
This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Janhunen, T.; Kaminski, R.; Ostrowski, M.; Schaub, T.; Schellhorn, S.; Wanko, P.
Clingo goes linear constraints over reals and integers

Published in:
Proceedings of the 10th Workshop on Answer Set Programming and Other Computing Paradigms

Published: 01/01/2017

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S., & Wanko, P. (2017). Clingo goes linear
constraints over reals and integers. In Proceedings of the 10th Workshop on Answer Set Programming and
Other Computing Paradigms (Vol. 1868). (CEUR Workshop Proceedings). RWTH Aachen. http://ceur-
ws.org/Vol-1868/p4.pdf

http://ceur-ws.org/Vol-1868/p4.pdf
http://ceur-ws.org/Vol-1868/p4.pdf

clingo goes Linear Constraints over Reals and Integers

T. Janhunen1, R. Kaminski3, M. Ostrowski3, T. Schaub23, S. Schellhorn3, and P. Wanko3

1Aalto University 2INRIA Rennes 3University of Potsdam

Abstract. The recent series 5 of the ASP system clingo provides generic means

to enhance basic Answer Set Programming (ASP) with theory reasoning capa-

bilities. We instantiate this framework with different forms of linear constraints

and elaborate upon its formal properties. Given this, we discuss the respective

implementations, and present techniques for using these constraints in a reactive

context. More precisely, we introduce extensions to clingo with difference and

linear constraints over integers and reals, respectively, and realize them in com-

plementary ways. Finally, we empirically evaluate the resulting clingo derivatives

clingo[dl] and clingo[lp] on common language fragments and contrast them to

related ASP systems.

1 Introduction

Answer Set Programming (ASP; [3]) has become an established paradigm for knowledge

representation and reasoning, in particular, when it comes to solving knowledge-intense

combinatorial (optimization) problems. Despite its versatility, however, ASP falls short

in handling non-Boolean constraints, such as linear constraints over reals or unlimited

integers. This shortcoming was broadly addressed in the recent clingo 5 series [12] by

providing generic means for incorporating theory reasoning. They span from theory

grammars for seamlessly extending clingo’s input language with theory expressions to a

simple interface for integrating theory propagators into clingo’s solver component.

We instantiate this framework with different forms of linear constraints and elaborate

upon its formal properties. Given this, we discuss the respective implementations, and

present techniques for using these constraints in a reactive context. In more detail, we

introduce extensions to clingo with difference and linear constraints over integers and

reals, respectively, and realize them in complementary ways. For handling difference

constraints, we provide customized implementations of well-established algorithms in

Python and C++, while we use clingo’s Python API to connect to off-the-shelf linear

programming solvers, viz. cplex and lpsolve, to deal with linear constraints. In both

settings, we support integer as well as real valued variables. For a complement, we

also consider clingcon, a derivative of clingo, integrating constraint propagators for

handling linear constraints over integers at a low-level. While this fine integration must

be done at compile-time, the aforementioned Python extensions are added at run-time.

Our empirical analysis complements the study in [18] with experimental results on our

new systems clingo[dl] and clingo[lp]. Finally, we provide a comparison of different

semantic options for integrating theories into ASP and a systematic overview of the

various features of state-of-the-art ASP systems handling linear constraints.

2 Answer Set Programming with Linear Constraints

Our paper centers upon the theory reasoning capabilities of clingo that allow us to

extend ASP with linear constraints, also referred to as ASP[lc]. We focus below on the

corresponding syntactic and semantic features, and refer the reader to the literature for

an introduction to the basics of ASP.

We consider (disjunctive) logic programs with linear constraints, for short1 lc-

programs, over setsA and L of ground regular and linear constraint atoms, respectively.

An expression is said to be ground, if it contains no ASP variables. Accordingly, such

programs consist of rules of the form

a1;...;am :- am+1,...,an,not an+1,...,not ao

where each ai is either a regular atom in A of form p(t1,...,tk) such that all ti are

ground terms or an lc-atom in L of form2 ‘&sum{a1*x1;. . .;al*xl}<=k’ that stands

for the linear constraint a1 · x1 + · · · + al · xl ≤ k. All ai and k are finite sequences of

digits with at most one dot3 and represent real-valued coefficients ai and k. Similarly

all xi stand for the real (or integer) valued variables xi . As usual, not denotes (default)

negation. A rule is called a fact if m,o = 1, normal if m = 1, and an integrity constraint

if m = 0. A linear constraint of form x1 − x2 ≤ k is called a difference constraint,

and represented as ‘&sum{x1; -1*x2}<=k’ (or ‘&diff{x1-x2}<=k’ in pure difference

logic settings).

To ease the use of ASP in practice, several extensions have been developed. First of

all, rules with ASP variables are viewed as shorthands for the set of their ground instances.

Further language constructs include conditional literals and cardinality constraints [21].

The former are of the form a:b1,...,bm , the latter can be written as s{d1;...;dn}t,

where a and bi are possibly default-negated (regular) literals and each d j is a conditional

literal; s and t provide optional lower and upper bounds on the number of satisfied literals

in the cardinality constraint. We refer to b1,...,bm as a condition, and call it static if it

is evaluated during grounding, otherwise it is called dynamic. The practical value of such

constructs becomes apparent when used with ASP variables. For instance, a conditional

literal like a(X):b(X) in a rule’s antecedent expands to the conjunction of all instances

of a(X) for which the corresponding instance of b(X) holds. Similarly, 2{a(X):b(X)}4

is true whenever at least two and at most four instances of a(X) (subject to b(X)) are

true.

Likewise, clingo’s syntax of linear constraints offers several convenience features. As

above, elements in linear constraint atoms can be conditioned (and use ASP variables),

viz. ‘&sum{a1*x1:c1;...;al*xl:cn}<=k’ where each ci is a condition. As above, the

usage of ASP variables allows for forming arbitrarily long expressions (cf. Listing 1.2).

