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Previously, we observed that without using prior information about individual sampling locations, a clustering
algorithm applied to multilocus genotypes from worldwide human populations produced genetic clusters largely
coincident with major geographic regions. It has been argued, however, that the degree of clustering is diminished by
use of samples with greater uniformity in geographic distribution, and that the clusters we identified were a
consequence of uneven sampling along genetic clines. Expanding our earlier dataset from 377 to 993 markers, we
systematically examine the influence of several study design variables—sample size, number of loci, number of
clusters, assumptions about correlations in allele frequencies across populations, and the geographic dispersion of the
sample—on the ‘‘clusteredness’’ of individuals. With all other variables held constant, geographic dispersion is seen to
have comparatively little effect on the degree of clustering. Examination of the relationship between genetic and
geographic distance supports a view in which the clusters arise not as an artifact of the sampling scheme, but from
small discontinuous jumps in genetic distance for most population pairs on opposite sides of geographic barriers, in
comparison with genetic distance for pairs on the same side. Thus, analysis of the 993-locus dataset corroborates our
earlier results: if enough markers are used with a sufficiently large worldwide sample, individuals can be partitioned
into genetic clusters that match major geographic subdivisions of the globe, with some individuals from intermediate
geographic locations having mixed membership in the clusters that correspond to neighboring regions.
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Introduction

It has recently been demonstrated in several studies that to

a large extent, without prior knowledge of individual origins,

the geographic ancestries of individuals can be inferred from

genetic markers [1–5]. In one of the most extensive of these

studies to date, considering 1,056 individuals from 52 human

populations, with each individual genotyped for 377 autoso-

mal microsatellite markers, we found that individuals could

be partitioned into six main genetic clusters, five of which

corresponded to Africa, Europe and the part of Asia south

and west of the Himalayas, East Asia, Oceania, and the

Americas [3]. Some individuals from boundary locations

between these regions were inferred to have partial ancestry

in the clusters that corresponded to both sides of the

boundary. In many cases, subclusters that corresponded to

individual populations or to subsets of populations were also

identified.

To further ascertain the degree of difficulty in obtaining

the genetic clusters, several articles have considered the

influence of properties of the study design on the extent of

clustering [3,4,6–10]. These studies have shown that the

clustering patterns are robust, provided that at least about

60–150 markers are used [3,4,7,9], or about 40 or fewer if

markers are preselected to have a high information content

about ancestry [6]. They have also observed that although

clustering patterns are influenced by sample size for small
samples, the cluster membership estimates obtained for
individuals in analysis of subsamples of larger datasets are
close to those seen in analysis of the full data [9]. Additionally,
they have found clustering results obtained with different
statistical techniques to be quite similar [7,8].

Other factors besides sample size and number of markers,
however, may influence clustering patterns. Serre and Pääbo
[10] argued that the geographic dispersion of the sample and
the assumption made about whether or not allele frequencies
are correlated across populations had substantial influences
on genetic clustering. They suggested that individuals are less
strongly placed into clusters when the sample is more
geographically uniform, and when allele frequencies are
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assumed to be uncorrelated. Consequently, they claimed that

the geographic clusters obtained by Rosenberg et al. [3] were

artifacts of the sampling design and of the use of a model of

correlation among allele frequencies across populations.

However, much of the geographic dispersion analysis of [10]

was based on two datasets with 89 and 90 individuals and 20

loci, in general too little data for clustering to be apparent

[3,4,9]. The remainder of their geographic analysis, as well as

the source of their comments about uncorrelated frequen-

cies, was a comparison to the Rosenberg et al. [3] results of

several analyses of 261 individuals chosen to be equally

distributed across the 52 populations studied. Serre and

Pääbo’s analyses assumed allele frequencies to be uncorre-

lated across populations, whereas Rosenberg et al. had

assumed that they were correlated. Thus, although a differ-

ence in results was seen between the analyses in [10] and those

in [3], the attribution of this difference specifically to a

difference in geographic dispersion or to a difference in

assumptions about allele frequency correlations is problem-

atic, because both of these variables differed between studies,

as did the number of individuals.

In this article, we perform an extensive evaluation of the

role of study design on genetic clustering, considering both

geographic dispersion and allele frequency correlation, as

well as sample size, number of loci, and number of clusters.

The dataset employed is an expansion of our original data [3]

to 993 markers, including 783 microsatellites [11] and 210

insertion/deletion polymorphisms. Analysis of multilocus

genotypes in the larger dataset reveals essentially the same

set of clusters as was produced with the original 377 markers.

The number of loci, sample size, and number of clusters are

observed to have considerable influence on clustering. In

agreement with the suggestion of [10], the assumption made

about allele frequency correlations is also seen to have a

substantial impact. Because large allele frequency correla-

tions exist across populations, however, the basis for the

supposition by [10] that allele frequencies are uncorrelated is

questionable. Finally, the level of geographic dispersion of the
sample is seen to have only a relatively small effect on the
clustering results, and this variable is not consistent in the
direction in which it influences the level of clustering.
Therefore, we find no reason to interpret our inferred
clusters as artifacts of the sampling design in our original
study, and we conclude with an illustration of how the
clusters can have arisen from small discontinuities in genetic
distance across geographic barriers.

Results

We utilized the unsupervised clustering algorithm imple-
mented in STRUCTURE [12,13] to group individuals into
genetic clusters in such a way that each individual is given an
estimated membership coefficient for each cluster, corre-
sponding to the fraction of his or her genome inferred to
have ancestry in the cluster. This method requires that the
number of clusters be prespecified, and assumes either a
particular model of allele frequency correlations across
clusters [12,13] or that allele frequencies are uncorrelated.
The correlated frequencies model—the F model in [13]—
supposes that the various clusters represent populations that
have descended with genetic drift from a common ancestral
population, so that alleles in different clusters have corre-
lated frequencies due to shared ancestry. The uncorrelated
frequencies model, on the other hand, is based on an
assumption that allele frequencies are not expected to be
similar across populations, and does not hypothesize an
ancestral relationship among the clusters [12]. The reasoning
underlying the correlated frequencies model is that for
closely related populations, as measured by statistics such as
Fst, allele frequencies tend to be correlated. Including
correlation in the population structure model typically gives
STRUCTURE greater power to detect similar but distinct
populations (Figure 2 of [13]).
A total of 367,220 runs of STRUCTURE were performed on

