez

et al., 2017) and form a critical component of data assimila-

tion models (Levelt et al., 1998; Clerbaux et al., 2001; Yudin,

2004; Segers et al., 2005; Pierce et al., 2009; Liu et al., 2012).

We present CLIMCAPS version 2.0 AKMs for a range of

different retrieval variables, different scenes across time and

space, and multiple satellite platforms and instrument types

with the goal of characterizing CLIMCAPS observing capa-

bility and promoting a better understanding of its retrieved

soundings and their value in applications.

Terminology and notation

We define an observing system, such as CLIMCAPS, as the

space-based instrument along with its inversion algorithm.

Observing system characteristics that affect product qual-

ity include spectral resolution, spatial footprint (“pixel” or

“field of view”) size, shape, arrangement, instrument noise,

view angles across satellite swath, which for CrIS is 2200 km

(±50◦), and effects due to the regularization and stabilization

of its retrieval algorithm. With observing system capability,

we mean the potential a space-based system has for mea-

suring the atmospheric state at a specific scene given the in-

strument type, retrieval system design, and prevailing condi-

tions. Observing capability is akin to the signal-to-noise ratio

(SNR) and should ideally be high enough to add independent,

new information to background knowledge about the atmo-

spheric state at any given point in time and space. CLIM-

CAPS employs Bayesian inversion as a retrieval scheme and

generates AKMs to quantify the sensitivity of retrieved vari-

ables to the true state of those variables (Rodgers, 2000) as

a metric of uncertainty. CLIMCAPS product files available

through the NASA Earth Observing System Data and Infor-

mation System (EOSDIS; Ramapriyan et al., 2010) contain

AKMs for seven retrieval variables – temperature (T ), water

vapor (H2O), ozone (O3), carbon monoxide (CO), methane

(CH4), carbon dioxide (CO2), and nitric acid (HNO3) – at ev-

ery scene. We define a CLIMCAPS retrieval scene (or “field

of regard”) as the spatial and spectral aggregate of radiance

measurements that results from performing cloud clearing

(Chahine, 1982; Susskind et al., 1998; Smith and Barnet,

2019). Cloud clearing removes the radiative effect of clouds

from IR measurements by aggregating cloud-sensitive chan-

nels from nine neighboring CrIS (or AIRS) instrument foot-

prints. Cloud clearing requires no prior knowledge of scene-

specific cloud properties nor does it depend on radiative

transfer calculations through clouds. Instead, cloud clearing

is a robust linear method that uses the 3 × 3 spatial cluster of

instrument footprints as spectrally independent information

about scene cloudiness and, together with knowledge of the

cloud-free state retrieved from coincident microwave mea-

surements (ATMS or AMSU), derives a set of cloud-cleared

spectral channels for use in subsequent retrievals. In the case

in which no clouds are detected, the relevant channels are

simply averaged across the 3 × 3 array (nine footprints in to-

tal) with the assumption that it is a uniformly clear scene.

While CLIMCAPS aggregates spectral radiance before re-

trieval (known as an “average-then-retrieve” approach), the

retrieved soundings are still considered instantaneous obser-

vations because CLIMCAPS limits its radiance aggregation

to small spatial clusters (an aggregate scene of 3 × 3 CrIS

footprints has ∼ 50 km diameter at nadir and ∼ 150 km at the

edge of a scan) and performs no temporal averaging ahead of

inversion. We use the term measurement to refer to the mea-

sured spectrum (i.e., top-of-atmosphere radiance either for

a single footprint or cloud-cleared scene) and distinguish it
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from retrieval, which is the inverse measurement or retrieved

pressure-dependent atmospheric variable at every scene (e.g.,

water vapor). We maintain consistency with the mathemat-

ical notations adopted by Rodgers (2000) for the sake of

simplicity and relevance to other OE systems (Bowman et

al., 2006; Ceccherini et al., 2009; Ceccherini and Ridolfi,

2010; Fu et al., 2016; DeSouza-Machado et al., 2018; Irion

et al., 2018); a measured spectrum is represented by the vec-

tor y with m spectral channels, and the retrieved parameter

is represented by vector x with n vertical pressure layers (for

trace gases) or n pressure levels (for temperature).

This paper starts with Sect. 2 as an overview of the CLIM-

CAPS version 2.0 (v2) observing system and a discussion

of how its OE implementation deviates from the Rodgers

(2000) theoretical OE approach. We give a detailed expla-

nation of CLIMCAPS AKMs and how they can be employed

as uncertainty metrics and indicators of observing capabil-

ity. In Sect. 3 we present CLIMCAPS AKMs for its seven

retrieval variables, T , H2O, O3, CO, CH4, CO2, and HNO3.

We diagnose and interpret these AKMs to conclude in Sect. 4

with a preliminary assessment of the CLIMCAPS observing

capability and the degree of continuity in its sounding obser-

vations across satellite platforms.

2 Data and methods

2.1 CLIMCAPS observing system

CLIMCAPS is NASA’s sounding observing system for the

Atmospheric Infrared Sounder (AIRS; Aumann et al., 2003;

Chahine et al., 2006) and the Cross-track Infrared Sounder

(CrIS; Han et al., 2013; Strow et al., 2013). AIRS has

been on Aqua since 2002 together with the Advanced Mi-

crowave Sounding Unit (AMSU). CrIS and the Advanced

Technology Microwave Sounder (ATMS) have been on the

Suomi National Polar-orbiting Partnership (SNPP) since

2011 and National Oceanic and Atmospheric Administration

(NOAA20) satellites since 2017. We give a detailed tabula-

tion of the main instrument characteristics in Table 1 from

Smith and Barnet (2019). Hereafter we respectively refer to

these various systems as CLIMCAPS-Aqua, CLIMCAPS-

SNPP, and CLIMCAPS-NOAA20. Traditionally, observing

systems were optimized for a specific instrument suite on a

target satellite platform (Susskind et al., 2003). With CLIM-

CAPS, we instead focus our efforts on promoting continu-

ity in observing capability across different instrument suites

and satellite platforms so that a long-term record of satellite

soundings can be generated. This means we optimize our al-

gorithm design for consistency.

AIRS and CrIS are both new-generation hyperspectral in-

frared sounders that measure energy emitted at the top of the

Earth’s atmosphere in hundreds of narrow spectral channels.

With such a high spectral resolution, these instruments can

measure atmospheric conditions at multiple pressure layers

so that vertical structure (e.g., temperature inversions and dry

layers) and atmospheric composition (e.g., stratospheric O3

or mid-tropospheric CO) can be retrieved and characterized.

Using the principles of information theory (Shannon, 1948),

Rodgers (2000) developed a method for quantifying the in-

formation content of a spectral measurement as either the

number of significant eigenvectors (k) from a radiance de-

composition or as degrees of freedom (DOFs) for the signal

calculated as the trace of the AKM diagonal vector. These in-

formation content metrics, DOF and the magnitude of k, re-

flect the number of independent pieces of information about

the vertical atmospheric state. We can calculate these met-

rics for simulated spectra to quantify instrument observing

capability in general given certain design criteria like spec-

tral resolution and noise. Or we can calculate them for real

spectral measurements to quantify satellite system observing

capability for specific atmospheric conditions.

In Fig. 1a, we depict the total information content for all

spectral channels from a global ensemble of simulated AIRS

and CrIS measurements. We contrast their information con-

tent with that from the European IASI instrument (Siméoni

et al., 1997; Aires et al., 2002; Chalon et al., 2017) in po-

lar orbit on the MetOp series since 2006. Despite instrument

differences such as spectral resolution, number of channels,

instrument calibration, and noise (Fig. 1b), CrIS, IASI, and

AIRS all have a total information content of k = 100 signifi-

cant eigenvectors. This means that on a global scale, all three

instruments have the ability to distinguish on the order of

∼ 100 individual Earth system variables about the vertical

atmospheric state. These include thermodynamic variables,

such as temperature and moisture, along multiple layers from

the surface to the top of the atmosphere, trace gas species,

cloud, and surface parameters.

CLIMCAPS adopted the AIRS Science Team ver-

sion 5 (v5) algorithm as its baseline retrieval method, which

follows a sequential OE approach in solving the nonlin-

ear inversion of infrared radiances into multiple distinct

atmospheric variables (Maddy et al., 2009; Susskind et

al., 2003). The inversion of top-of-atmosphere radiances is

an ill-conditioned, under-determined, nonlinear problem that

requires some form of stabilization to find a solution. In

Bayesian (or probabilistic) OE systems, this is predomi-

nantly achieved with the introduction of an a priori (or back-

ground) estimate of the atmospheric state such that the solu-

tion is not an independent observation but instead represents

an improvement on the background state given the top-of-

atmosphere measurement of the true state (Rodgers, 1976,

1998, 2000).