That is, by using static or dynamic conditions, we may formulate linear constraints that

are determined relative to a problem instance during grounding and even dynamically

during solving, respectively. Also, linear constraints can be formed with further relations,

viz. >=, <, >, =, and !=. Moreover, the theory language for linear constraints offers a

domain declaration for real variables, ‘&dom{lb..ub}=x’ expressing that all values of

1 We keep using the prefix ‘lc-’ throughout as a shorthand for concepts related to linear constraints.

2 In clingo, theory atoms are preceded by ‘&’.

3 In the input language of clingo, sequences containing dots must be quoted to avoid clashes.

x must lie between lb and ub, inclusive. And finally the maximization (or minimization)

of an objective function can be expressed with &maximize{a1*x1:c1;...;al*xl:cn}

(or by minimize). The full theory grammar for linear constraints over reals is available

at https://potassco.org/clingo/examples.

Semantically, a logic program induces a set of stable models, being distinguished

models of the program determined by the stable models semantics [15]. To extend

this concept to logic programs with linear constraints, we follow the approach of lazy

theory solving [4]. We abstract from the specific semantics of a theory by consid-

ering the lc-atoms representing the underlying linear constraints. The idea is that a

regular stable model X of a program over A ∪ L is only valid wrt the theory, if

the constraints induced by the truth assignment to the lc-atoms in L are satisfiable

in the theory. In our setting, this amounts to finding an assignment of reals (or in-

tegers) to all numeric variables that satisfies a set of linear constraints induced by

X ∩ L. Although this can be done in several ways, as detailed below, let us illus-

trate this by a simple example. The (non-ground) logic program containing the fact

‘a("1.5").’ along with the rule ‘&sum{R*x}<=7 :- a(R).’ has the regular sta-

ble model {a("1.5"), &sum{"1.5"*x}<=7}. Here, we easily find an assignment, e.g.

{x 7→ 4.2}, that satisfies the only associated linear constraint ‘1.5 ∗ x ≤ 7’.

In what follows, we make this precise by instantiating the general framework of logic

programs with theories in [12] to the case of linear constraints over reals and integers

(and so difference constraints). Also, we focus on one theory at a time. Thereby, our

emphasis lies on the elaboration of alternative semantic options for stable models with

linear constraints, which pave the way for different implementation techniques discussed

in Section 4.

We use the following notation. Given a rule r as above, we call {a1, . . . ,am } its head

and denote it by H(r). Furthermore, we define H(P) =
⋃

r ∈P H(r).

First of all, we may distinguish whether linear constraints are only determined

outside or additionally inside a program. Accordingly, we partition L into defined and

external lc-atoms, namely L ∩ H(P) and L \ H(P), respectively.4 Thus, while external

lc-atoms must only be satisfied by the respective theory, defined ones must additionally

be derivable through rules in the program. The second distinction is about the logical

correspondence between theory atoms and theory constraints. To this end, we partition

L into strict and non-strict lc-atoms, denoted by L↔ and L→. The strict correspondence

requires a linear constraint to be satisfied iff the associated lc-atom in L↔ is true. A

weaker condition is imposed in the non-strict case. Here, a linear constraint must hold

only if the associated lc-atom in L→ is true. Thus, only lc-atoms in L→ assigned true

impose requirements, while constraints associated with falsified lc-atoms in L→ are free

to hold or not. However, by contraposition, a violated constraint leads to a false lc-atom.

Different combinations of such correspondences are possible, and we may even treat

some constraints differently than others. In view of this, we next provide an extended

definition of stable models that accommodates all above correspondences. Following [12],

we accomplish this by mapping the semantics of lc-programs back to regular stable

models. To this end, we abstract from the actual constraints and identify a solution with a

4 This distinction is analogous to that between head and input atoms, defined via rules or

#external directives [13], respectively.

set of linear constraint atoms. More precisely, we call S ⊆ L a linear constraint solution,

if there is an assignment of reals (or integers) to all real (integer) valued variables

represented in L that

(i) satisfies all linear constraints associated with strict and non-strict lc-atoms in S and

(ii) falsifies all linear constraints associated with strict lc-atoms in L↔ \ S.

Then, we define a set X ⊆ A ∪ L as an lc-stable model of an lc-program P, if there

is some lc-solution S ⊆ L such that X is a (regular) stable model of the logic program

P ∪ {a. | a ∈ (L↔ \ H(P)) ∩ S} ∪ {:- not a. | a ∈ (L↔ ∩ H(P)) ∩ S} (1)

∪ {{a}. | a ∈ (L→ \ H(P)) ∩ S} ∪ {:- a. | a ∈ (L ∩ H(P)) \ S}. (2)

The rules added to P express conditions aligning the lc-atoms in X ∩ L with a corre-

sponding lc-solution S. To begin with, the set of facts on the left in (1) makes sure

that all lc-atoms in S that are external and strict also belong to X . Unlike this, the

corresponding set of choice rules in (2) merely says that non-strict external lc-atoms

from S may be included in X or not. The integrity constraints in (1) and (2) take care of

defined lc-atoms, viz. the ones in H(P). The respective set in (1) again focuses on strict

lc-atoms and stipulates the ones from S are included in X as well. Finally, for both strict

and non-strict defined lc-atoms, the integrity constraints in (2) assert the falsity of atoms

that are not in S.

In what follows, we elaborate upon the formal relationships among the different

types of lc-atoms. To this end, we distinguish four homogeneous settings, in which all

lc-atoms are either defined+strict, defined+non-strict, external+strict, or external+non-

strict, respectively. We use the following notation. For an lc-program P over A ∪ L and

an lc-solution S ⊆ L, we define P |S as the extension of program P given in (1) and

(2). Also, let X(P) denote the set of (regular) stable models of program P over A ∪ L,

and Xlc(P) =
⋃
S⊆L lc-solutionX(P |S) its set of lc-stable models. Note that the respective

semantic setting is determined by the type of lc-atoms in L. In fact, two syntactically

equivalent lc-programs may yield different lc-models in different settings. This is made

precise in the following propositions.