subsets of a dataset consisting of 1,048 individuals from the
Human Genome Diversity Project–Centre d’Etude du Poly-
morphisme Humain (HGDP-CEPH) Human Genome Diver-
sity Panel [14] and 993 microsatellite and insertion/deletion
polymorphisms. These runs utilized five choices for the
number of clusters (two, three, four, five, and six), seven
choices for the number of loci (ten, 20, 50, 100, 250, 500, and
993), four choices for the sample size (100, 250, 500, and
1,048), and two choices for the allele frequency correlation
model (correlated and uncorrelated, as described by [12,13]).
For each choice of the number of loci other than 993, runs
were performed with each of ten prespecified sets of loci
randomly selected from among the full set of markers, and
for each choice of the sample size other than 1,048, runs were
performed with each of 100 prespecified sets of individuals.
The 100 sets of individuals used were selected to have a

wide range of levels of geographic dispersion (Figure 1), as
measured by the dispersion statistic An (see Materials and
Methods). Because the sets all utilized the sampling locations
of the diversity panel, their An values were bounded by the
minimal and maximal levels of dispersion possible in this
sample. However, with a sample size of 100, the sets that had
the lowest values of An—and were therefore most uniformly
distributed geographically—had comparable An values to
some sets of 100 points randomly chosen from the land area
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Synopsis

By helping to frame the ways in which human genetic variation is
conceptualized, an understanding of the genetic structure of human
populations can assist in inferring human evolutionary history, as
well as in designing studies that search for disease-susceptibility loci.
Previously, it has been observed that when individual genomes are
clustered solely by genetic similarity, individuals sort into broad
clusters that correspond to large geographic regions. It has also
been seen that allele frequencies tend to vary continuously across
geographic space. These two perspectives seem to be contradictory,
but in this article the authors show that they are indeed compatible.

First the authors demonstrate that the clusters are robust, in that if
sufficient data are used, the geographic distribution of the sampled
individuals has little effect on the analysis. They then show that
allele frequency differences generally increase gradually with
geographic distance. However, small discontinuities occur as geo-
graphic barriers are crossed, allowing clusters to be produced. These
results provide a greater understanding of the factors that generate
the clusters, verifying that they arise from genuine features of the
underlying pattern of human genetic variation, rather than as
artifacts of uneven sampling along continuous gradients of allele
frequencies.



of the earth. For each collection of settings—the lists of
individuals and loci, and the choices for the number of
clusters and the allele frequency correlation model—two
replicate STRUCTURE runs were performed. The ‘‘clustered-
ness’’ (see Materials and Methods) of the collection of
estimated membership coefficients was then calculated for
each of the 367,220 runs. This statistic measures the extent to
which a randomly chosen individual is inferred to have
ancestry in only one cluster (clusteredness¼1), with the other
extreme being equal membership in all clusters (clusteredness
¼ 0). Use of this statistic relies on the observation that when
populations are unstructured or when insufficient data are
used, STRUCTURE typically distributes the membership
coefficients of all individuals evenly across clusters rather
than assigning each individual a membership coefficient of
one for one cluster (the same cluster for all individuals) and
zero for all other clusters (see the top right plot in Figure 4 of
[6] and the top left plot in Figure 6 of [9]).

Representative estimates of the population structure based
on the full dataset are shown in Figure 2. These estimates are
quite similar to what was previously obtained using 377 loci [3],
with themain difference being that the sixth cluster sometimes
corresponds to a subdivision of native Americans into more
northerly and more southerly populations rather than to a
separation of the isolated Kalash population of Pakistan.

To examine the influence of the study design parameters
on clusteredness, we separately considered each variable,
holding the others constant. This analysis included linear
regressions of clusteredness on each variable for each
possible combination of values of the other variables. We
also analyzed the full collection of runs to determine the
relative contributions of the quantities considered to
variability in clusteredness.

Number of Loci
Holding the number of clusters, sample size, and allele

frequency correlation model fixed, the general trend was that

clusteredness was noticeably smaller for ten and 20 loci, and
was larger for 50 or more loci (Figure 3). This was usually true
regardless of the choice of the number of clusters, sample
size, or correlation model. For 39 of 40 combinations of these
three variables, the regression coefficient of the logarithm of
the number of loci was significantly different from zero at the
p , 0.001 level, indicating a noticeable effect of the number
of loci on clusteredness (the 40th combination had p¼ 0.002).
For all 40 combinations, the regression coefficient was
positive, indicating an increase in clusteredness with increas-
ing number of loci, and the mean coefficient of determi-
nation (R2) across the 40 regressions equaled 0.454.

Number of Clusters
When the number of loci, sample size, and correlation

model were held constant, K ¼ 2 (that is, two clusters)
generally produced smaller clusteredness than did the larger
values of K (Figures 3 and 4; Table 1). For the correlated
allele frequencies model, K ¼ 5 and K ¼ 6 tended to have
higher clusteredness than did K ¼ 3 and K ¼ 4, whereas the
reverse was true for the uncorrelated model (Figure 4). This
trend was reflected in the regression coefficients for K: with
the correlated model, for 27 of 28 combinations of the
number of loci and the sample size, the regression coefficient
was positive, whereas it was positive for only 11 of 28
combinations with the uncorrelated model (Table 2). In 51 of
56 combinations, the regression coefficient was significantly
different from zero at p , 0.001; 34 of these involved positive
and 17 involved negative regression coefficients. Reflecting
the general monotonic trend in clusteredness with K in the
correlated model but not in the uncorrelated model, the
average R2 was larger across the 28 combinations with the
correlated model (0.382) than it was for the 28 combinations
with the uncorrelated model (0.147).

Sample Size
Holding the number of loci, number of clusters, and

correlation model fixed, clusteredness was generally higher
for the samples of size 250 and 500 than it was for the samples
of size 100 (Figures 3 and 4; Table 1). For 65 of 70
combinations of the number of loci, the number of clusters,
and the correlation model, the regression coefficient for
sample size was both significantly different from zero at p ,
0.001 and positive (Table 3). The five cases for which the
regression coefficient was negative, not significantly different
from zero at p, 0.001, or both all involved K¼2. The average
R2 across the 70 combinations equaled 0.511.