The AIRS v5 system employed a linear regression as a

priori for T , H2O, and O3 in the OE inversion step, which

is generally referred to as a “physical” retrieval because it

requires radiative transfer calculations, not regression cor-

relation coefficients, to minimize the cost function at every

scene. CLIMCAPS does not calculate a regression a priori

for T , H2O, and O3 but instead uses a data assimilation prod-
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Figure 1. Information content analysis of four operational hyperspectral infrared instruments, AIRS (Atmospheric Infrared Sounder) in

orbit on Aqua since 2002, IASI (Infrared Atmospheric Sounding Interferometer) in orbit on multiple MetOp platforms since 2006, and

CrIS (Cross-track Infrared Sounder) in orbit on SNPP since 2011 and NOAA20 since 2017. We depict the SNPP CrIS in nominal-spectral-

resolution (NSR) mode, with spectral resolution in its mid-wave and shortwave bands reduced to 1.25 and 2.5 cm−1, respectively. NOAA20

CrIS is in full-spectral-resolution (FSR) mode with all spectral bands sampled at 0.625 cm−1. (a) Eigenvector decomposition of the radiance

covariance matrix as a measure of the information content in each instrument. The eigenvalues, λ, from an eigenvector decomposition of

simulated radiances are plotted against the index number of each eigenvector, k. Information content is calculated as all eigenvalues λ > 0.

The total number of channels, Nchl, is listed in the figure legend. (b) Instrument noise, measured as the noise-equivalent delta temperature,

NE1T , for a scene with surface temperature equal to 250 K.

uct, specifically the Modern-Era Retrospective Analysis for

Research and Applications version 2.0 (MERRA2; Gelaro

et al., 2017; Molod et al., 2015). We argued in Smith and

Barnet (2019) that a linear regression a priori amplifies in-

strument effects in the OE retrieval and thus hampers data

continuity across platforms. Regression retrievals typically

employ all spectral channels (Blackwell, 2005; Goldberg et

al., 2003; Milstein and Blackwell, 2016; Smith et al., 2012)

to retrieve atmospheric state variables simultaneously. If a

regression retrieval is ingested as a priori then instrument ar-

tifacts can be propagated and even amplified in the retrieval

product because OE uses the same spectral channels (albeit

a subset) a second time. CLIMCAPS deliberately employs

an instrument-independent a priori, i.e., MERRA2, for its T ,

H2O, and O3 retrievals to minimize instrument artifacts and

promote data continuity across platforms. MERRA2 assim-

ilates a small subset of IR channels (i.e., by selecting chan-

nels that are primarily sensitive to T but largely insensitive

to H2O, clouds, and trace gases) only sometimes (i.e., for

clear-sky scenes only) and weighs them based on the time of

measurement within the reanalysis window and with an as-

sumed representation error across all scenes. This gives us

confidence to argue that the IR channels used in CLIMCAPS

rarely duplicate the information content of the IR channels

used in MERRA2 at a specific scene. We argue that the

IR information content from AIRS or CrIS in CLIMCAPS

is much higher than in MERRA2 because CLIMCAPS re-

trieves the atmospheric state along the line of sight from a

greater selection of cloud-cleared IR channels (i.e., all scenes

except those with uniform cloud cover) and a full accounting

of trace gas absorption. We contrast the CLIMCAPS a priori

approach with those systems that employ a regression first

guess such as AIRS v6 (Susskind et al., 2014) that runs a

nonlinear regression using all IR channels to derive its a pri-

ori for T , H2O, and O3. Unlike AIRS v6, CLIMCAPS does

not use the information content of IR channels twice because

we designed it to minimize systematic instrument uncertainty

and an aliasing of its retrieval null space error as a result.

For the trace gas species, we adopted the same approach in

CLIMCAPS as that used in AIRS v6 for CO, CO2, HNO3,

N2O, and SO2 (AIRS Science Team/Joao Texeira, 2013). The

CO climatology has no intra-annual variation but does vary

seasonally and latitudinally, while the CO2 climatology is a

static value across all latitudes that increases annually ac-

cording to a linear fit developed by Maddy (2007). The cli-

matologies for the remaining trace gas species, HNO3, N2O,

and SO2, are static over time and space. The CLIMCAPS

climatology for CH4 is derived from a set of coefficients de-

veloped by Xiong et al. (2008, 2013) that is also used in the

NOAA Unique Combined Atmospheric Processing System

(NUCAPS).

The CLIMCAPS retrieval algorithm is outlined in Fig. 2,

and we highlight four major steps here. (1) Local angle cor-

rection removes satellite view angle differences among a spa-

tial cluster of 3 × 3 instrument footprints, also known as the

“field of regard” or retrieval scene. (2) MW-only retrieval
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retrieves vertical profiles of T , H2O, and liquid water path

(LIQ), as well as surface emissivity (ε) using spectral chan-

nels from the microwave measurements (AMSU on Aqua,

ATMS on SNPP and NOAA20). This results in an estimate of

cloud-free vertical atmospheric structure in all but precipitat-

ing scenes. (3) Cloud clearing removes the radiative effects

of clouds from hyperspectral IR channels in each field of re-

gard using MW-only retrievals of LIQ and ε from step (2),

profiles of T , H2O, and O3 from MERRA2, and climatolo-

gies of CO, CH4, CO2, HNO3, N2O, and SO2. Cloud clear-

ing is described in detail elsewhere (Smith, 1968; Chahine,

1974, 1977, 1982; Susskind et al., 2003) and remains one of

the most robust approaches for the retrieval of atmospheric

parameters within complex cloudy conditions and up to 90 %

cloud cover. This step aggregates the cluster of 3×3 IR spec-

tra into a single cloud-cleared IR spectrum from which all

subsequent retrievals are done. In the case in which a scene

has no cloud cover or IR channels are insensitive to clouds,

the 3 × 3 cluster of IR channels is simply averaged. Note

that cloud clearing reduces the spatial resolution of CrIS or

AIRS footprints from ∼ 15 km instrument resolution at nadir

to ∼ 50 km at nadir. (4) Stepwise OE retrieval sequentially

retrieves surface temperature (Ts), ε, reflectivity (ρ), T , H2O,

and O3, CO, CH4, CO2, HNO3, N2O, and SO2. It is impor-

tant to note that for cloud-cleared scenes, the profile retrievals

do not represent conditions within the cloud fields but rather

around or past the clouds. This is a subtle distinction, but it

is meaningful in scientific studies and applications.

Each retrieval step (Fig. 2) is performed on a subset of

channels with maximum sensitivity to the target variable and

minimum sensitivity to all other variables. We adopted the

channel selection method as described in Gambacorta and

Barnet (2013). The channel sets for cloud clearing and all

trace gases – O3, CO, CH4, CO2, HNO3, N2O, and SO2 –

are selected from the IR measurements only, while the chan-

nel sets for surface parameters as well as atmospheric T and

H2O are selected from the IR and microwave measurements

(MW+IR). The number of IR channels for each variable and

each instrument is listed in Table 1 and represents the size,

m, of the measurement vector, y, for each retrieval variable.

While m varies among instruments and retrieval variables,

the size, n, of the retrieval vector, x, remains constant at

100 vertical pressure levels (for temperature) and layers (for

trace gas column densities) for the sake of accurate radiative

transfer calculations. CLIMCAPS employs the stand-alone

radiative transfer algorithm (Strow et al., 2003), originally

developed for AIRS and later adopted for CrIS. Table 1 addi-

tionally lists two values: the maximum value (Bmax) for each

retrieval damping factor (i.e., a static scalar threshold below

which spectral channels are damped according to their infor-

mation content) and the degrees of freedom (DOFs) for the

signal as the global average of CLIMCAPS cloud-cleared ra-

diance spectra with m channels. We discuss the damping fac-

tor in Sect. 2.2 below, but in short, it determines the degree

to which CLIMCAPS retains information from the radiance

channels in the retrieved product.

2.2 CLIMCAPS averaging kernels

Rodgers (2000) defines averaging kernels as the sensitivity of

the retrieved variable, x̂, to the true state of the variable, x,

for a given moment in time and space. In its most basic form,

an n × n AKM can be calculated for each retrieved variable

as depicted in Eq. (1):

AKM =
[
KTS−1

m K + S−1
a

]−1
KTS−1

m K, (1)

where K is the m × n matrix of weighting functions (or Ja-

cobians) that characterizes measurement sensitivity to the a

priori target variable as
∂y
∂xa

, Sm is a diagonal m × m matrix

of instrument noise, and S−1
a the regularization term, which

in the Rodgers (2000) approach is defined by the inverse of

an n × n a priori error covariance matrix, Sa. The value of

Sa determines the amount of regularization applied to the re-

trieval step or the degree to which information content in the

spectral measurement contributes to the final result. Sa has

to be chosen carefully so that the information content of the

retrieval (or regularized solution) can be optimized given the

information content available in the measurement (von Clar-

mann and Grabowski, 2007).

In a Bayesian OE system, the regularization term deter-

mines how much the retrieved variable resembles the a priori

variable. If Sa is low, then regularization is high and the mea-

surement information content will be suppressed so that the

retrieval more closely resembles the a priori. In most OE ob-

serving systems, it is computationally prohibitive to dynam-

ically generate a scene-specific matrix, Sa, especially when

data latency is a concern. Instead, a common approach is to

set Sa to a static value that is calculated offline either as a

statistical covariance of a data ensemble or a simple ad hoc

assignment (Fu et al., 2016; Irion et al., 2018). Sa is then ap-

plied to each retrieval scene irrespective of the measurement

information content for that scene. While this simplifies cal-

culation, it risks suppressing information content when it is

high or enhancing measurement uncertainty when informa-

tion content is low. The Rodgers (2000) AKM (Eq. 1) can be

described as a linear combination of measurement sensitivity

weighted by uncertainty about the a priori state variable (Sa).