Theorem 1. Let P be an lc-program over A ∪ L and P′ an lc-program over A ∪ L ′

such that P = P′.

1. If L = L ∩ H(P), then Xlc(P) ⊆ X(P)

2. If L = L→ \ H(P), then X(P) ⊆ Xlc(P)

3. If L ′ = L ′→, then Xlc(P) ⊆ Xlc(P′)

Note that P = P′ also makes L and L ′ syntactically equivalent, although they may

represent different types of lc-atoms. The above results draw on the observation that

if all atoms in L ′ are non-strict, then {S ⊆ L | S is an lc-solution} ⊆ {S ⊆ L ′→ |

S is an lc-solution}. This is because the former set of lc-solutions at least need to satisfy

condition (i) while the latter only have to satisfy (i). Note that Proposition 1 does not

just apply to ASP[lc] but to ASP modulo arbitrary theories.

In more detail, Proposition 1.1 expresses that each lc-stable model is also a regular

stable model in a setting involving defined lc-atoms only. Conversely, Proposition 1.2

expresses that each regular stable model is also an lc-stable model in the external+non-

strict setting. Proposition 1.3 portrays that handling lc-atoms in a strict or non-strict way

may lead to fewer (or equal) lc-stable models than treating them just in a non-strict way.

In contrast to the observations of Proposition 1, the following proposition tells us that

regular and lc-stable models are in general incomparable in the external+strict setting.

Theorem 2. There exist lc-programs P over A ∪ L with L = L↔ \ H(P), so that

X(P) * Xlc(P) or Xlc(P) * X(P).

This results from the fact that the treatment of strict lc-atoms may prune regular stable

models and, on the other hand, the pure external evaluation of lc-atoms may induce

additional stable models.

Now that we have explored the formal correspondence among the alternative settings,

let us discuss their appropriateness for ASP[lc]. To this end, let us consider two examples.

We first asses the two defined settings. Modifying our above example, let P1 be

{a("1.5")}. &sum{"1.5"*x}<=7 :- a("1.5").

&sum{x}<"4.5".

along with its two regular stable models X1 = { &sum{x}<"4.5" } and X2 =

{ a("1.5"), &sum{"1.5"*x}<=7, &sum{x}<"4.5" }.

Let us first consider the defined+strict case, in which the lc-atoms

&sum{"1.5"*x}<=7 and &sum{x}<"4.5" belong to L↔ ∩ H(P). Then, Sa = ∅ is

an lc-solution, since both 1.5 ∗ x ≤ 7 and x < 4.5 can be falsified. However, the re-

sulting program P1 |Sa
contains rules ‘&sum{x}<"4.5".’ and ‘:- &sum{x}<"4.5".’

and thus admits no regular stable model. The same result is obtained for Sb =

{ &sum{"1.5"*x}<=7 }. Unlike this, Sc = { &sum{x}<"4.5" } is no lc-solution

although it appears to support X1 as an lc-model. In a strict setting, an iff correspondence

is imposed between lc-atoms and their associated linear constraints. This excludes Sc
as an lc-solution, since there is no real-valued assignment satisfying x < 4.5 while

falsifying 1.5 ∗ x ≤ 7. This situation is caused by the non-derivabality of lc-atom

&sum{"1.5"*x}<=7, which is in turn falsified by the stable models semantics. The

strict interpretation of the lc-atom then requires the falsification of 1.5 ∗ x ≤ 7. Finally,

Sd = { &sum{x}<"4.5", &sum{"1.5"*x}<=7 } is another lc-solution. Given that

P1 |Sd
= P1 ∪ { :- not &sum{"1.5"*x}<=7. :- not &sum{x}<"4.5". } has the

regular stable model X2, we establish that X2 is the only lc-stable model of P1.

This example has illustrated that strict lc-atoms impose a rather strong connection to

their associated constraints in a defined setting. Hence, let us consider next the above

example in a defined+non-strict setting, requiring merely an only if condition between

constraints and their lc-atoms. Now, Sc = { &sum{x}<"4.5" } is an lc-solution since

1.5 ∗ x ≤ 7 must not be falsified. Accordingly, the regular stable model X1 of P1 |Sc
=

P1 ∪ { :- &sum{"1.5"*x}<=7. } attests that X1 is also an lc-stable model of P1. The

other lc-solutions yield the same results as above.

Next, let us analyze the two external settings. For this, let the lc-program P2 be

:- not &sum{x}<"4.5". a("1.5") :- &sum{"1.5"*x}<=7.

admitting no regular stable models, due to the included integrity constraint.

First, we examine the external+non-strict setting. In this case, each combination

of the lc-atoms &sum{"1.5"*x}<=7 and &sum{x}<"4.5" in L→ \ H(P) results in an

lc-solution. However, the existence of lc-stable models depends upon the presence of lc-

atom &sum{x}<"4.5". Lc-models are obtained if it is included, otherwise the integrity

constraint in P2 denies them. The lc-solution Sa = { &sum{x}<"4.5" } results in the

identical lc-stable model. Note that all underlying assignments must satisfy x < 4.5

and hence 1.5 ∗ x ≤ 7. However, the non-strict nature of &sum{"1.5"*x}<=7 leaves

its truth value open. Thus, stable model semantics sets it to false and a("1.5") is not

obtained although the actual constraint 1.5 ∗ x ≤ 7 in the rule body in P2 is satisfied.

Similarly, the lc-solution Sb = { &sum{x}<"4.5", &sum{"1.5"*x}<=7 } induces

the same counter-intuitive lc-model { &sum{x}<"4.5" } along with a second, arguably

more intuitive lc-model { a("1.5"), &sum{"1.5"*x}<=7, &sum{x}<"4.5" }.