Geographic Dispersion of Individuals
With the correlation model and the numbers of loci,

clusters, and individuals held constant, the inferred popula-
tion structure was generally similar for different values of An

(Figure 5, for example). Population structure estimates
differed substantially for different values of An mainly in
situations where one but not the other dataset had a very
small sample from one of the main clusters in the full dataset.
For example, Oceania is well-represented and corresponds to
a cluster for the more geographically random dataset in
Figure 5 (left side), but is not well-represented and does not
correspond to a cluster for the less random dataset (Figure 5,
right side).

Figure 1. Distribution of the Geographic Dispersion Statistic (An) for Sets

of 100 Points Randomly Sampled from a Sphere, Randomly Sampled
from the Land Area of the Earth (from among the Points Plotted in Figure

5 of [11]), and Randomly Sampled from the Reported Locations of

Individuals in the Dataset

Each distribution is obtained by binning the values of An for 100,000 sets
of points.
DOI: 10.1371/journal.pgen.0010070.g001
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Often, geographic dispersion had a negative rather than a
positive influence on clusteredness (see Figure 4), so that less
uniformly distributed samples produced lower clusteredness.
This effect was reflected in the regression coefficient for An,

which was negative for 174 of 210 combinations of the
number of loci, sample size, number of clusters, and
correlation model (Table 4). Of the 36 combinations with
positive regression coefficients, 12 had regression coefficients
that were significantly different from zero at p , 0.001.
However, the decrease of clusteredness with increasing An in
the remaining 174 cases was often quite small; in 46 of these
174 cases, the regression coefficient was not significantly
different from zero at p , 0.001, and the average R2 across
the 210 regressions was only 0.045.

Allele Frequency Correlation Model
With the numbers of loci, clusters, and individuals held

constant, the correlation model had a noticeable influence on
clusteredness, with the correlated model usually producing
higher clusteredness than the uncorrelated model (see Fig-
ures 3 and 4; Table 1). This effect was generally seen
regardless of the number of loci (Table 1). In 101 of 105
combinations in which the sample size was 100, 250, or 500,
the Wilcoxon test for a difference in clusteredness under the
correlated versus under the uncorrelated model was signifi-
cant at p , 0.001. In 97 of these 101 combinations, the
correlated model had higher mean clusteredness across runs
than did the uncorrelated model. For 1,048 individuals, fewer
runs were performed, and p , 0.001 for only 14 of 35
combinations; as with smaller sample sizes, however, in 32 of
the 35 combinations with 1,048 individuals, clusteredness was
greater for the correlated model. Considering all sample sizes,
all nine cases in which clusteredness was smaller for the
correlated model involved K ¼ 2.

Analysis of Variance of Clusteredness
With each sample size, considering all 122,000 STRUC-

TURE runs with the given sample size, the R2 values for
regressions of clusteredness on individual variables were
greatest for the number of loci and the allele frequency
correlation model, and smallest for the number of clusters
and the geographic dispersion (Table 5). Combining all
367,220 runs, the sample size also produced an effect
comparable to that seen for the number of loci and the
correlation model, while the contributions of the number of
clusters and the geographic dispersion remained smaller.

Discussion

In this article, we have systematically analyzed the influence
of five variables on the genetic clustering of individuals from
genome-wide markers: number of loci, sample size, number

Figure 2. Inferred Population Structure Based on 1,048 Individuals and
993 Markers, Assuming Correlations among Allele Frequencies across

Clusters

Each individual is represented by a thin line partitioned into K colored
segments that represent the individual’s estimated membership fractions
in K clusters. Each plot, produced with DISTRUCT [23], is based on the
highest-likelihood run of ten runs: the two runs that were used in further
analysis, and the eight runs described under ‘‘Cluster Analysis using

STRUCTURE.’’ As in [3], four of ten runs with K ¼ 3 separated a cluster
corresponding to East Asia instead of one corresponding to Europe, the
Middle East, and Central/South Asia. Two of ten runs with K¼5 separated
Surui instead of Oceania. The highest-likelihood run of the ten runs with
K¼6, shown in the figure, had a different pattern from the other nine runs
(not shown). These other runs, instead of subdividing native Americans
into two clusters, subdivided a cluster roughly similar to the Kalash cluster
seen in [3], except with a less pronounced separation of the Kalash
population. The clusteredness scores for the plots shown with K¼ 2, 3, 4,
5, and 6 are 0.50, 0.76, 0.84, 0.86, and 0.87, respectively.
DOI: 10.1371/journal.pgen.0010070.g002
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of clusters, geographic dispersion of the sample, and

assumptions about allele frequency correlation. Each of these

variables was found to have an effect on clustering. Holding

all other variables constant, geographic dispersion had a

relatively modest effect on clusteredness, with a considerably

smaller R2 than number of loci, sample size, or number of

clusters. Additionally, geographic dispersion was generally

less consistent in the direction in which it affected clustered-

ness, although in contrast to what was expected based on the

results of [10], samples with higher An (that is, samples that

were less geographically random) produced lower clustered-

ness more often than they produced higher clusteredness.

Unlike geographic dispersion, the number of loci and

sample size both had strong direct relationships with

clusteredness for nearly all combinations of the other

variables. Excluding a few scenarios that utilized two clusters,

the correlation model produced significantly greater cluster-

edness for nearly all combinations of the other variables,

when a large number of STRUCTURE runs were performed.

The number of clusters influences the way in which individual

Figure 3. Mean Clusteredness versus Number of Loci

Each point shows the mean clusteredness of 2,000 runs with the specified sample size and allele frequency correlation model: two replicates for each of
ten sets of loci for each of 100 sets of individuals (for 1,048 individuals, it is the mean of 20 runs, as only one set of individuals was used; for 1,048
individuals and 993 loci, it is the mean of two runs, as only one set of loci was used). Error bars denote standard deviations. The x-axis is plotted on a
logarithmic scale.
DOI: 10.1371/journal.pgen.0010070.g003
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membership coefficients are distributed, but its effect on the

clusteredness statistic was found to be smaller than that of the

number of loci or the sample size. The effect of the number of

clusters depended on the choice of correlation model: in the

correlated model, clusteredness generally increased with K,

whereas in the uncorrelated model, clusteredness was not

monotonic in K.