CLIMCAPS, in contrast, calculates an n × n AKM as in

Eq. (2):

AKM =
[
KTS−1

m K + λ

]−1
KTS−1

m K, (2)

with K the same as in Eq. (1), but Sm an m × m error co-

variance matrix that combines instrument noise with uncer-

tainty from scene-specific and observing system effects as

described by Smith and Barnet (2019). Moreover, the back-

ground error term, Sa in Eq. (1), is replaced here with λ, the

damping factor listed in Table 1. This damping factor differs

https://doi.org/10.5194/amt-13-4437-2020 Atmos. Meas. Tech., 13, 4437–4459, 2020
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Figure 2. High-level abstraction of the CLIMCAPS retrieval method highlighting its stepwise optimal estimation (OE) retrieval. Steps 1

through 4 are discussed in the text. Boxes in grey indicate steps in which the a priori variables are defined. MERRA2 (GMAO, 2015) is

the a priori for temperature (T ), water vapor (H2O), ozone (O3), skin temperature (Ts), and surface pressure (Ps). We use the AIRS v6

climatologies for carbon monoxide (CO), carbon dioxide (CO2), nitric acid (HNO3), nitrous oxide (N2O), and sulfur dioxide (SO2) (AIRS

Science Team/Joao Texeira, 2013); for methane (CH4) the linear fit developed by Xiong et al. (2013) is used. The CLIMCAPS a priori

for surface emissivity over land is based on the CAMEL database (Hook, 2019) and for ocean the Masuda model (Masuda et al., 1988) as

modified by Wu and Smith (1997). The OE retrieval steps are listed in the order in which they appear in the code with MW+IR, indicating

that the retrieval step depends on a subset of channels from both the microwave and infrared sounders, as well as infrared-only channels.

Temperature and cloud-cleared radiances are retrieved twice, with the second step distinguished by dashed lines. Constituent detection (CD)

flags indicate the presence of isoprene, ethane, propylene, and ammonia as calculated from single-field-of-view IR radiance channels.

Table 1. For each CLIMCAPS instrument and/or platform configuration, we list three parameters: the number of spectral channels (nch) used

in the retrieval of temperature, H2O, O3, CO, CH4, CO2, HNO3, N2O, and SO2; the damping factors applied as a regularization parameter

(Bmax); and degrees of freedom as a metric for vertically integrated observing capability. CLIMCAPS version 2.0 is configured for retrievals

from (i) the Atmospheric Infrared Sounder (AIRS) on Aqua, (ii) the Cross-track Infrared Sounder in nominal-spectral-resolution mode (CrIS-

NSR) on the Suomi National Polar-orbiting Partnership (SNPP) satellite, (iii) the CrIS in full-spectral-resolution mode (CrIS-FSR) on SNPP,

and (iv) CrIS-FSR on NOAA20, the first of four Joint Polar Satellite Systems. The DOF values represent the mean from all ascending orbits

(∼ 13:30 local overpass time) on 1 July 2018 from retrievals that were flagged as successful and rounded off to one decimal place.

(i) (ii) (iii) (iv)

Aqua/AIRS SNPP/CrIS-NSR SNPP/CrIS-FSR NOAA20/CrIS FSR

nch Bmax DOF nch Bmax DOF nch Bmax DOF nch Bmax DOF

Temperature 134 0.25 6.3 86 0.2 3.5 120 0.2 3.0 120 0.2 3.0

Water vapor (H2O) 46 0.4 2.7 62 0.4 2.2 66 0.4 1.7 66 0.4 1.7

Ozone (O3) 40 1.0 2.0 53 1.0 2.3 77 1.0 1.9 77 1.0 1.9

Carbon monoxide (CO) 36 1.85 0.7 27 1.85 0.2 35 1.85 0.8 35 1.85 0.8

Methane (CH4) 65 1.25 1.0 55 1.25 0.6 84 1.25 0.7 84 1.25 0.7

Carbon dioxide (CO2) 61 0.38 0.7 53 0.38 0.9 54 0.38 0.8 54 0.28 0.8

Nitric acid (HNO3) 14 1.0 0.3 28 1.0 0.3 30 1.0 0.1 30 1.0 0.1

Nitrous oxide (N2O) 58 1.0 1.2 24 1.0 0.8 21 1.0 0.3 21 1.0 0.3

Sulfur dioxide (SO2) 60 5.0 0.02 24 5.0 1 × 10−3 31 5.0 6 × 10−4 31 5.0 7 × 10−4

Atmos. Meas. Tech., 13, 4437–4459, 2020 https://doi.org/10.5194/amt-13-4437-2020



N. Smith and C. D. Barnet: CLIMCAPS system design and information content 4443

from Sa in two important ways: (i) unlike Sa, λ has hori-

zontal variation because it is dynamically calculated for each

retrieval scene based on the measurement information con-

tent for a target variable, and (ii) unlike Sa, λ has no vertical

variation because it is a scalar value that assumes uniform

uncertainty about the prior state, which can be an oversimpli-

fication in some cases. In contrast to Eq. (1), a CLIMCAPS

AKM as in Eq. (2) can be described as the linear combi-

nation of measurement sensitivity weighted by known and

propagated sources of uncertainty as well as scene-specific

knowledge about measurement information content. While

this is different from a traditional OE approach, both Eqs. (1)

and (2) generate results that are within the observing sys-

tem null space and thus part of the solution set of the ill-

determined inversion problem.

CLIMCAPS adopted the AIRS v5 (Susskind et al., 2003,

2014) implementation of Eq. (2) (Maddy et al., 2009; Maddy

and Barnet, 2008). Instead of an array size of n = 100,

CLIMCAPS calculates AKMs on a reduced set of pressure

layers as defined by a series of overlapping trapezoidal func-

tions. The thickness of each trapezoid layer is empirically de-

termined from calculations of the vertical resolution of simu-

lated measurements for each variable; e.g., CLIMCAPS has

31 trapezoid state functions for temperature and 9 for CO.

These trapezoid state functions were selected by the AIRS

Science Team, with approximately two trapezoids per re-

trievable layer quantity. CLIMCAPS employs these vertical

trapezoid functions for a number of reasons: (i) they reduce

the dimensionality of the Jacobian matrix to speed up al-

gorithm processing time; (ii) compared to the 100 pressure

layers needed for accurate radiative transfer calculation, the

trapezoidal layers more closely resemble the true instrument

vertical resolution calculated from simulated spectra for stan-

dard atmospheric state climatologies; and (iii) they act as

a smoothing constraint and thus reduce the need for addi-

tional a priori stabilization factors. As mentioned, we use

the Rodgers (2000) OE notation in this paper, but in prac-

tice the Jacobians in Eq. (2) are linearly transformed to the

coarser trapezoidal grids using a transformation matrix W

as follows: K̃ = KW, making it a m × ñ matrix, with ñ the

number of trapezoid layers (see Maddy and Barnet, 2008, for

more details).

Averaging kernels are unitless and typically range in value

between 0.0 and 1.0, although they can sometimes have neg-

ative values for which the noise exceeds the signal (see Fig. 3

in Sect. 3 below). AKMs quantify CLIMCAPS observing ca-

pability at any given point in time and space because they

account for all known sources of scene-specific and observ-

ing system uncertainty. They characterize a system’s ability

to observe a target variable at a specific scene. An alterna-

tive interpretation is that they quantify the degree to which

the a priori variable compensates for the lack of observ-

ing capability at any specified scene (1.0 − AKM). While

CLIMCAPS AKMs do not measure retrieval accuracy (ap-

proximation to the truth), they do characterize retrieval un-

certainty and information content. CLIMCAPS retrievals are

not in situ measurements of the vertical atmospheric state,

but under-determined nonlinear inverse measurements with

a dependence on prior knowledge of the atmospheric state.

In scientific analyses and operational applications, it is im-

perative that sounding observations are correctly interpreted

lest their uncertainty be mistaken for measurement. CLIM-

CAPS AKMs characterize and quantify the weighted contri-

bution from the measurement (0.0 + AKM) and the a priori

(1.0 − AKM). An averaging kernel value of zero means that

the measurement has no observing capability at that pres-

sure layer and the solution will be the a priori. An averag-

ing kernel value of unity means the measurement has 100 %

observing capability and the solution will have no depen-

dence on the a priori. In practice, however, averaging ker-

nels range in value between these two endpoints such that

0.0 < AKM < 1.0.

What can we learn about CLIMCAPS observing capabil-

ity by diagnosing its AKMs? And how should we interpret

differences between its retrievals from different parts of the

globe or from different sounding systems? We can address

these questions with a discussion of how each of the vari-

ables in Eq. (2) affects the AKMs. These are the Jacobians

(K) that determine the structure of an AKM and the mea-

surement error covariance matrix (Sm) with a regularization

parameter (λ) that determines its magnitude.

CLIMCAPS Jacobians are finite-differencing (or brute-

force) weighting functions that quantify the sensitivity of the

calculated radiances to the a priori retrieval variable. They

are m × n matrices, with m equal to the number of spec-

tral channels in the retrieval subset (Table 1); out of 2211

CrIS channels, CLIMCAPS has m = 120 selected for T and

m = 66 for H2O. Jacobians are sensitive to the background

state variables used in the forward radiative transfer calcu-

lation. This is the only parameter in Eq. (2) that ingests a

priori information. If an a priori is biased with respect to the

true background state, the same bias will propagate into the

Jacobians. For example, if the CO a priori is a climatology

of a typical source site, then the Jacobian will indicate high

measurement sensitivity because high concentrations of mid-

tropospheric CO result in strong absorption lines in the cal-

culated radiance and thus yield large weighting functions. If

such weighting functions are applied to a retrieval for which

the scene-specific CO concentrations are low, then the av-

eraging kernels will mistakenly indicate high observing ca-

pability to CO at that scene, which risks representing the un-

certainty as a signal unless the averaging kernels are adjusted

according to known sources of uncertainty.