The previous discussion has revealed that non-strict lc-atoms may ignore in-

formation induced by the theory in an external setting. This lack is compen-

sated in an external+strict setting by the above condition (ii) and the result-

ing assertion of lc-atoms representing satisfied constraints in (1). Accordingly,

{ a("1.5"), &sum{"1.5"*x}<=7, &sum{x}<"4.5" } is the only lc-stable model

of P2. By interpreting both lc-atoms in a strict manner, the inclusion of &sum{x}<"4.5"

entails that of &sum{"1.5"*x}<=7 as well. Hence, the singleton { &sum{x}<"4.5" }

cannot be an lc-model of P2 in a external+strict setting.

The previous discussion has shown that certain semantic combinations are more

appropriate for treating linear constraints than others. This may be different for other

theories. We have seen that a defined+strict interpretation of lc-atoms may be overly

strong, since the non-derivability of lc-atoms may severely restrict real-valued assign-

ments. Conversely, the external+non-strict treatment of lc-atoms may be too weak, since

it admits real-valued variable assignments satisfying constraints that are not reflected in

the corresponding lc-stable models. As a consequence, we focus in what follows on the

external+strict and defined+non-strict settings for lc-atoms.

3 Multi-Shot ASP Solving with Linear Constraints

Multi-shot solving [13] is about solving continuously changing logic programs in an

operative way. This can be controlled via reactive procedures that loop on solving while

reacting, for instance, to outside changes or previous solving results. These reactions may

entail the addition or retraction of rules that the operative approach can accommodate by

leaving the unaffected program parts intact within the solver. This avoids re-grounding

and benefits from heuristic scores and nogoods learned over time. In fact, evolving logic

programs with linear constraints can be extremely useful in dynamic applications, for

example, to add new resources in a planning domain, or to set the value of an observed

variable measured using sensors. The abstraction from actual constraints to constraint

atoms allows us to easily extend multi-shot solving to lc-programs.

To illustrate how seamlessly our systems clingo[dl] and clingo[lp] support multi-

shot solving, let us apply the exemplary Python script, shipped with clingo to illustrate

incremental solving, to model the spoiling Yale shooting scenario [6]. Multi-shot solving

in clingo relies on two directives (cf. [13]), the #program directive for regrouping rules

and the #external directive for declaring atoms as being external to the program at hand.

The truth value of such external atoms is set via clingo’s API. The aforementioned Python

script loops over increasing integers until a stop criterion is met. It presupposes three

groups of rules declared via #program directives. At step 0 the programs named base

and check(n) are grounded and solved for n = 0. Then, in turn programs check(n)

and step(n) are added for n > 0, grounded, and the resulting overall program solved.

In addition, at each step n an external atom query(n) is introduced; it is set to true for

the current iteration n and false for all previous instances with smaller integers than n.

We refer the reader to [13] for further details on the Python part. Notably, for dealing

with lc-programs, we can use the exemplary Python script as is—once the respective

propagator is registered with the solver.

In the spoiled Yale shooting scenario [6], we have a gun and two actions, load and

shoot. If we load, the gun becomes loaded. If we shoot, it kills the turkey, if the gun was

loaded for no more than 35 minutes. Otherwise, the gun powder is spoiled. We model

this planning problem in ASP[lc]. We start by including the incremental Python program,

1 #include "incmode_lc.lp".

3 #program base.

4 action(load). action(shoot). action(wait).

5 duration(load ,25). duration(shoot ,5). duration(wait ,36).

6 unloaded(0).

7 &sum { at(0) } = 0.

8 &sum { armed(0) } = 0.

Listing 1.1. Spoiled Yale shooting instance

the grammar, and the propagator for linear constraints in the first line of Listing 1.1.5

This listing is the base program. All actions and their durations are introduced in Lines 4

and 5. At the initial situation, the gun is unloaded (Line 6). Line 7 and 8 initialize integer

variables at(0) and armed(0) with 0 (see below). Listing 1.2 gives the dynamic part

of the problem; it is grounded for each step n. Line 2 enforces that exactly one action is

done per step. The exact times at which each step takes place is captured by the integer

variables at(n). The difference between two consecutive time steps is the duration of

the respective action (Line 3). The next three lines make the fluents inertial, viz. the

gun stays loaded/unloaded if it was loaded/unloaded before, and the turkey stays dead.

Lines 9 and 10 use the integer variable armed(n) to describe for how long the weapon

has been loaded at step n. Whenever it is unloaded, armed(n) is 0, otherwise it is

increased by the duration of the last action. The upcoming four lines (12–15) encode the

conditions and effects of the actions. When we load the gun, it becomes loaded; when

we shoot, it becomes unloaded. If we shoot and the gun was loaded for no longer than

35 minutes (and thus the gun powder is unspoiled), then the turkey is dead. The last line

ensures that we cannot shoot if the gun is not loaded. Together with the initial situation

and the actions from Listing 1.1 this encodes the spoiled Yale shooting problem, and

any solution represents an executable plan. Listing 1.3 adds a query to our problem.

5 For uniformity, we use semi-colons ’;’ rather than ’,’ for separating body elements.

1 #program step(n).

2 1{do(X,n) : action(X)}1.

3 &sum { at(n); -1*at(N’) } = D :- do(X,n); duration(X,D); N’=n-1.

5 loaded(n) :- loaded(n-1); not unloaded(n).

6 unloaded(n) :- unloaded(n-1); not loaded(n).

7 dead(n) :- dead(n-1).

9 &sum { armed(n) } = 0 :- unloaded(n-1).

10 &sum { armed(n); -1*armed(N’) } = D :- do(X,n); duration(X,D); N’=n-1; loaded(N’).

12 loaded(n) :- do(load,n).

13 unloaded(n) :- do(shoot,n).

14 dead(n) :- do(shoot,n); &sum { armed(n) } <= 35.