Two main claims of Serre and Pääbo [10] merit direct

Table 1. Clusteredness Mean and Standard Deviation for the Correlated and Uncorrelated Allele Frequency Models

Number

of Loci

K Correlated Uncorrelated

I ¼ 100 I ¼ 250 I ¼ 500 I ¼ 1,048 I ¼ 100 I ¼ 250 I ¼ 500 I ¼ 1,048

10 2 0.25 (0.13) 0.29 (0.10) 0.37 (0.12) 0.39 (0.09) 0.22 (0.11) 0.27 (0.10) 0.36 (0.13) 0.38 (0.10)

3 0.25 (0.13) 0.31 (0.10) 0.44 (0.16) 0.42 (0.11) 0.19 (0.09) 0.24 (0.07) 0.38 (0.16) 0.38 (0.10)

4 0.24 (0.13) 0.33 (0.10) 0.46 (0.13) 0.46 (0.07) 0.17 (0.07) 0.22 (0.06) 0.34 (0.12) 0.37 (0.05)

5 0.23 (0.13) 0.36 (0.11) 0.47 (0.11) 0.48 (0.06) 0.16 (0.07) 0.20 (0.05) 0.30 (0.10) 0.33 (0.06)

6 0.24 (0.13) 0.38 (0.10) 0.48 (0.09) 0.48 (0.07) 0.15 (0.06) 0.19 (0.04) 0.26 (0.08) 0.29 (0.05)

20 2 0.29 (0.13) 0.34 (0.10) 0.47 (0.12) 0.47 (0.09) 0.25 (0.12) 0.30 (0.09) 0.47 (0.12) 0.49 (0.10)

3 0.31 (0.13) 0.39 (0.15) 0.65 (0.14) 0.69 (0.10) 0.23 (0.08) 0.28 (0.09) 0.59 (0.17) 0.67 (0.13)

4 0.31 (0.12) 0.43 (0.16) 0.68 (0.09) 0.71 (0.08) 0.21 (0.07) 0.25 (0.07) 0.53 (0.12) 0.64 (0.11)

5 0.33 (0.12) 0.46 (0.15) 0.66 (0.07) 0.68 (0.05) 0.20 (0.06) 0.23 (0.05) 0.42 (0.09) 0.55 (0.10)

6 0.35 (0.13) 0.49 (0.14) 0.66 (0.06) 0.66 (0.04) 0.19 (0.05) 0.21 (0.04) 0.34 (0.07) 0.47 (0.09)

50 2 0.37 (0.15) 0.41 (0.14) 0.48 (0.11) 0.58 (0.12) 0.32 (0.16) 0.37 (0.13) 0.47 (0.11) 0.64 (0.15)

3 0.42 (0.11) 0.64 (0.15) 0.74 (0.11) 0.83 (0.04) 0.30 (0.08) 0.50 (0.18) 0.67 (0.15) 0.82 (0.08)

4 0.44 (0.12) 0.73 (0.10) 0.83 (0.04) 0.88 (0.02) 0.27 (0.05) 0.44 (0.14) 0.71 (0.08) 0.85 (0.03)

5 0.44 (0.10) 0.70 (0.10) 0.80 (0.05) 0.84 (0.02) 0.25 (0.04) 0.33 (0.08) 0.57 (0.15) 0.79 (0.06)

6 0.46 (0.10) 0.69 (0.08) 0.78 (0.04) 0.82 (0.02) 0.24 (0.03) 0.29 (0.05) 0.45 (0.16) 0.75 (0.06)

100 2 0.44 (0.19) 0.46 (0.14) 0.50 (0.09) 0.58 (0.10) 0.45 (0.23) 0.45 (0.15) 0.48 (0.07) 0.59 (0.11)

3 0.51 (0.11) 0.71 (0.10) 0.80 (0.05) 0.85 (0.03) 0.41 (0.12) 0.63 (0.13) 0.72 (0.11) 0.84 (0.04)

4 0.53 (0.12) 0.82 (0.04) 0.86 (0.02) 0.89 (0.01) 0.33 (0.06) 0.57 (0.10) 0.77 (0.02) 0.87 (0.01)

5 0.55 (0.14) 0.84 (0.05) 0.87 (0.03) 0.88 (0.02) 0.29 (0.04) 0.41 (0.07) 0.77 (0.05) 0.87 (0.01)

6 0.58 (0.14) 0.84 (0.05) 0.86 (0.03) 0.87 (0.01) 0.27 (0.03) 0.34 (0.04) 0.71 (0.13) 0.87 (0.02)

250 2 0.42 (0.15) 0.41 (0.09) 0.46 (0.06) 0.53 (0.08) 0.45 (0.18) 0.41 (0.12) 0.44 (0.05) 0.52 (0.08)

3 0.55 (0.06) 0.65 (0.08) 0.75 (0.06) 0.81 (0.03) 0.51 (0.08) 0.57 (0.08) 0.70 (0.09) 0.75 (0.07)

4 0.52 (0.06) 0.75 (0.05) 0.85 (0.01) 0.88 (0.01) 0.41 (0.04) 0.51 (0.03) 0.76 (0.02) 0.84 (0.01)

5 0.58 (0.09) 0.83 (0.04) 0.88 (0.02) 0.89 (0.02) 0.36 (0.05) 0.45 (0.05) 0.61 (0.11) 0.85 (0.01)

6 0.65 (0.08) 0.84 (0.03) 0.87 (0.02) 0.88 (0.02) 0.33 (0.05) 0.40 (0.06) 0.55 (0.07) 0.84 (0.02)

500 2 0.44 (0.16) 0.41 (0.07) 0.44 (0.03) 0.54 (0.03) 0.49 (0.19) 0.42 (0.11) 0.42 (0.03) 0.52 (0.03)

3 0.56 (0.05) 0.62 (0.06) 0.71 (0.05) 0.78 (0.05) 0.52 (0.06) 0.56 (0.05) 0.67 (0.06) 0.75 (0.05)

4 0.52 (0.04) 0.66 (0.04) 0.82 (0.01) 0.86 (0.00) 0.42 (0.02) 0.52 (0.03) 0.61 (0.02) 0.82 (0.01)