Clouds are one of the primary sources of scene-specific

uncertainty. While CLIMCAPS requires no knowledge about

the a priori state of clouds, it calculates radiance uncertainty

due to clouds in the cloud clearing step (Table 1). Cloud

clearing uncertainty, together with uncertainty from other

state variables, is propagated into the measurement error co-

variance matrix, Sm, according to the method described in

https://doi.org/10.5194/amt-13-4437-2020 Atmos. Meas. Tech., 13, 4437–4459, 2020



4444 N. Smith and C. D. Barnet: CLIMCAPS system design and information content

Table 2. Example of eigenvalues and damping factors for a hypo-

thetical temperature retrieval.

Bmax = 0.5 → λc = 4.0

i λi 1λ Percent

damped

1 18.719 0.0 0.0 % Not damped

2 8.321 0.0 0.0 % Not damped

3 4.934 0.0 0.0 % Not damped

4 3.127 0.41 11.58 % Damped

5 1.312 0.98 42.73 % Damped

6 0.68 0.97 58.77 % Damped

7 0.29 0.79 73.07 % Damped

. . . . . . . . . . . . . . .

22 0.4 × 10−7 4.1 × 10−4 100.0 % Switched off

23 0.1 × 10−7 2.0 × 10−4 100.0 % Switched off

Smith and Barnet (2019). If a scene has high uncertainty

due to clouds, Sm will increase and AKM will decrease

to reflect a reduced observing capability. Scene-dependent

cloud effects are therefore not explicitly accounted for in

AKMs through radiative transfer calculation, but their scene-

dependent uncertainty is derived and propagated into one of

the error terms.

CLIMCAPS performs singular value decomposition

(SVD) of the matrix K̃T S−1
m K̃ to derive a set of scene-

specific eigenvectors for use in the retrieval. We refer to this

ñ× ñ eigenvector matrix as K, with eigenvalues, λi , on its di-

agonal. SVD benefits the retrieval in that it minimizes (max-

imizes) the a priori contribution when measurement infor-

mation content is high (low) such that the retrieval product

deviates from its a priori only when the radiance measure-

ment has information content. According to Eq. (2), the reg-

ularization term is derived from the eigenvalues and deter-

mines the degree to which these eigenvectors are damped in

the solution according to the critical threshold, λc, which is

derived from Bmax (Table 1) such that λc = (Bmax)
−2. Bmax

is a scalar value, empirically determined offline, and defines

the maximum allowable noise that can propagate into the re-

trieval. We illustrate how this works in practice with the ex-

ample discussed below.

In Table 2, the K matrix for temperature has five signif-

icant eigenvalues (i.e., where λi ≥ 1.0), which means that

the observing system has five independent pieces of infor-

mation and can solve for temperature at five distinct pres-

sure levels. For a Bmax = 0.5, λc = 4.0. All eigenvectors with

λi > λc will contribute to the retrieval undamped. In Table 1,

we see that the first three eigenvectors will thus contribute

100 % of their information to the retrieval. Those eigenvec-

tors with λc > λi > 0.05 will be fractionally damped as fol-

lows: 1.0− λi

(λi+1λ)
, where 1λ =

√
λc

√
λi−λi . Accordingly,

the fourth eigenvector (Table 2) will be 11.58 % damped, the

fifth 42.73 %, and so on. Those eigenvectors with λi < 0.05

will be switched off so that they make no contribution to

the retrieval because they are regarded as sources of noise.

An observing system can be over-damped in which case

it does not let enough functions contribute 100 % of their

information. Such a system would suppress the amount of

information contributed by the measurements and force a

strong dependence on the a priori. Alternatively, a system

can be under-damped in which case too many functions con-

tribute to the retrieval undamped such that the measurements

contribute not only information (eigenvectors with λi ≥ 1.0)

but also noise (eigenvectors with λi < 1.0). CLIMCAPS-

Aqua has Bmax = 0.25 and CLIMCAPS-NOAA20 Bmax =
0.20 (Table 1), which translates to λc = 16.0 and λc = 25.0,

respectively. In our example given in Table 2, CLIMCAPS-

Aqua will leave only the first eigenvector undamped, while

CLIMCAPS-NOAA20 will not let a single eigenvector con-

tribute 100 % of its information but damp all of them.

We adopt this type of regularization in CLIMCAPS be-

cause we do not know with absolute certainty that we fully

accounted for all sources of uncertainty in the Sm matrix.

With this approach, we can account for those sources of

uncertainty not explicitly characterized in previous retrieval

steps (Fig. 1). In an ideal system in which all sources of un-

certainty are fully characterized, all eigenvectors with λi ≥
1.0 should typically contribute to the retrieval undamped.

3 Results and discussion

In this section, we use AKMs to diagnose CLIMCAPS

observing capability (or sensitivity to the true state) for

CLIMCAPS-Aqua and CLIMCAPS-NOAA20 using two

global days of retrievals, 1 July and 15 December 2018.

AKMs quantify the potential each measurement has to re-

solve the atmospheric state given observing system charac-

teristics and prevailing conditions at the retrieval scene. So

far, we have referred to the AKM associated with each re-

trieval. Here we take a look at the individual averaging ker-

nels (or rows) of each AKM and specifically distinguish the

diagonal of the AKM (or AKD) as a vector representation of

the maximum sensitivity at each pressure level.

3.1 Diagnosing CLIMCAPS observing capability

Figure 3 depicts the averaging kernels for T and H2O from

CLIMCAPS-NOAA20 for five different retrieval scenes

within a few hundred miles of each other south of South

Africa where the Atlantic and Indian oceans converge. The

peak of each kernel depicts the atmospheric pressure level at

which observing capability is strongest. The spread of an av-

eraging kernel, quantified as the full-width at half-maximum

(FWHM), can be interpreted as the vertical resolution of in-

formation content at its peak pressure. Accordingly, we see

here that CLIMCAPS has higher vertical resolution (smaller

FWHM) for T in the lower troposphere (Fig. 3; top row)
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compared to the stratosphere but in turn a stronger observ-

ing capability for T in the stratosphere (larger peak values).

The vertical resolution for H2O (Fig. 3; bottom row) is fairly

consistent throughout the troposphere, but we see how ob-

serving capability varies strongly from scene to scene. Note

how the kernels fall below zero at times. For scenes 1 and 3

(47.8◦ S, 29.4◦ E and 41.7◦ S, 22.6◦ E, respectively) the ker-

nels for both T and H2O are generally low in the troposphere

compared to other scenes. This means the observing capa-

bility of CLIMCAPS-NOAA20 is weak and only a small

amount of measured information will be added to the a priori

at those scenes. Scene 4 (36.6◦ S, 29.9◦ E), on the other hand,

has higher kernel peaks and CLIMCAPS-NOAA20 thus has

a stronger capability to retrieve atmospheric structure in the

troposphere and add new information to prior state variables

at that scene.

Figure 4 presents the averaging kernels for seven

CLIMCAPS-NOAA20 retrieval parameters. They are (left

to right) T , H2O, O3, CO, CH4, CO2, and HNO3. These

kernels represent the average for all northern midlatitude

scenes (30–60◦ N, 180◦ W–180◦ E) on 1 July 2018, hence

their smooth appearance compared to those in Fig. 3 for in-

dividual scenes. We see how retrieval sensitivity to the true

state depends strongly on the target variable. CLIMCAPS re-

trieves each state variable using a subset of spectral channels

(Table 1) selected to have a high degree of sensitivity for the

target variable and low sensitivity to all other atmospheric

state variables radiatively active in the same spectral region

(Gambacorta and Barnet, 2013). The CLIMCAPS sequential

OE approach, with channel selection and uncertainty prop-

agation, minimizes spectral correlation in the retrieved vari-

ables (Smith and Barnet, 2019). This means that any corre-

lation that does exist can mostly be attributed to geophysi-

cal, not observing system, effects. On average, CLIMCAPS-

NOAA20 has distinct stratospheric and tropospheric sensi-

tivity to the true states of T , O3, and CO2. For H2O, CO,

and CH4, CLIMCAPS-NOAA20 observing capability is lim-

ited to the mid-troposphere (200–700 hPa). Unlike CO and

CH4, the kernels for H2O have peaks at multiple layers and

varying degrees of vertical resolution (FWHM). On average

in the summertime northern midlatitude zone, CLIMCAPS-

NOAA20 has barely any sensitivity to HNO3 and very little

to CO2 below 500 hPa.

To simplify comparison across multiple latitudinal zones

and retrieval systems, we use averaging kernel matrix diago-

nal vectors (in short, AKDs from here on) to summarize the

maximum sensitivity at each pressure layer. The trace of the

AKM (sum of AKD) defines the degrees of freedom (DOFs)

for the signal or the CLIMCAPS information content about

the vertical state of a target variable. DOF can be smaller

than the number of significant eigenvectors due to damping

(Eq. 2) and can be interpreted as the SNR of a retrieval sys-

tem.