15 :- do(shoot,n); unloaded(n-1).

Listing 1.2. Spoiled Yale shooting scenario

1 #program check(n).

2 :- not dead(n); query(n).

3 :- not &sum { at(n) } <= 100; query(n).

4 :- do(shoot,n); not &sum { at(n) } > 35.

Listing 1.3. Query for the spoiled Yale Shooting Scenario.

In Line 2 we require that the turkey is dead at step n. As this constraint is subject to

the external atom query(n), it is only active at solving step n. The next line ensures

that we kill the turkey within 100 minutes. And as an additional constraint, we added

some preparation time such that we are not allowed to shoot in the first 35 minutes.

It is possible to solve this problem within three steps. There exist two solutions at

this time point, one of them containing unloaded(0), do(wait,1), unloaded(1),

do(load,2), loaded(2), do(shoot,3), unloaded(3), dead(3). That is, we simply

wait before loading and shooting. The second solution loads the gun instead of waiting,

thus loading the gun twice before shooting.

4 clingo derivatives and related systems

In this section, we give an overview of systems extending ASP with linear constraints.

We start with our own systems clingo[dl] and clingo[lp] both relying upon clingo’s

interface for theory propagators. We also include clingcon, since it is based on a much

lower level API using the internal functions of clingo (and clasp) in C++. While clingcon

implements a highly sophisticated system using advanced preprocessing and solving

techniques, the Python variants of clingo[dl] and clingo[lp] provide easily modifiable

and maintainable propagators for difference and linear constraints, respectively. This

carries over to the C++ variant of clingo[dl] since the C++ and Python API share the

same functionality. Table 1 shows a comparative list of features for these systems. The

Table 1. Feature comparison

Python C++ strict non-strict external defined n-ary reals optimization

clingo[dl] ✓ ✓ ✓1 ✓ ✓ ✓ ✗ ✓2 ✓3

clingo[lp] ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓4

clingcon ✗ ✓ ✓ ✗ ✓ ✗5 ✓ ✗ ✓

1 Only with Python API
2 Only for non-strict lc-atoms
3 Needs an additional plugin

4 Optimization is relative to stable models
5 Theory atoms in rule heads are shifted into nega-

tive body

two flexible clingo derivatives support all four combinations of strict/non-strict and

defined/external lc-atom types, whereas clingcon has a fixed one. Also the bandwidth of

supported constraints is different. While clingo[dl] only supports difference constraints,

the other two support n-ary linear constraints. clingo[dl] and clingo[lp] support (approx-

imations of) real numbers (see below). Moreover, all three clingo derivatives allow for

optimizing objective functions over the numeric variables (in addition to optimization in

ASP).

clingo[dl] extends clingo with difference constraints of the form x − y ≤ k, where

x and y are integer (or real) variables and k is an integer (real) constant. Despite the

restriction to two variables, they allow for naturally encoding timing related problems, as

e.g., in scheduling, and are solvable in polynomial time. clingo[dl] uses clingo’s theory

interface to realize a stateful propagator that checks during search whether the current

set of implied difference constraints is satisfiable [8]. To this end, it makes use of the

stateful nature of the theory interface that allows for incrementally updating internal

states and thus for backtracking to previous states without having to rebuild the internal

representation. By default, all difference constraint atoms are considered to be non-strict.

In this case, it is only necessary to keep track of lc-atoms that are assigned true since only

then the constraint is required to hold. In the strict case, false assignments to difference

constraint atoms are considered as well. This is done by adding y− x ≤ −k −1 whenever

‘&diff{x-y}<=k’ is assigned false. As a side-product of the satisfiability check, an

integer (real) assignment for all variables is obtained and ultimately printed for all

lc-stable models. Usually, several or even an infinite number of assignments exist. The

returned assignment is the one with the lowest sum of the absolute values of all variables.

For instance, in terms of scheduling problems, this amounts to scheduling each job as

soon as possible.

clingo[lp] fully covers the extension of ASP[lc] described in Section 2. This clingo

derivative accepts lc-atoms containing integer and real variables possibly subject to dy-

namic conditions. That is, clingo[lp] extends ASP with constraints as dealt with in Linear

Programming (LP; [10]) as well as according objective functions for optimization. In

clingo[lp], the latter takes all linear constraints induced by the Boolean assignment into

account. As above, the theory interface of clingo is used to integrate a stateful propagator

that checks during search the satisfiability of the current set of linear constraints. Here,

however, this is done with a generic interface to dedicated LP solvers, currently support-

ing cplex and lpsolve. (Note that both LP solvers do an exponential consistency check.)

The Python interfaces of cplex and lpsolve natively support relations =, ≥, and ≤. We add

support for <, >, and ,. To this end, we translate < and > into ≤ and ≥ by subtracting or

adding an ε to the right-hand-side of a linear constraint, respectively.6 Furthermore, , is

treated as a disjunction of < and >. By default, clingo[lp] treats lc-atoms in a non-strict

manner. Thus only linear constraints represented by true lc-atoms are considered. When

treating them strictly, false lc-atoms are handled using the complementary relation. In

this case, the corresponding linear constraint is derived by using the complementary

relation. Notably, clingo[lp] offers dynamic conditions in lc-atoms. This allows for linear

constraints of variable length even during search. All conditions have to be decided

before such a constraint is included in the consistency check. Furthermore, clingo[lp] is

able to update its internal state incrementally but rebuilds the linear constraint system

after backtracking to avoid accumulating rounding errors. Also, it uses an Irreducible

Inconsistent Set algorithm [24] for extracting minimal sets of conflicting constraints to

support conflict learning in the ASP solver. On the one hand, this extraction is expensive,

on the other hand, such core conflicts may significantly reduce the search space. To

control this trade-off, clingo[lp] only enables this feature after a certain percentage of

lc-atoms and conditions is assigned (by default 20%). Similarly, frequent theory con-

sistency checks are expensive and a conflict is less likely to be found within a small

assignment; accordingly, an analogous percentage based threshold allows for controlling

their invocation (default 0%).

clingcon series 3 offers a clingo-based ASP system with constraints over integers [2];

it is implemented in C++ and features a strict, external semantics. Sophisticated prepro-

cessing techniques are supported and non-linear constraints such as the global distinct

constraint are translated into linear ones. Integer variables are represented using the

order encoding [9], and customized propagators using state-of-the-art lazy nogood and

variable generation are employed. The propagators do not only ensure bound consistency

on the variables but also derive new bounds. Furthermore, multi-objective optimization

on the integer variables is supported. In contrast to clingo[lp], conditions on integer

variables must be static.