5 0.57 (0.05) 0.77 (0.05) 0.85 (0.02) 0.88 (0.02) 0.38 (0.03) 0.48 (0.04) 0.54 (0.02) 0.83 (0.01)

6 0.62 (0.05) 0.80 (0.04) 0.84 (0.03) 0.86 (0.03) 0.38 (0.04) 0.44 (0.06) 0.53 (0.04) 0.75 (0.09)

993 2 0.45 (0.16) 0.40 (0.05) 0.43 (0.02) 0.51 (0.00) 0.51 (0.18) 0.42 (0.11) 0.41 (0.02) 0.49 (0.00)

3 0.56 (0.04) 0.60 (0.05) 0.67 (0.04) 0.76 (0.00) 0.52 (0.06) 0.55 (0.06) 0.63 (0.03) 0.75 (0.00)

4 0.51 (0.03) 0.61 (0.01) 0.73 (0.02) 0.84 (0.00) 0.41 (0.01) 0.50 (0.02) 0.60 (0.01) 0.80 (0.00)

5 0.55 (0.04) 0.67 (0.03) 0.82 (0.02) 0.86 (0.00) 0.38 (0.03) 0.45 (0.03) 0.54 (0.01) 0.63 (0.00)

6 0.59 (0.04) 0.69 (0.04) 0.80 (0.04) 0.86 (0.02) 0.39 (0.03) 0.43 (0.04) 0.51 (0.04) 0.64 (0.01)

For a given number of loci, number of clusters, and sample size, the cell corresponding to the model (correlated or uncorrelated) with higher mean clusteredness is highlighted in bold. If the Wilcoxon test for equal mean clusteredness

between correlated and uncorrelated models has p , 0.001, text is printed in black; otherwise, it is printed in red.

DOI: 10.1371/journal.pgen.0010070.t001

Table 2. Influence of the Number of Clusters K on Clusteredness

Number

of Loci

Correlated Uncorrelated

I ¼ 100 I ¼ 250 I ¼ 500 I ¼ 1,048 I ¼ 100 I ¼ 250 I ¼ 500 I ¼ 1,048

Sign p Sign p Sign p Sign p Sign p Sign p Sign p Sign p

10 � 0.024 þ þ þ � � � þ

20 þ þ þ þ � � � þ 0.095

50 þ þ þ þ � � � þ 0.013

100 þ þ þ þ � � þ þ

250 þ þ þ þ � � þ þ

500 þ þ þ þ � � þ þ

993 þ þ þ þ 0.002 � � þ þ 0.513

‘‘Sign’’ denotes the sign of the regression coefficient of clusteredness on number of clusters, and p denotes the p-value for the F-test that the regression coefficient is equal to zero. If no p-value is indicated, then p , 0.001.

DOI: 10.1371/journal.pgen.0010070.t002
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comparison with our results. First, on the basis of STRUC-

TURE runs of two samples with 89 and 90 individuals, 20 loci,

and the uncorrelated allele frequencies model, Serre and

Pääbo argued that use of a sample with a more random

geographic distribution led to reduced clusteredness.

Although we were expecting to corroborate this observation,

which was not based on the HGDP-CEPH Human Genome

Diversity Panel sample studied here, our analysis under

similar conditions did not support it. Moving across the

range of An for the 100 samples of size 100, when 20 loci were

used with the uncorrelated model (Figure 4), there was a

trend opposite to that expected, in that clusteredness

decreased with increasing geographic nonrandomness: for a

sample size of 100 and 20 loci, regression coefficients for An

were negative with p , 0.001 for each value of K and both

correlation models (see Table 4). In other words, in a test

similar to that performed by [10], the effect of reduced
clusteredness with increasing geographic nonrandomness
was not seen when 100 samples were studied, rather than
two samples, as in [10].
Second, in three analyses with the uncorrelated allele

frequencies model, each of which used 261 individuals, Serre
and Pääbo observed a reduction in clusteredness compared
with analyses using 261 individuals and the correlated model,
and compared with analyses based on 1,066 individuals and
either model. They attributed the different results in these
scenarios to the use of the uncorrelated frequencies model.
We found, however, that with either the correlated or the
uncorrelated allele frequencies model, holding all other
variables constant, when 100 samples of size 250 were
considered, clusteredness differed for the samples of size of
250 compared with those of size 1,048 (Figure 3). Therefore,
the difference in results obtained by [10] is likely to derive
from a combination of both the difference in models and the
difference in sample size.
Even if the frequency correlation model actually provided

the sole explanation for the weaker clustering in their
analysis, we question the basis for assuming that allele
frequencies are uncorrelated across populations. Allele
frequencies should be expected to be correlated, on the basis
of the shared descent of all human populations from the same
set of ancestral groups. Clearly, as has been shown in
simulations [13], the choice of correlation model has a
substantial influence on clustering results (Figures 3 and 4;
Table 1). However, as the correlated and uncorrelated models
should only be expected to produce different results if data
contain a high level of correlation—which is taken into
account by the correlated model but not by the uncorrelated
model—it is precisely when allele frequencies have strong
correlations across populations that the two models will
produce different results. Thus, the high correlation coef-
ficients we have estimated for allele frequencies ([9]; Table 6)
both explain the difference in results between the correlated
and uncorrelated models, and suggest that the correlated
model, which we used in [3] and in Figure 2, provides a more
appropriate model for human genetic variation.
In summary, the observation of [10] of stronger clustering

with increased geographic nonrandomness was not seen in
our analysis of a larger number of samples. Additionally,
geographic dispersion was seen to be the least influential of
the five study design variables that we considered. By using
fewer loci and individuals in their various tests, and by
assuming an uncorrelated allele frequencies model, Serre and
Pääbo chose study design parameters in such a way that
clustering was less pronounced than had been previously
observed. In no way does this alter the fact that when a
sufficiently large sample and number of loci are used,
together with the more appropriate correlated allele fre-
quencies model, individuals do cluster into populations that
correspond largely to geographic regions. Indeed, the
observation of essentially the same clusters with a larger
dataset further supports the robustness of our original
analysis.