In Fig. 5, we contrast the AKDs for five latitudinal

zones – south polar (90 to 60◦ S), southern midlatitude

(60 to 30◦ S), tropics (30◦ S to 30◦ N), northern midlati-

tude (30 to 60◦ N), and north polar (60 to 90◦ N) – on

15 December 2018 for CLIMCAPS-NOAA20 (top panel)

and CLIMCAPS-Aqua (bottom panel). We observe dis-

tinct latitudinal variation in CLIMCAPS-NOAA20 for H2O,

O3, and CO2. In contrast, CLIMCAPS-Aqua informa-

tion content has latitudinal variability for T , H2O, O3,

and HNO3. For CO and CH4, CLIMCAPS-NOAA20 and

CLIMCAPS-Aqua information content is similar in mag-

nitude and structure with mid-tropospheric peaks at 500

and 400 hPa, respectively. Notice the marked differences

in T and H2O AKDs between CLIMCAPS-Aqua and

CLIMCAPS-NOAA20 (Fig. 5, two left panels). Compared

to CLIMCAPS-NOAA20, CLIMCAPS-Aqua has higher ob-

serving capability for atmospheric structure in the mid-

troposphere; its T and H2O retrievals have smaller depen-

dence on the a priori with a larger contribution of information

by the AIRS/AMSU spectral channels. Both observing sys-

tems use the same a priori, namely MERRA2, and they mea-

sure conditions on the same day. While Aqua and NOAA20

both have 13:30 local overpass times, their orbits are not

aligned and they view the same scene at different view an-

gles almost an hour apart. Cloud structure and amount can

change significantly in that time. But even if the cloud fields

remained unchanged over a few hours, measurement uncer-

tainty due to clouds can be different at nadir (looking down at

clouds) than at the edge of a scan (looking at clouds with an

angle). Smith et al. (2015) discussed how observing capabil-

ity changes due to instrument effects – spectrometers (AIRS)

versus interferometers (CrIS) – in cloudy scenes. While the

information content for an ensemble of simulated AIRS and

CrIS measurements is similar (Fig. 1), differences in their

spectral resolution, detector arrays, and algorithm channel

sets introduce variation in the information content of their

measurements at a specific same scene. CLIMCAPS-Aqua

uses 134 and 46 channels for T and H2O, while CLIMCAPS-

NOAA20 uses 120 and 66 for the same variables, respec-

tively. Moreover, the damping factor for CLIMCAPS-Aqua

T is lower than that for CLIMCAPS-NOAA20.

We designed and implemented CLIMCAPS to be simi-

lar for all instruments and platforms with the goal that its

sounding record can be continuous over decades despite

changes in technology. Global ensembles of T and H2O

retrievals from both systems – CLIMCAPS-NOAA20 and

CLIMCAPS-Aqua – display similar root mean square statis-

tics (not shown) when compared to ECMWF (European Cen-

tre for Medium-Range Weather Forecasts) reanalysis fields.

We have found that CLIMCAPS-NOAA20 and CLIMCAPS-

Aqua have similar observing capabilities for the trace gases,

but compared to CLIMCAPS-Aqua, CLIMCAPS-NOAA20

appears over-damped; its T and H2O retrievals have low

sensitivity to the true state. This is reflected in the CLIM-

CAPS regularization threshold for T from CrIS/ATMS on

SNPP and NOAA20 that is lower than that for AIRS/AMSU

on Aqua (Table 1). This threshold was first developed for
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Figure 3. Scene dependence of CLIMCAPS-NOAA20 averaging kernels for coincident (top row) temperature (T ) and (bottom row) water

vapor (H2O) retrievals at five scenes (left to right) on 1 July 2018. The latitude–longitude coordinates are listed at the top of each figure.

Averaging kernels (Eq. 2) quantify and characterize the signal-to-noise ratio of an observing system and are affected by the scene-dependent

effects (e.g., temperature lapse rate, amount of gas molecules, surface emissivity, and cloud uncertainty) as much as the measurement

characteristics (e.g., spectral resolution, instrument calibration, and noise). CLIMCAPS retrieves T and H2O sequentially each with a unique

subset of channels, which means that the variations in these averaging kernels are independent of each other.

nominal-spectral-resolution CrIS (measurements available

at launch in 2011) and never updated when full-spectral-

resolution CrIS measurements became available 2 years later.

In the future, we will experiment with these threshold val-

ues to test if we can achieve consistency in averaging ker-

nels across CLIMCAPS-Aqua, CLIMCAPS-NOAA20, and

CLIMCAPS-SNPP. We are interested in addressing the ques-

tion of whether we can achieve continuity in information

content despite instrument differences. The disparity in infor-

mation content we currently observe between CLIMCAPS-

Aqua and CLIMCAPS-NOAA20 (Fig. 5) tells us that the

two systems apply different weighting to the radiance mea-

surements and thus vary in their dependence on the a pri-

ori. This can introduce inconsistencies in the data record and

hamper continuity. In using averaging kernels as a metric,

we can evaluate information content under similar condi-

tions across CLIMCAPS-Aqua, CLIMCAPS-NOAA20, and

CLIMCAPS-SNPP and thus test for continuity in their ob-

serving capability.

Figure 6 maps CLIMCAPS-NOAA20 DOF for T , H2O,

CO, and O3 on 15 December 2018. CLIMCAPS AKMs are

independent of the final retrieved variable and thus indepen-

dent of whether the solution converges or not. We therefore

do not apply a quality control filter that introduces data gaps

other than those introduced by orbital tracks at low latitudes.

Note how the spatial patterns of DOF for the four variables

are largely independent of each other. This stems from the

fact that CLIMCAPS uses channel subsets and uncertainty

propagation to minimize spectral correlation across retrieval

variables (Smith and Barnet, 2019). Where DOF patterns do

have distinct features, such as the low O3 DOF feature over

Canada (Fig. 6d), we can understand it by evaluating the

physical state to determine if it is due to conditions such

as low O3 concentrations, low lapse rates, or stratospheric

warming. All retrieval variables and their uncertainty metrics

are coincident in space and time in the CLIMCAPS product

files to facilitate these types of analyses.
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Figure 4. The mean of a set of averaging kernels for seven CLIMCAPS-NOAA20 ascending orbit retrieval variables across the northern

midlatitude zone (30 to 60◦ N) for a global day of daytime (ascending orbit) observations from NOAA20 on 1 July 2018. From left to right is

air temperature (T ), water vapor (H2O), ozone (O3), carbon monoxide (CO), methane (CH4), carbon dioxide (CO2), and nitric acid (HNO3).

CLIMCAPS calculates 31 averaging kernels for T , 22 for H2O, 10 for O3, CO, and HNO3, 11 for CH4, and 9 for CO2. The averaging

kernels for T , H2O, and CO are defined on layers from the top of the atmosphere to the sea surface, with those for O3 extending down to

822 hPa, CH4 down to 800 hPa, CO2 down to 700 hPa, and HNO3 down to 450 hPa.

Figure 5. Averaging kernel diagonal vectors for seven retrieval variables – (left to right) T , H2O, O3, CO, CH4, CO2, and HNO3 – from

(top) CLIMCAPS-NOAA20 and (bottom) CLIMCAPS-Aqua ascending orbits on 15 December 2018. For each observing system, the mean

of the diagonal vector is calculated across five latitudinal zones – south polar (90 to 60◦ S), southern midlatitude (60 to 30◦ S), tropics (30◦ S

to 30◦ N), northern midlatitude (30 to 60◦ N), and north polar (60 to 90◦ N).
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Figure 6. Spatial variation in the degrees of freedom (DOFs) for the signal for four retrievals from CLIMCAPS-NOAA20 ascending orbit

on 15 December 2018: (a) temperature (T ), (b) water vapor (H2O), (c) carbon monoxide (CO), and (d) ozone (O3). Note how the spatial

patterns in DOFs for each retrieval variable are largely independent of the others.

While CLIMCAPS observing capabilities for these vari-

ables are largely independent of each other, their spatial pat-

terns do all display a sensitivity to clouds in the lower lati-

tudes. We see similar patterns in cloud cover from satellite

imagery of the same day (not shown). AKMs do not directly

ingest any information about the background atmospheric

state or the a priori retrieval variable. Nor do the AKMs in-

gest any cloud variables in radiative transfer calculations for

deriving the K matrix. Any knowledge about clouds that does

exist in the AKMs (and derived DOF) is from the cloud un-

certainty that is quantified during the cloud clearing step and

propagated through to the Sm matrix. If cloud uncertainty is

high, Sm will increase and DOF will decrease according to

Eq. (2). This is why we see lower values for DOF in cloudy

and overcast scenes.

Figure 7 illustrates the degree to which AKDs vary across

a northern midlatitude zone (30 to 60◦ N) for seven retrieval

variables; from left to right they are T , H2O, O3, CO, CH4,

CO2, and HNO3. The solid lines represent their mean AKDs,

with the error bars quantifying their variation about the mean.