All systems are available at https://potassco.org/{clingoDL,clingoLP,

clingcon}.

Big picture. Finally, let us relate our systems with others extending ASP with linear

constraints. The first category, referred to as translation-based approaches, includes

systems such as ezsmt [18], dingo [17], aspmt2smt [5], and mingo [19]. The first three

translate both ASP and constraints into SAT Modulo Theories (SMT; [4]); dingo is

restricted to difference constraints. Unlike this, mingo’s target formalism is Mixed Inte-

ger Linear Programming (MILP). Furthermore, aspartame [1] translates ASP[lc] (over

integers) back to ASP by using the order encoding. Once the input program is trans-

lated, only a solver for the target formalism is needed. This is one of the advantages of

translation-based approaches. Also, they benefit from the features and performance of

the respective target systems. A drawback is the translation itself since it may result in

large propositional representations or weak propagation strength. The second category

extends the standard Conflict Driven Nogood Learning (CDNL; [14]) machinery of

6 This ε can be configured using the command line and defaults to 10−3 (as in cplex).

ASP solvers with constraint propagators. This allows for propagating both Boolean

and linear constraints during search. The latter is thus continuously checked for consis-

tency and even new constraints may get derived. For instance, the clingo-based system

dlvhex[cp] [20] uses gecode, while ezcsp uses a Prolog constraint solver for consistency

checking. Unlike this, inca [11] extends a previous clingo version with a customized

lazy propagator generating constraints according to the order encoding. This approach

allows for deriving new constraints such as bounds of the integer variables.

The clingo derivatives clingo[dl] and clingo[lp] belong to the second category of

systems, just like clingcon 3. Table 2 summarizes important similarities and differences

Table 2. Comparing related applications

clingo clingo clingcon aspartame inca ezcsp ezsmt mingo dingo aspmt2smt dlvhex

[dl] [lp] [cp]

translation ✗ ✗ ✓1 ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗

explicit ✗ ✗ ✓2 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

non-linear ✗3 ✗ ✓4 ✓4 ✓ ✓ ✓ ✗ ✗3 ✓ ✓

real numbers ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓5 ✗ ✓ ✗

optimization ✗ ✓6 ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

non-tight ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓

1 Allows for partial problem translations
2 Lazily created
3 Only difference constraints

4 Translation of distinct into linear constraints
5 Only for variables
6 Optimization relative to stable models

of the aforementioned systems. The first row tells us whether a system relies on a

translation to SMT, MILP, or ASP. The second one indicates whether the approach

uses some form of explicit variable representation. This is the case when using an

encoding and usually results in a large number of propositional atoms to represent

variables with large domains. Half of the systems are able to handle constraints over

reals while the other half is restricted to integers. Note that for a system of inequalities, a

solution over reals can be found much easier than one over integers. For all systems, real

numbers are implemented as floating point numbers. Due to this, round-off errors cannot

completely be avoided. Note that since computers are finite precision machines, the

imprecision of floating point computations is common to any computer systems and/or

languages [16]. cplex uses numerically stable methods to perform its linear algebra so

that round-off errors usually do not cause problems.7 With “non-linear” we distinguish

systems handling global or non-linear constraints, and “non-tight” indicates whether a

system can deal with recursive programs. Finally, the table lists all systems that are able

to optimize an objective function over the integer and/or real variables.

7 See Numeric difficulties at https://www.ibm.com/support/knowledgecenter/SSSA5P_

12.7.0/ilog.odms.studio.help/pdf/usrcplex.pdf

5 Experimental analysis

We begin with an empirical analysis of our clingo derivatives in different settings. We in-

vestigate, first, different types of lc-atoms, viz. defined+non-strict versus external+strict,

second, different levels of theory interfaces, Python or C++, for clingo[dl], and, third,

different levels of integration, namely, dedicated implementations versus off-the-shelf

solver. Finally, we contrast the performance of our systems with other systems for

ASP[lc].

We ran each benchmark on a Xeon E5520 2.4 GHz processor under Linux limiting

RAM to 20 GB and execution time to 1800s. For clingo[dl] and clingo[lp], we use

clingo 5.2.0. Furthermore, we use clingcon 3.2.0, dingo v.2011-09-23, mingo v.2012-09-

30, ezsmt 1.0.0, and ezcsp 1.7.9 for our experiments. We upgraded dingo and mingo to

use recent versions of their back-end solvers. Hence, in our experiments, the LP-based

systems clingo[lp] and mingo use cplex 12.7.0.0 and the SMT-based systems dingo

and ezsmt use z3 4.4.2. The benchmark set consists of 165 instances, among which

110 can be encoded using difference constraints (dl) and 55 require linear constraints

with more than two variables (lc). In detail, the dl set consists of 38 instances of two-

dimensional strip packing (2sp) [22], and 72 instances of flow shop (fs), job shop (js),

and open shop (os) problems [23], selecting three instances for each job and machine at

random. Since not all systems support optimization over variable values, we bounded the

instances with 1.2 times the best known bound and solved the resulting decision problem.