Table 3. Influence of the Sample Size on Clusteredness

Number

of Loci

K Correlated Uncorrelated

Sign p Sign p

10 2 þ þ

3 þ þ

4 þ þ

5 þ þ

6 þ þ

20 2 þ þ

3 þ þ

4 þ þ

5 þ þ

6 þ þ

50 2 þ þ

3 þ þ

4 þ þ

5 þ þ

6 þ þ

100 2 þ � 0.979

3 þ þ

4 þ þ

5 þ þ

6 þ þ

250 2 þ �

3 þ þ

4 þ þ

5 þ þ

6 þ þ

500 2 � �

3 þ þ

4 þ þ

5 þ þ

6 þ þ

993 2 þ 0.744 þ

3 þ þ

4 þ þ

5 þ þ

6 þ þ

‘‘Sign’’ denotes the sign of the regression coefficient of clusteredness on sample size, and p denotes the p-value for

the F-test that the regression coefficient is equal to zero. If no p-value is indicated, then p , 0.001.

DOI: 10.1371/journal.pgen.0010070.t003

Figure 4. Mean Clusteredness versus Geographic Dispersion as Measured by An

Each point shows the mean clusteredness of 20 runs with the specified number of loci and allele frequency correlation model: two replicates for each of
ten sets of loci (for 993 loci, it is the mean of two runs, as only one set of loci was used). From left to right, the three groups of points in each plot
respectively represent sets of 100, 250, and 500 individuals.
DOI: 10.1371/journal.pgen.0010070.g004

PLoS Genetics | www.plosgenetics.org December 2005 | Volume 1 | Issue 6 | e700667

Clines, Clusters, and Human Population Structure



Clines or Clusters?
Serre and Pääbo [10] argue that human genetic diversity

consists of clines of variation in allele frequencies. We agree
and had commented on this issue in our original paper ([3], p.
2382): ‘‘In several populations, individuals had partial
membership in multiple clusters, with similar membership
coefficients for most individuals. These populations might
reflect continuous gradations across regions or admixture of
neighboring groups.’’ At the same time, we find that human
genetic diversity consists not only of clines, but also of
clusters, which STRUCTURE observes to be repeatable and
robust.

How can these seemingly discordant perspectives on
human genetic diversity be reconciled? Figure 6 shows a plot
of genetic distance and geographic distance for pairs of
populations. To illustrate the effects of moving continuously
across geographical space, only pairs from within clusters or
from geographically adjacent clusters are shown. That is, for
the five clusters with K ¼ 5 in Figure 2 of the present study
and in Figure 1 of [3]—corresponding to Africa, Eurasia
(Europe, Middle East, and Central/South Asia), East Asia,
Oceania, and the Americas—an intercluster population pair
is plotted only if it includes one population from Africa and
one from Eurasia, one from Eurasia and one from East Asia,
or one from East Asia and one from Oceania or the Americas.

For population pairs from the same cluster, as geographic
distance increases, genetic distance increases in a linear
manner, consistent with a clinal population structure.
However, for pairs from different clusters, genetic distance
is generally larger than that between intracluster pairs that
have the same geographic distance. For example, genetic
distances for population pairs with one population in Eurasia
and the other in East Asia are greater than those for pairs at
equivalent geographic distance within Eurasia or within East
Asia. Loosely speaking, it is these small discontinuous jumps
in genetic distance—across oceans, the Himalayas, and the
Sahara—that provide the basis for the ability of STRUCTURE
to identify clusters that correspond to geographic regions.

Two exceptions to the pattern include the Hazara and
Uygur populations, from Pakistan and western China,
respectively, whose genetic distances scale continuously with

geographic distance both for populations in Eurasia and for
those in East Asia. These populations were evenly split across
the clusters corresponding to Eurasia and East Asia, and thus,
unlike most other populations, they do not reflect a
discontinuous jump in genetic distance with geographic
distance. Finally, a third population of interest in the plot
is the Kalash population (of Pakistan), whose genetic
distances to other populations are large at all geographic

distances, illustrating the distinctiveness of the group as the
only member of its own genetic cluster in some STRUCTURE
analyses with K ¼ 6 [3].

Excluding points that involve Hazara, Kalash, or Uygur, a
linear regression on geographic distance for the points in
Figure 6 has R2 ¼ 0.690. When an additional binary variable
B is added—equaling one if an ocean, the Himalayas, or the
Sahara must be crossed to travel between two populations,

and zero otherwise—R2 increases to 0.729. The regression
equation is Fst ¼ 0.0032 þ 0.0049D þ 0.0153B, where D is
distance in thousands of kilometers. By dividing the
regression coefficients for B and D, it can be observed that
crossing one of the barriers adds an equivalent amount of
genetic distance as traveling approximately 3,100 km on the
same side of the barrier. The effect of a barrier is to add
0.0153 to Fst beyond the value predicted by geographic
distance alone. As 0.0153 is not a large value of genetic

distance, and because the addition of the B term produces
only a modest increase in R2, the discontinuities that give rise
to genetic clusters—as we have stated previously [3]—
constitute a relatively small fraction of human genetic
variation.

Our evidence for clustering should not be taken as
evidence of our support of any particular concept of
‘‘biological race.’’ In general, representations of human
genetic diversity are evaluated based on their ability to

facilitate further research into such topics as human evolu-
tionary history and the identification of medically important
genotypes that vary in frequency across populations. Both
clines and clusters are among the constructs that meet this
standard of usefulness: for example, clines of allele frequency
variation have proven important for inference about the
genetic history of Europe [15], and clusters have been shown

Figure 5. Inferred Population Structure Based on Two Different Sets of 100 Individuals, Using 993 Markers and the Correlated Allele Frequencies Model

The two sets of 100 individuals represent extremes of the distribution of An : the plots on the left are based on a more geographically random sample,
and those on the right are based on a less random sample. Each plot is based on the higher-likelihood run among the two runs performed with the
given combination of loci and individuals. In all plots, individuals and populations are in the same order as in Figure 2. Black vertical lines at the bottom
of the figure separate populations from the different geographic regions described in [3], with the asterisk representing Oceania.
DOI: 10.1371/journal.pgen.0010070.g005
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to be valuable for avoidance of the false positive associations

that result from population structure in genetic association

studies [16]. The arguments about the existence or non-

existence of ‘‘biological races’’ in the absence of a specific

context are largely orthogonal to the question of scientific

utility, and they should not obscure the fact that, ultimately,

the primary goals for studies of genetic variation in humans

are to make inferences about human evolutionary history,

human biology, and the genetic causes of disease.