The degree to which the AKDs vary across space, pres-

sure, variables, and instruments in Fig. 7 is also the degree

to which CLIMCAPS observing capability varies. Overall,

CLIMCAPS-Aqua variation for T and H2O is significantly

higher than that for CLIMCAPS-NOAA20. Given that T

is retrieved from CO2-sensitive infrared channels, note how

CLIMCAPS-NOAA20 AKD for T has insignificant vertical

variation across this latitudinal zone, with an absence of a

distinct peak in the troposphere, but its AKD for CO2 not

only has high variability but also a distinct peak in the up-

per troposphere. CLIMCAPS-Aqua, on the other hand, has

T AKDs with high variability and a distinct tropospheric

peak, but its CO2 AKDs have no distinct peak and low ver-

tical variability. This suggests that observing capability for

CO2 is enhanced (depressed) when observing capability for

T is depressed (enhanced). Two other variables that are spec-

trally correlated are H2O and CH4. The channels sensitive to

CH4 absorption are also sensitive to H2O. CLIMCAPS min-

imizes their correlation in the final retrieval products through

channel selection for spectral purity coupled with a sequen-
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tial propagation of scene-dependent uncertainty, but a de-

gree of correlation persists as seen in Fig. 7. We see this in

CLIMCAPS-NOAA20 observing capability that is lower for

both H2O and CH4, while in CLIMCAPS-Aqua it is higher

for both variables.

3.2 Averaging kernels in data intercomparison studies

Data assimilation models typically use infrared radiance

channels to assimilate T and H2O, but for trace gases they

use the retrieved profiles (Levelt et al., 1998; Clerbaux et

al., 2001; Yudin, 2004; Segers et al., 2005; Pierce et al., 2009;

Liu et al., 2012). Top-of-atmosphere radiances are highly

correlated, highly mixed signals of atmospheric variables. A

single channel in the ∼ 2100 cm−1 spectral range may con-

tain information about CO, but it also contains information

about N2O, T , surface emissivity, surface temperature, and

H2O. If a model wants to assimilate CO spectral channels

then it would have to account for all interfering species in

addition to the uncertainty of CO, lest it introduce bias in

its characterization of CO processes. This has proven pro-

hibitively difficult in the case of trace gases for which the

target variable has a weak spectral signal with interference

from variables with much stronger signals. Instead, mod-

ellers rely on retrieval algorithms to decompose the infrared

channels into distinct trace gas species. Maddy and Barnet

(2008) gave a detailed description of how AKDs can be used

together with the retrieved profiles to remove a priori infor-

mation from the retrieval and thus facilitate their assimilation

at a minimum cost to the model. Today, the Maddy–Barnet

method is well established and widely used as the standard

method for data assimilation of retrieved trace gas profiles

(Pierce et al., 2009).

In this section, we turn our attention to the value of AKMs

in data intercomparison studies, specifically the intercompar-

ison of different remote sounding products, all with their own

sets of AKMs. What can we learn about a retrieval product

from its AKMs, and how can this facilitate understanding and

interpretation?

Figure 8 illustrates CLIMCAPS-NOAA20 O3 retrieval di-

agnostics at three different scenes in the Northern Hemi-

sphere on 1 July 2018. For each scene, the diagnostics are

(i) the O3 averaging kernels and (ii) the departure from the

a priori (retrieval minus a priori). The former characterizes

CLIMCAPS observing capability for O3 at that scene, and

the latter quantifies the changes made to the a priori given

the measurement information content in the CLIMCAPS

channel subset. Recall that CLIMCAPS employs MERRA2

as a priori for T , H2O, and O3 (Smith and Barnet, 2019).

MERRA2 assimilates partial column ozone from a series

of solar backscatter ultraviolet (SBUV) instruments between

1980 and September 2004. After September 2004, SBUV

data are replaced by total ozone retrievals from the Ozone

Monitoring Instrument (OMI) and stratospheric ozone pro-

files from MLS (Levelt et al., 1998) onboard the NASA Aura

satellite. Wargan et al. (2017) validated MERRA2 ozone

against ozonesondes and found them to give an accurate rep-

resentation of cross-tropopause gradients and variability on

daily and interannual timescales. MERRA2 does not assimi-

late any infrared channels or retrievals from CrIS or AIRS for

its O3 product. Figure 8 illustrates that CLIMCAPS has ob-

serving capability for stratospheric and tropospheric ozone,

which means it has the potential to add new information to

the MERRA2 a priori fields in two distinct parts of the atmo-

sphere. While CLIMCAPS-NOAA20 observing capability is

similar at all three scenes, we see that the retrieval deviation

from the a priori (black line) varies significantly from scene

to scene. In scene (a), CLIMCAPS-NOAA20 increased the

stratospheric concentrations while decreasing tropospheric

O3. In scene (b), CLIMCAPS-NOAA20 mainly reproduced

MERRA2 tropospheric O3 while increasing it slightly in

the lower stratosphere. In scene (c), CLIMCAPS-NOAA20

added no new information to MERRA2 stratospheric O3, but

it increased its upper tropospheric concentrations.

What does it mean when the AKMs show strong observing

capability but the retrieval hardly deviates from the a priori?

We interpret this as the CLIMCAPS CrIS IR channel set for

O3 largely confirming the MERRA2 O3 profile at that scene.

Aside from water vapor, ozone is the only trace gas variable

in CLIMCAPS that uses an a priori with space–time struc-

ture. All other gases – CO, CO2, CH4, N2O, and HNO3 –

use climatologies with limited to no spatial variation as dis-

cussed in Sect. 2.1. Any space–time structure thus visible in

the retrievals of these gas species originates from the infor-

mation content in the IR channels only.

For the same day, Fig. 9 illustrates CLIMCAPS-NOAA20

temperature retrieval diagnostics for three cloudy scenes in

the Southern Hemisphere. Again, we note how the system

has similar observing capabilities at each scene, but the re-

trieval departure from MERRA2 varies significantly. Note

how CLIMCAPS-NOAA20 increases MERRA2 temperature

at all scenes in the lower stratosphere and troposphere but

decreases MERRA2 temperature in the upper stratosphere.

MERRA2 does assimilate CrIS and AIRS IR radiance chan-

nels that are sensitive to temperature. We argue, however,

that on a scene-by-scene basis it is highly improbable that

CLIMCAPS uses IR measurements twice (first as assimi-

lated information in MERRA2, second as a measurement

vector in OE retrievals) due to the strong spectral and spa-

tial filters adopted in data assimilation systems. Even when

a MERRA2 grid cell does contain IR information at a tar-

get CLIMCAPS footprint, we consider the impact of the

assimilated IR channels on the OE retrieval to be negligi-

ble. CLIMCAPS aggregates an array of 3 × 3 fields of view

(∼ 14 km) during cloud clearing (step 3 in Fig. 2) and re-

trieves all subsequent variables from the cloud-cleared ra-

diance that represents the clear portion of partly cloudy at-

mospheres on a larger field of regard (∼ 50 km). MERRA2,

on the other hand, assimilates single-field-of-view radiances

for clear-sky atmospheres. MERRA2 assimilates measure-
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Figure 7. The mean (blue line) and standard deviation (blue error bars) of averaging kernel matrix diagonals in the northern midlatitude

zone (30 to 60◦ N) on 1 July 2018 from (top) CLIMCAPS-NOAA20 and (bottom) CLIMCAPS-Aqua, both ascending orbits. The error bars

indicate the degree to which the averaging kernel diagonals vary spatially across the latitudinal zonal.

Figure 8. An evaluation of ozone (O3) retrievals from CLIMCAPS-NOAA20 ascending orbit on 1 July 2018 for three scenes at (a) 76.0◦ N,

91.8◦ W; (b) 77.9◦ N, 91.8◦ W; and (c) 78.9◦ N, 91.8◦ W. For each scene, the averaging kernels are displayed on the left and the retrieval

departure from a priori on the right. CLIMCAPS uses MERRA2 as a priori for O3. Scenes with averaging kernels similar in structure can have

an a priori departure that varies in structure. All three scenes presented here passed CLIMCAPS quality control and are labeled “successful”.

For each scene, CLIMCAPS additionally derives uncertainty metrics about the presence of clouds and we list them here. Scene (a) has a

cloud fraction (CF) of 1 %, cloud-top pressure (CTP) of 425 hPa, cloud clearing uncertainty (CCunc) of 0.29, and cloud clearing error (CCerr)

of 0.5. Scene (b) has CF = 1 %, CTP = 273 hPa, CCunc = 0.29, and CCerr = 0.5. Scene (c) has CF = 3 %, CTP = 375 hPa, CCunc = 0.33,

and CCerr = 0.76.
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ments from many sources, so the contribution made by a

single source at a target site is low, especially considering

that each source is weighed according to a static, predeter-

mined representation error. CLIMCAPS, on the other hand,

uses cloud-cleared IR radiances as one of its primary sources

of information that it weighs based on scene-specific infor-

mation content analysis.

When we generate these diagnostic metrics – AKMs and a

priori departure – for CLIMCAPS-NOAA20 retrievals for all

scenes from a global day of retrievals, four scenarios emerge:

(1) high observing capability with small a priori departure,

(2) high observing capability with large a priori departure,

(3) low observing capability with small a priori departure,

and (4) low observing capability with large a priori depar-

ture. We illustrate this in Fig. 10 for CLIMCAPS-NOAA20

retrievals of H2O on 1 July 2018. For the sake of simplicity,

we plot only the AKDs (blue line). The empirically derived

threshold for each metric is 0.1 for AKD and 0.2 for a pri-

ori departure. Scenario 1 (Fig. 10a) occurs in ∼ 17 % of all

CLIMCAPS-NOAA20 retrieval cases, scenario 2 (Fig. 10b)

occurs in 79.5 % of all cases, scenario 3 (Fig. 10c) in 1.2 %

of all cases and scenario 4 (Fig. 10d) in 2.1 % of all cases.