The lc instance set includes 20 instances of incremental scheduling (is), 15 instances of

reverse folding (rf), and 20 instances of weighted sequence (ws). Encodings have been

adopted from [18] in combination with the instances from the ASP competition.8 Our

empirical evaluation focuses on available systems sharing comparable encodings. This

was not the case for aspartame, aspmt2smt, inca, and dlvhex[cp]. The first two systems

have a proper and thus different input language and encoding philosophy, inca produced

incorrect results (cf. [2] for details), and dlvhex[cp] is no longer maintained.

Table 3 compares clingo[dl] and clingo[lp] with different encoding techniques, types

of theory atoms, and programming language hosting the theory interface by measuring

average time (t) and timeouts (to). Each column consists of one combination of form

Table 3. Comparison of clingo derivatives clingo[dl] and clingo[lp]

dl/dns/py dl/es/py lp/dns/py lp/es/py dl/dns/cpp dl/es/cpp

class #inst t to t to t to t to t to t to

2sp 38 344 6 484 9 1346 23 1753 36 148 3 342 7

fs 35 678 11 1541 27 1221 21 1800 35 465 5 1349 26

js 24 1261 15 1229 14 1800 24 1800 24 534 4 678 7

os 13 8 0 17 0 963 6 1532 10 0 0 0 0

dl 110 611 32 928 50 1360 74 1752 105 316 12 695 40

8 We refrained from using the other three benchmark classes from this source because the

available instances were too easy in view of producing informative results.

system/atom/language, where system is either dl or lp for clingo[dl] and clingo[lp],

atom either dns or es for defined+non-strict and external+strict lc-atoms, and language

either py or cpp for Python and C++, respectively. To compare clingo[dl] and clingo[lp],

we restrict the set of benchmarks to dl. We observe that dns performs better than es

in all settings. Under lc-stable model semantics, defined lc-atoms are more tightly

constrained. External lc-atoms, on the other hand, induce an implicit choice leading to a

larger search space and might introduce duplicate solutions with different assignments.

Furthermore, strict lc-atoms double the amount of implications that have to be considered

by the propagator. As expected, the C++ variant of clingo[dl] outperforms its Python

counterpart, even though the performance gain does not reach an order of magnitude.

Table 4 compares different systems dealing with ASP[lc] by average time (t) and

timeouts (to). Only the best configurations from Table 3 were selected for comparison.

Table 4. Comparison of different systems for ASP with linear constraints

dl/dns/cpp lp/dns/py clingcon dingo mingo ezsmt ezcsp

class #inst t to t to t to t to t to t to t to

2sp 38 148 3 1346 23 3 0 403 7 292 5 318 6 1800 38

fs 35 465 5 1221 21 1022 19 1047 20 1040 16 1667 32 735 9

js 24 534 4 1800 24 277 3 1258 15 1423 18 1315 15 1800 24

os 13 0 0 963 6 1 0 4 0 76 0 24 0 1044 7

dl 110 316 12 1360 74 387 22 765 42 743 39 930 52 1372 78

is 20 – – 1800 20 582 5 – – 649 7 648 7 1620 18

rf 15 – – 1680 14 21 0 – – 542 1 121 0 1013 7

ws 20 – – 1800 20 27 0 – – 90 0 12 0 1800 20

lc 55 – – 1767 54 227 5 – – 416 8 273 7 1520 45

all 165 – – 1564 128 307 27 – – 580 47 602 59 1446 123

All systems were tested using their default configurations. For dl, dl/dns/cpp performs

best overall, even though clingcon is better for 2sp and js. The class fs generates the

most difference constraints among all benchmark classes, making it less suited for

translation-based approaches, like dingo, mingo, and ezsmt, and producing overhead

for more involved propagation as in clingcon. By default, ezcsp performs the theory

consistency check on full answer sets, and by doing so avoids handling vast amounts

of constraints during search and therefore performs comparatively well on fs. For the

other classes though, this generate and test approach is less effective. Regarding lc

and overall results, clingcon clearly dominates the competition, followed by the two

translation-based approaches mingo and ezsmt with underlying state-of-the-art solvers

cplex and z3, respectively. lp/dns/py falls behind, since it is a straightforward Python

implementation and uses an exponential consistency check. In addition, distinct features

of clingo[lp] like real-valued variables and optimization as well as dynamic conditions

are not supported by other systems and thus not included in the benchmark set.

6 Summary

We presented several truly hybrid ASP systems incorporating difference and linear

constraints. Previous approaches addressed this by resorting to translations into foreign

solving paradigms like MILP or SMT. This difference is analogous to the one between

genuine ASP solvers like clasp and wasp and earlier ones like assat and cmodels that

translate ASP to SAT. The resulting systems clingo[dl] and clingo[lp] comprise several

complementary aspects. For instance, clingo[dl] relies upon customized propagators, one

variant using a Python API, the other a C++ API. This is similar to the approach of inca

and clingcon 3 for Constraint ASP. Unlike this, clingo[lp] builds upon the Python API to

incorporate off-the-shelf LP solvers for propagation, optionally cplex or lpsolve. This is

similar to the approach of dlvhex[cp] and clingcon 2 integrating gecode for constraint

processing. Both clingo[dl] and clingo[lp] allow for dealing with integer as well as real

variables. The former admits two, the latter an arbitrary number of such variables per

linear constraint. This is complemented by clingcon 3 adding constraint processing to

clingo by using a low level API.

We accomplished this by instantiating the generic framework of ASP modulo theories

described in [12]. We defined lc-stable models and elaborated upon different types of

lc-atoms, ultimately settling on the combinations defined+non-strict and external+strict

for clingo[dl] and clingo[lp].9 Our underlying formal analysis on the interaction of strict-

and definedness has actually a much broader impact given that other systems follow

similar principles. Although we lack a deeper analysis, inca and dlvhex[cp] appear to

adhere to an external+strict treatment of constraint atoms, just as our previous systems

clingcon, dingo, and mingo, while ezsmt and ezcsp seem to follow an external+non-strict

approach. Moreover, the results in Proposition 1 are of a general nature and apply well

beyond ASP systems dealing with linear constraints.