Materials and Methods

Data. The dataset analyzed here consists of 1,048 individuals from
the HGDP-CEPH Human Genome Diversity Panel [14]. Each
individual was genotyped by the Mammalian Genotyping Service
for 993 polymorphisms spread across all 22 autosomes: 783 micro-
satellites (with 3.7% missing data) and 210 insertion/deletion markers
(with 7.7% missing data). Of these loci, 377 of the microsatellites were
previously studied by [3] in most of the individuals analyzed here. The
remaining microsatellites were drawn from Marshfield Screening Sets
#13 and #52 [17], and the insertion/deletion markers were drawn
from those studied by [18]. All 783 of the microsatellites were
previously studied by [11].

The set of individuals used here differs slightly from that studied
by [3]. It corresponds exactly to the set in [11], with two alterations.
First, 21 Surui individuals excluded by [11] are included here, and
second, eight individuals grouped into the southwestern Bantu and
southeastern Bantu populations in [11] are grouped here as a single

Table 4. Influence of the Geographic Dispersion An on Clusteredness

Number

of Loci

K Correlated Uncorrelated

I ¼ 100 I ¼ 250 I ¼ 500 I ¼ 100 I ¼ 250 I ¼ 500

Sign p Sign p Sign p Sign p Sign p Sign p

10 2 � � � 0.022 � � � 0.001

3 � � � 0.019 � � � 0.004

4 � � � � � �

5 � � � � � �

6 � � � � � �

20 2 � � � 0.260 � � � 0.003

3 � � � 0.514 � � � 0.769

4 � � � � � �

5 � � � � � �

6 � � � � � �

50 2 � � 0.010 � 0.241 � � 0.030 � 0.371

3 � � 0.006 þ � þ 0.420 þ

4 � � � � � �

5 � � � � � �

6 � � � � � �

100 2 þ 0.781 þ 0.030 þ 0.050 � þ 0.112 þ 0.008

3 � þ þ � þ þ

4 � � 0.004 � 0.001 � � � 0.143

5 � � 0.001 � � � � 0.073

6 � � � � � �

250 2 � 0.042 þ 0.110 þ 0.422 � 0.055 þ 0.006 þ 0.234

3 � 0.042 � 0.001 þ � 0.925 þ 0.054 þ

4 � � 0.106 � 0.031 � � þ 0.015

5 � � � 0.003 � � �

6 � � � � � �

500 2 þ 0.554 þ þ þ 0.459 þ � 0.287

3 � � 0.487 � 0.014 þ 0.479 þ � 0.183

4 � � � � � 0.034 �

5 � � � � � 0.094 �

6 � � � � � �

993 2 þ 0.227 þ 0.334 � þ 0.506 þ 0.011 � 0.002

3 � 0.204 þ 0.054 � 0.497 � 0.665 þ 0.051 þ 0.294

4 � 0.005 � þ 0.080 � þ 0.001 �

5 � 0.002 � � 0.147 � � 0.001 �

6 � 0.087 � 0.015 � 0.109 � 0.017 � 0.442 � 0.030

‘‘Sign’’ denotes the sign of the regression coefficient of clusteredness on geographic dispersion, and p denotes the p-value for the F-test that the regression coefficient is equal to zero. If no p-value is indicated, then p , 0.001.

DOI: 10.1371/journal.pgen.0010070.t004

Table 5. Values of R2 for Regressions of Clusteredness on Study
Design Variables

Sample

Size

Number

of Loci

Number of

Clusters

An Allele Frequency

Correlation Model

100 0.373 0.000 0.014 0.127

250 0.272 0.023 0.002 0.219

500 0.187 0.056 0.001 0.131

All runs 0.212 0.014 0.003a 0.191

The top three rows are each based on 122,000 runs of STRUCTURE with the given sample size. The bottom row is

based on all 367,220 runs, including those with the full sample of 1,048 individuals.
aThe value of R2 for a model including both sample size and An was 0.200, and with sample size only, it was 0.197.

DOI: 10.1371/journal.pgen.0010070.t005
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population labeled Bantu (southern Africa). Thus, we analyzed 53
populations.

Geographic dispersion. The geographic dispersion of a set of n
points on a sphere can be measured by the statistic

An ¼ n� ½4=ðnpÞ�
X

n�1

i¼1

X

n

j¼iþ1

wij ; ð1Þ

where wij is the angle between the ith and jth points measured at the
center of the sphere. The quantity An is a test statistic for the null
hypothesis that the n points are uniformly distributed on the sphere
(p. 149 of [19]). Larger values of An indicate sets of points that are less
uniformly distributed. To evaluate wij for a pair of points i and j,
rectangular coordinates (x, y, z) are obtained from (latitude,
longitude) coordinates (a, b) using (xi, yi, zi) ¼ (cos(ai) cos(bi), cos(ai)
sin(bi), sin(ai)) and (xj, yj, zj) ¼ (cos(aj) cos(bj), cos(aj) sin(bj), sin(aj)). By
the law of cosines,

wij ¼ cos�1½ð2� ðxi � xjÞ
2 � ðyi � yjÞ

2 � ðzi � zjÞ
2Þ=2�: ð2Þ

Method 1 of [20] was used to generate the rectangular coordinates for
random points uniformly distributed on the sphere. For each sample
size (n ¼ 100, 250, or 500), 100,000 sets of points were considered in
obtaining the distribution of An.

To determine the distribution of An for sets of points uniformly
distributed on the land area of the earth, 4,210 lattice points on land
were identified for a lattice of 200 longitudes and 79 latitudes on the
earth’s surface (Figure 5 of [11]). From these points, for each sample
size (n ¼ 100, 250, or 500), 100,000 sets of points were drawn (with
replacement), and An was calculated for each set.