We calculated these statistics for all retrieval scenes, irre-

spective of whether the retrievals converged to a solution or

not because AKMs are independent of the retrieved variable.

CLIMCAPS-20 retrievals flagged as “failed” occur most of-

ten in scenarios 3 and 4, wherein the observing capability is

low. These results are summarized in Table 3.

Data validation studies typically compare remote observa-

tions against dedicated aircraft and/or in situ measurements

to derive a statistical estimate of overall product accuracy

(Nalli et al., 2018a, b). While validation studies are critically

important to determine mission objectives, they typically do

not provide information on the accuracy of individual sound-

ings from day to day or scene to scene. In science and op-

erational applications, researchers regularly query individual

soundings in their study of atmospheric processes and want

to know how well a remote sounding represents the true at-

mospheric state at a specific scene. Radiosondes are launched

daily but from a sparse network of sites; they are thus insuffi-

cient in determining site-specific accuracy for the thousands

of satellite soundings each day. In Fig. 10, we introduce the

four scenarios that emerge when pairing two CLIMCAPS

metrics – a priori departure and the magnitude of AKDs –

to propose them as a means to help facilitate product inter-

pretation and characterization in the absence of “truth” data.

They can help distinguish those cases in which a CLIMCAPS

retrieval either departed from or stuck to its a priori due to

higher sensitivity to the true state (large AKDs). A data user

can have confidence that such cases are good representations

of the true state. Alternatively, those cases with small a pri-

ori departures and small AKDs (scenario 3) should be in-

terpreted with caution because the measurements lack the

means (information content) with which to confirm or im-

prove upon the a priori towards a better representation of the

true state. Lastly, those retrievals with large a priori depar-

tures and low AKDs (scenario 4) should be rejected as a mis-

representation of the true state because the retrieval is mostly

likely dominated by noise, not signal. The a priori may itself

be close to the truth, but we cannot confirm this due to the

system’s inability to observe conditions at that scene.

CLIMCAPS has a series of quality control thresholds at

various retrieval steps to test T and H2O retrievals but has

no such tests for trace gas variables specifically. As a post-

processing step within data applications, the quality control

tests are assembled into a data filter that removes unsuccess-

ful T and H2O retrievals or those with high uncertainty. Cur-

rently, the same filters are applied to all retrieved variables,

with no distinction made between different variables at a

target scene. We propose a method with which to diagnose

CLIMCAPS retrievals on a case-by-case basis, one retrieval

variable at a time. Instead of applying a blanket data filter,

we illustrate how four diagnostic scenarios (Fig. 10, Table 3)

can help a data user to characterize retrieval quality along its

vertical axis, from the boundary layer to the top of the atmo-

sphere. In Figs. 11 and 12 we build on this to illustrate how

these scenarios also apply to CLIMCAPS retrievals horizon-

tally, i.e., spatially across a swath of observations.

Figures 11 and 12 each have four panels: (a) a priori de-

partures at 500 hPa, calculated as percent difference between

CLIMCAPS retrieval and its MERRA2 a priori; (b) CLIM-

CAPS H2O AKDs at 500 hPa as a metric of information con-

tent; (c) cloud clearing uncertainty quantified as the “ampli-

fication factor” of instrument random noise (Chahine, 1977);

and (d) cloud fraction retrievals for each CrIS footprint (or

field of view). Figure 11 is a daytime scene (∼ 13:30 local

overpass time) over the Caribbean Ocean, including parts of

northern Columbia and Venezuela, while Fig. 12 is a night-

time scene (∼ 01:30 local overpass time) over the southeast

continental United States. Note how CLIMCAPS retrieval

departures do not appear to be spatially random but are in-

stead clustered into distinct features. This means that CLIM-

CAPS adds new spectral information to its MERRA2 a priori

under specific conditions, which we can diagnose to deter-

mine information content and quality. Comparing panel (a)

with (c) and (d), we see that there is no direct correlation

between retrieval departure (difference between retrieval and

a priori) and the presence of or uncertainty due to clouds.

This means that CLIMCAPS does have the ability to sepa-

rate spectral information about H2O from clouds and add this

to its a priori where necessary. In Figs. 11 and 12 we high-

light specific features for discussion – solid lines indicate re-

trievals that passed all quality control tests and are labeled

“good”, while dashed lines indicate retrievals that failed at

least one quality control test and are labeled “bad”.

In Fig. 10 we use empirically defined thresholds to cate-

gorize retrievals into one of four scenarios: 0.1 for AKD and

0.2 for retrieval departure. Figures 11 and 12 demonstrate

how they manifest spatially for specific features. Scenario 1,

with a small a priori departure and high information content,
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Figure 9. An evaluation of temperature (T ) retrievals from CLIMCAPS-NOAA20 ascending orbit on 1 July 2018 for three scenes at

(a) 17.8◦ S, 1.0◦ W; (b) 17.5◦ S, 0.25◦ E; and (c) 20.4◦ S, 12.2◦ W. For each scene, the averaging kernels are displayed on the left and

the retrieval departure from a priori on the right. CLIMCAPS uses MERRA2 as its a priori for T . Scenes with averaging kernels sim-

ilar in structure can have an a priori departure that varies in structure. Similar to Fig. 7, we list the cloud uncertainty metrics for each

scene: (i) CF = 7 %, CTP = 175 hPa, CCunc = 0.18, and CCerr = 1.3; (ii) CF = 8 %, CTP = 158 hPa, CCunc = 0.15, and CCerr = 1.34;

(iii) CF = 0 %, CCunc = 0.12, and CCerr = 0.7.

Table 3. A tabulated summary of the four CLIMCAPS retrieval scenarios.

Scenarios Small a priori departure Large a priori departure

High observing capability (AKDs) (1) 17 % (2) 79.5 %

Low observing capability (AKDs) (3) 1.2 % (4) 2.1 %

is featured in (i) in Fig. 11 (shape 1), where the region has

low cloud clover (< 20 % cloud fraction) and very low cloud

clearing uncertainty, as well as (ii) in Fig. 12 (shape 1) with

varying cloud cover that exceeds 60 % at times but main-

tains a relatively low cloud clearing uncertainty. In both of

these cases, retrievals passed CLIMCAPS quality control and

maintained high information content and low cloud uncer-

tainty, so they can be used in applications with confidence

and be interpreted as a confirmation of the MERRA2 val-

ues for mid-tropospheric moisture. Scenario 2, with a large

a priori departure and high information content, is featured

in (i) in Fig. 11 (shape 2), where CLIMCAPS retrievals in-

crease MERRA2 H2O values at 500 hPa by as much as 30 %

and despite significant cloud cover maintain low cloud un-

certainty, as well as (ii) in Fig. 12 (shape 2, centered at

35◦ N, 97.5◦ W), where CLIMCAPS increases MERRA2 by

10 % over a large region and by as much as 40 % at a lo-

calized site at which cloud cover and uncertainty are both

low. It is also featured in (iii) in Fig. 12 (shape 2 centered

at 29◦ N, 98◦ W), where CLIMCAPS decreases MERRA2

mid-tropospheric moisture by 20 %. In these cases, retrievals

passed quality control and maintained high information con-

tent in scenes with low cloud cover, so they can be used with

confidence and interpreted as a legitimate departure from

MERRA2 and a more accurate representation of the true state

compared to MERRA2 alone. Scenario 3, with small a priori

departure and low information content, is featured in (i) in

Fig. 12 (shape 3), where information content is below the 0.1

threshold and retrieval departure below 20 %. These are re-

trievals that also failed CLIMCAPS quality tests (indicated

by the dashed lines) but for reasons other than cloud uncer-

tainty (which is low) and cloud cover (cloud clearing has high

accuracy in partly cloudy scenes such as these). Scenario 4,

with large a priori departure and low information content, is

featured in (i) in Fig. 11 (shape 4) and (ii) in Fig. 12 (shape 4),

where CLIMCAPS reduces MERRA2 H2O values at 500 hPa

by more than 50 % and information content is less than the

0.1 threshold. A very high cloud clearing uncertainty (> 8

amplification of noise) and nearly solid cloud deck (> 80 %

cloud fraction) help explain why these retrievals failed qual-

ity control tests and should not be trusted in applications. Re-

trievals with information content less than 0.1 give us no in-

formation on the quality of MERRA2 values (we cannot con-

firm or deny that they correspond to top-of-atmosphere mea-

sured radiances and therefore know nothing about their accu-

racy); they only highlight that observing capability was low

at that scene. We can diagnose this lack of observing capabil-

ity, which in itself yields information about the atmospheric

state such as cloud cover and uncertainty, but we cannot use

the retrievals with any confidence in applications or scientific

analyses. On any given global day, a significant majority of

the CLIMCAPS retrievals fall into scenarios 1 and 2, which

means that we can use them with confidence and interpret

their departure from MERRA2 (or lack thereof) with con-
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Figure 10. Towards a generalized diagnostic analysis of CLIMCAPS-NOAA20 retrievals on 1 July 2018. We can broadly identify four

different scenarios for CLIMCAPS water vapor (H2O) retrievals by pairing the averaging kernel matrix diagonal (AKD; blue line) and

retrieval departure (black line) calculated as percent difference: (a priori minus retrieval) / (a priori). AKD is a metric for observing capability.