We provided a conceptual and empirical comparison of clingo[dl] and clingo[lp]

with related systems for dealing with different forms of linear constraints in ASP. Our

experiments focused on, first, examining different types of lc-atoms and APIs for both

clingo derivatives, and, second, comparing them with related systems. In the first case,

clingo[dl] using defined+non-strict lc-atoms along with the C++ API yields the best

results, and in the second one, the aforementioned clingo[dl] configuration outperforms

the other systems for the set of benchmarks only involving difference constraints, and

clingcon has an edge over all other systems regarding the set of benchmarks featuring

arbitrary (integer-based) linear constraints.

Finally, we showed how easily our machinery can be applied to online reasoning

scenarios by using clingo‘s multi-shot and theory reasoning capabilities in tandem.

References

1. M. Banbara, M. Gebser, K. Inoue, M. Ostrowski, A. Peano, T. Schaub, T. Soh, N. Tamura,

and M. Weise. aspartame: Solving constraint satisfaction problems with answer set program-

ming. In F. Calimeri, G. Ianni, and M. Truszczyński, editors, Proceedings of the Thirteenth

9 This is our recommendation in view of our analysis in Section 2; both systems actually support

all four combinations of strict/non-strict and defined/external lc-atoms.

International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’15),

volume 9345 of Lecture Notes in Artificial Intelligence, pages 112–126. Springer-Verlag,

2015.

2. M. Banbara, B. Kaufmann, M. Ostrowski, and T. Schaub. Clingcon: The next generation.

Theory and Practice of Logic Programming, 2017. To appear.

3. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge

University Press, 2003.

4. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories. In A. Biere,

M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume 185 of

Frontiers in Artificial Intelligence and Applications, chapter 26, pages 825–885. IOS Press,

2009.

5. M. Bartholomew and J. Lee. System aspmt2smt: Computing ASPMT theories by SMT

solvers. In E. Fermé and J. Leite, editors, Proceedings of the Fourteenth European Conference

on Logics in Artificial Intelligence (JELIA’14), volume 8761 of Lecture Notes in Artificial

Intelligence, pages 529–542. Springer-Verlag, 2014.

6. P. Cabalar, R. Otero, and S. Pose. Temporal constraint networks in action. In W. Horn, editor,

Proceedings of the Fourteenth European Conference on Artificial Intelligence (ECAI’00),

pages 543–547. IOS Press, 2000.

7. M. Carro and A. King, editors. Technical Communications of the Thirty-second International

Conference on Logic Programming (ICLP’16), volume 52. Open Access Series in Informatics

(OASIcs), 2016.

8. S. Cotton and O. Maler. Fast and flexible difference constraint propagation for DPLL (T).

In A. Biere and C. Gomes, editors, Proceedings of the Ninth International Conference on

Theory and Applications of Satisfiability Testing (SAT’06), volume 4121 of Lecture Notes in

Computer Science, pages 170–183. Springer-Verlag, 2006.

9. J. Crawford and A. Baker. Experimental results on the application of satisfiability algorithms

to scheduling problems. In B. Hayes-Roth and R. Korf, editors, Proceedings of the Twelfth

National Conference on Artificial Intelligence (AAAI’94), pages 1092–1097. AAAI Press,

1994.

10. G. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.

11. C. Drescher and T. Walsh. A translational approach to constraint answer set solving. Theory

and Practice of Logic Programming, 10(4-6):465–480, 2010.

12. M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko. Theory

solving made easy with clingo 5. In Carro and King [7], pages 2:1–2:15.

13. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP + control: Preliminary

report. In M. Leuschel and T. Schrijvers, editors, Technical Communications of the Thirtieth

International Conference on Logic Programming (ICLP’14), volume arXiv:1405.3694v1

of Theory and Practice of Logic Programming, Online Supplement, 2014. Available at

http://arxiv.org/abs/1405.3694v1.

14. M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving: From theory to

practice. Artificial Intelligence, 187-188:52–89, 2012.

15. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.

New Generation Computing, 9:365–385, 1991.

16. D. Goldberg. What every computer scientist should know about floating-point arithmetic.

ACM Computing Surveys (CSUR), 23(1):5–48, 1991.

17. T. Janhunen, G. Liu, and I. Niemelä. Tight integration of non-ground answer set programming

and satisfiability modulo theories. In P. Cabalar, D. Mitchell, D. Pearce, and E. Ternovska,

editors, Proceedings of the First Workshop on Grounding and Transformation for Theories

with Variables (GTTV’11), pages 1–13, 2011.

18. Y. Lierler and B. Susman. SMT-based constraint answer set solver EZSMT (system descrip-

tion). In Carro and King [7], pages 1:1–1:15.

19. G. Liu, T. Janhunen, and I. Niemelä. Answer set programming via mixed integer programming.

In G. Brewka, T. Eiter, and S. McIlraith, editors, Proceedings of the Thirteenth International

Conference on Principles of Knowledge Representation and Reasoning (KR’12), pages 32–42.

AAAI Press, 2012.

20. A. De Rosis, T. Eiter, C. Redl, and F. Ricca. Constraint answer set programming based on

HEX-programs. In Eighth Workshop on Answer Set Programming and Other Computing

Paradigms (ASPOCP 2015), August 31, 2015, Cork, Ireland, August 2015.

21. P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model

semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

22. T. Soh, K. Inoue, N. Tamura, M. Banbara, and H. Nabeshima. A SAT-based method for solving

the two-dimensional strip packing problem. Fundamenta Informaticae, 102(3-4):467–487,

2010.

23. E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational

Research, 64(2):278–285, 1993.

24. J. van Loon. Irreducibly inconsistent systems of linear inequalities. In European Journal of

Operational Research, volume 3, pages 283–288. Elsevier Science, 1981.