To obtain the distribution of An for sets of points randomly chosen
from the dataset, for each sample size (n¼ 100, 250, or 500), 100,000

random subsets of the 1,048 individuals were selected (without
replacement), and An was computed for each subset. Latitude and
longitude coordinates were taken from Supplementary Table 1 of
[14]. In cases where latitudes and longitudes were given as ranges, the
centroid of the specified region was calculated, with the longitude
being the average of the endpoints of the range and the latitude being
the inverse sine of the average of the sines of the endpoints of the
range. Of the 100,000 random subsets of individuals, the 100 sets
located at quantiles cþ 1/2 with respect to the distribution of An were
utilized in further analyses, where c ranged over integers from zero to
99.

Clusteredness. To measure the average ‘‘clusteredness’’ of individ-
uals, or the extent to which individuals were estimated to belong to a
single cluster rather than to a combination of clusters, we computed
for each STRUCTURE run the quantity

G ¼
1

I

X

I

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K

K � 1

X

K

k¼1

ðqik � 1=KÞ2

v

u

u

t ; ð3Þ

where qik denotes the estimated membership coefficient for the ith
individual in the kth cluster, I denotes the total number of
individuals, and K denotes the total number of clusters. The factor
K/(K � 1) was included so that a change in K would not produce a
systematic change in clusteredness.

Cluster analysis using STRUCTURE. All runs of the STRUCTURE
program [12] employed for analyzing the study design variables
utilized 1,000 iterations after a burn-in period of 5,000 iterations. To
evaluate whether this length was sufficient for convergence, we
performed longer runs, all with a burn-in period of 5,000, and we
compared results based on later iterations with those of the first 1,000
iterations after the burn-in. For each of K¼2, 3, 4, 5, and 6, eight runs

Table 6. Correlation Coefficients of Allele Frequencies

Region Region

Africa Europe Middle East Central/South Asia East Asia Oceania America

Africa — 0.77 0.80 0.79 0.74 0.69 0.63

Europe 0.44 — 0.96 0.96 0.85 0.76 0.75

Middle East 0.59 0.95 — 0.95 0.85 0.76 0.74

Central/South Asia 0.55 0.92 0.92 — 0.90 0.80 0.79

East Asia 0.44 0.63 0.64 0.77 — 0.81 0.82

Oceania 0.52 0.59 0.65 0.69 0.73 — 0.69

America 0.31 0.63 0.59 0.70 0.74 0.55 —

Above the diagonal are Pearson correlation coefficients based on 9,346 alleles at 783 microsatellites. Below the diagonal are Pearson correlation coefficients based on 420 alleles at 210 insertion/deletion polymorphisms.

DOI: 10.1371/journal.pgen.0010070.t006

Figure 6. Genetic and Geographic Distance for Pairs of Populations

Red circles indicate comparisons between pairs of populations with majority representation in the same cluster in the K ¼ 5 plot of Figure 2; blue
triangles indicate pairs with one population from Eurasia and one from East Asia; brown squares indicate pairs with one population from Africa and the
other from Eurasia; and green diamonds indicate pairs with one population from East Asia and the other from either Oceania or America. Comparisons
involving one of Hazara, Kalash, and Uygur and other populations from Eurasia or East Asia are marked 1, 2, and 3, respectively. No comparisons are
shown between any of these three groups and any African population.
DOI: 10.1371/journal.pgen.0010070.g006
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were performed using the full dataset and the correlated allele
frequencies model. Estimates of membership coefficients were
separately obtained using the first 1,000 iterations after completion
of the burn-in, iterations 15,001–20,000 after the burn-in, and
iterations 45,001–50,000. Using a symmetric similarity coefficient
[21], each of these three stages in each run was compared to each
stage in the other seven runs with the same value of K, as well as to the
other two stages from the same run. In all cases except for one of the
runs with K¼ 6, similarity scores were 0.96 or greater, indicating that
membership coefficient estimates were nearly identical both for
different runs with the same K as well as for the three stages of the
same run. Thus, it was determined that estimates would not be
substantially different if runs longer than 1,000 iterations after a
burn-in period of 5,000 were used. For each K, the results obtained
from the eight runs at 1,000 iterations after completion of the burn-
in were among the ten runs considered in choosing the highest-
likelihood runs to display in Figure 2.

Statistical tests. Linear regression was used to test the influence of
study design variables on clusteredness. To control for the effects of
the other variables, each regression utilized only STRUCTURE runs
in which variables other than the one being tested were held constant.
For example, to examine the influence of the number of clusters on
clusteredness, 56 separate regressions were performed, one for each
combination of the number of loci (seven possibilities), the sample
size (four possibilities), and the allele frequency correlation model
(two possibilities). Similarly, 40 regressions of clusteredness on the
base-10 logarithm of the number of loci were performed, as were 70
regressions of clusteredness on sample size and 210 regressions of
clusteredness on An. Note that in the case of An, since there was no
variability in An across different runs with the full 1,048 individuals,
the number of regressions reflects seven choices for the number of
loci, five choices for the number of clusters, two choices for the allele
frequency correlation model, and only three choices for the sample
size. For each regression, the F-test was used to test the null
hypothesis that the regression coefficient for the dependent variable
equaled zero.

In the case of the allele frequency correlation model, the runs with
the correlated and uncorrelated models were compared using the
Wilcoxon two-sample test instead of with linear regression. Because
there were seven numbers of loci, five numbers of clusters, and four
numbers of individuals, 140 separate tests were performed.

For each sample size, regressions of clusteredness on individual
variables were also performed using all 122,000 runs with the given
sample size. Additional regressions were also performed using all

367,220 runs. These regressions used the base-10 logarithm of the
number of loci.

Genetic and geographic distance. For the comparison of genetic
and geographic distance, calculations were performed as in [11],
using Fst for genetic distance—computed as Fst ¼�ln(1� h), with the
estimate of h taken from equation 5.12 of [22]—and waypoint routes
avoiding large bodies of water for geographic distance. A slight
difference from the analysis in [11] was that the great circle distance
for a pair of points i and j was computed using rwij where r is the
radius of the earth (6,371 km) and wij is measured in radians, rather
than with equation 1 of [11]. Only the microsatellite data were used
for this analysis, and the Karitiana, Maya, and Surui were omitted
from the comparisons: Maya due to likely admixture [3], and
Karitiana and Surui to keep the ranges of the axes in the plot small
enough for the patterns of interest to be visible. See [11] for
additional related plots.
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