The CLIMCAPS H2O a priori is MERRA2, so the retrieval departure signifies a disagreement with measured radiances at a target scene.

CLIMCAPS scenario (a) has strong observing capability and a small retrieval departure. Scenario (b) has strong observing capability and

large retrieval departure. Scenario (c) has low observing capability and small departure. Scenario (d) has low observing capability and large

departure. We empirically define the threshold for observing capability as 0.1 and for percent difference (a priori departure) as 20 %.

fidence. Note that the spatial patterns depicted in panels (a)

and (b) of Figs. 11 and 12 are unique to each retrieval variable

and vary with pressure layers according to the AKD shape

and vertical profile differences between the retrieval and a

priori.

4 Summary and conclusion

In this paper we described our implementation of the

Rodgers (2000) Bayesian OE inversion method for CLIM-

CAPS v2 with a specific focus on averaging kernels. We

contrasted the Rodgers method for averaging kernels (Eq. 1)

with our CLIMCAPS implementation (Eq. 2) and described

the impact our approach has on retrieved products. CLIM-

CAPS is the NASA system for generating a continuous

record of satellite soundings from two different instrument

suites on multiple satellite platforms: AIRS/AMSU on Aqua

and CrIS/ATMS on SNPP and NOAA20. CLIMCAPS prod-

ucts are publicly available through the NASA EOSDIS

Earthdata portal, and each product file contains the full av-

eraging kernel matrix (AKM) for seven retrieval variables

at every scene – T , H2O, CO, CH4, CO2, O3, and HNO3.

CLIMCAPS AKMs vary in shape and magnitude across

(i) retrieval variables according to top-of-atmosphere spec-

tral sensitivity and instrument spectral resolution, (ii) satel-

lite platforms according to instrument characteristics and re-

trieval algorithm assumptions, and (iii) retrieval scenes ac-
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Figure 11. Diagnostic evaluation of CLIMCAPS-NOAA20 retrievals of H2O for ascending Granule 89 (∼ 13:30 local overpass time) on

1 July 2018 over the Caribbean Sea as well as northern Colombia and Venezuela. (a) H2O retrieval difference as percent departure from a

priori, MERRA2, at 500 hPa. (b) Averaging kernel matrix diagonal vector at ∼ 500 hPa (AKD). (c) Cloud clearing (CC) amplification factor,

a metric of uncertainty about clouds in the radiance signal. (d) Cloud fraction (%) retrieved for each CrIS field of view. Shapes with solid

lines indicate scenes in which CLIMCAPS retrievals passed all quality control tests, and shapes with dashed lines indicate scenes in which

CLIMCAPS retrievals failed at least one quality control test and are flagged as “bad”. We label each shape according to the scenario as

depicted in Table 3. Shape 2 (scenario 2) has large a priori departure and large information content. Shape 4 (scenario 4) has large a priori

departure and low information content. Shape 1 (scenario 1) has small a priori departure and high information content. Panels (c, d) provide

additional diagnostic information about cloud cover and uncertainty.

cording to instrument effects such as view angle and environ-

mental conditions like temperature lapse rates, uncertainty in

interfering and background variables, and a priori assump-

tions about the target variable. At any given scene, the AKM

for one variable is largely independent from that of another

due to the CLIMCAPS sequential retrieval approach (Ta-

ble 1; Smith and Barnet, 2019) and infrared channel selection

to minimize spectral interference. For the first time, we com-

pare the observing capability from CLIMCAPS-Aqua with

CLIMCAPS-NOAA20 to diagnose and characterize conti-

nuity in information content across satellite platforms and

instrument technology. In summary, we can state the follow-

ing.

– The observing capability for T and H2O is different be-

tween CLIMCAPS-Aqua and CLIMCAPS-NOAA20.

This may be due to differences in how we regularize the

OE solution for each satellite suite of instruments, but

it may also reflect fundamental instrument differences;

AIRS on Aqua is a grating spectrometer and CrIS on

NOAA20 a Michelson interferometer. In the future, we

will investigate this question.

– CLIMCAPS-NOAA20 has a higher observing capabil-

ity for CO2 in the mid-troposphere than CLIMCAPS-

Aqua.

– CLIMCAPS has peak observing capability for CO and

CH4 in the mid-troposphere, with CO at ∼ 500 hPa and

CH4 at ∼ 300–400 hPa.

Atmos. Meas. Tech., 13, 4437–4459, 2020 https://doi.org/10.5194/amt-13-4437-2020



N. Smith and C. D. Barnet: CLIMCAPS system design and information content 4455

Figure 12. Same as Fig. 11 but for descending Granule 40 (∼ 01:30 local overpass time) on 1 July 2018 over the southern United States.

(a) H2O retrieval difference as percent departure from a priori, MERRA2, at 500 hPa. (b) Averaging kernel matrix diagonal vector at

∼ 500 hPa (AKD). (c) Cloud clearing (CC) amplification factor, a metric of uncertainty about clouds in the radiance signal. (d) Cloud

fraction (%) retrieved for each CrIS field of view. We highlight features for which CLIMCAPS retrievals depart from MERRA2 (a priori) to

demonstrate the diagnostic scenarios introduced in Fig. 10. Regions with solid lines indicate scenes in which CLIMCAPS retrievals passed

all quality control tests, and regions with dashed lines indicate scenes in which CLIMCAPS retrievals failed at least one quality control

test and are flagged as “bad”. We label each shape according to the scenario as depicted in Table 3. Shape 4 (scenario 4) has large a priori

departure and low information content. Shape 3 (scenario 3) has small a priori departure and low information content. Shape 1 (scenario 1)

has small a priori departure and high information content. Shape 2 (scenario 2) has large a priori departure and high information content.

Panels (c, d) provide additional diagnostic information about cloud cover and uncertainty.

– CLIMCAPS information contents for T , H2O, CO, and

O3 are largely independent of each other, with different

spatial patterns in their derived DOF (trace of AKM).

– CLIMCAPS-NOAA20 has latitudinal variation in ob-

serving capability for H2O, O3, CO, CH4, and CO2.

For H2O, CLIMCAPS-NOAA20 observing capability

peaks in the tropics (30◦ S to 30◦ N) at 300 hPa, while

it peaks lower down at 450 hPa outside the tropics.

CLIMCAPS-NOAA20 has the highest latitudinal vari-

ability for O3, with the strongest peaks in the tropics

in both the stratosphere and troposphere. CLIMCAPS-

NOAA20 has almost no vertical stratification in ob-

serving capability in the polar regions (> 60◦ N and

< 60◦ S). The midlatitude regions have O3 AKM peaks

in the stratosphere only. CO2 AKMs have the strongest

peak at 200 hPa in the tropics. Tropical CH4 has much

lower vertical resolution (as seen in its broad averag-

ing kernel functions) with no distinct peak at 400 hPa as

seen in other latitudinal zones.

– CLIMCAPS-Aqua has latitudinal variation in its ob-

serving capability for T , H2O, O3, CH4, and HNO3.

It is lowest in the boundary layer for all variables.

It has the highest vertical resolution (sharpest peak)

for T at 700 hPa in the north polar region (> 60◦ N).

CLIMCAPS-Aqua has lower observability for tropo-

spheric O3 in the tropics. HNO3 AKMs have distinct lat-

itudinal variation, with the highest observability in the

stratosphere (< 100 hPa) for all zones but the strongest

in the north polar regions (> 60◦ N), followed by mid-

latitudes, south polar, and the tropics in that order.
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– CLIMCAPS, whether from NOAA20 or Aqua, has sen-

sitivity to O3 and CO2 in two broad layers, one in

the mid-troposphere and another in the stratosphere

(< 50 hPa). It also has sensitivity to CO and CH4 in

one broad mid-tropospheric layer, HNO3 in one broad

stratospheric layer, and multiple narrow tropospheric

layers for H2O and T , with additional layers in the

stratosphere for T .

We identified four scenarios with which to diagnose

CLIMCAPS retrievals vertically along a pressure gradient

on a scene-by-scene basis. These scenarios are (1) high ob-

serving capability (large AKD) and small a priori depar-

ture, (2) high observing capability (large AKD) with large

a priori departure, (3) low observing capability (small AKD)

with small a priori departure, and (4) low observing capabil-

ity (small AKD) with large a priori departure. CLIMCAPS

has additional uncertainty metrics for evaluating retrievals,

such as cloud clearing amplification factor, radiance resid-

ual, cloud fraction and cloud-top height, DOF, retrieval co-

variance error, convergence strength, and whether a range

of quality control thresholds were exceeded. As a long-term

record of temperature, moisture, and trace gases that is con-

tinuous and consistent across instruments and satellite plat-

forms, CLIMCAPS v2 products can be useful in characteriz-

ing diurnal and seasonal atmospheric processes from differ-

ent time periods and regions across the globe.

Data availability. As of August 2020, CLIMCAPS version 2 data

products are publicly available for the full record of CrIS/ATMS

from Suomi NPP and NOAA20 from the NASA Goddard Earth

Sciences Data and Information Services Center (GES DISC; https:

//earthdata.nasa.gov/, last access: August 2020). CLIMCAPS ver-

sion 2 data products for the AIRS/AMSU record will be available

later in 2020.
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