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Clinical and Genomic Characterization of Treatment-
Emergent Small-Cell Neuroendocrine Prostate Cancer:
A Multi-institutional Prospective Study
Rahul Aggarwal, Jiaoti Huang, Joshi J. Alumkal, Li Zhang, Felix Y. Feng, George V. Thomas, Alana S. Weinstein,
Verena Friedl, Can Zhang, Owen N. Witte, Paul Lloyd, Martin Gleave, Christopher P. Evans, Jack Youngren,
Tomasz M. Beer, Matthew Rettig, Christopher K. Wong, Lawrence True, Adam Foye, Denise Playdle, Charles J.
Ryan, Primo Lara, Kim N. Chi, Vlado Uzunangelov, Artem Sokolov, Yulia Newton, Himisha Beltran, Francesca
Demichelis, Mark A. Rubin, Joshua M. Stuart, and Eric J. Small

A B S T R A C T

Purpose
The prevalence and features of treatment-emergent small-cell neuroendocrine prostate cancer

(t-SCNC) are not well characterized in the era of modern androgen receptor (AR)–targeting therapy.

We sought to characterize the clinical and genomic features of t-SCNC in a multi-institutional

prospective study.

Methods
Patients with progressive, metastatic castration-resistant prostate cancer (mCRPC) underwent

metastatic tumor biopsy and were followed for survival. Metastatic biopsy specimens underwent

independent, blinded pathology review along with RNA/DNA sequencing.

Results
A total of 202 consecutive patients were enrolled. One hundred forty-eight (73%) had prior disease

progression on abiraterone and/or enzalutamide. The biopsy evaluable rate was 79%. The overall

incidence of t-SCNC detection was 17%. AR amplification and protein expression were present in

67% and 75%, respectively, of t-SCNC biopsy specimens. t-SCNC was detected at similar

proportions in bone, node, and visceral organ biopsy specimens. Genomic alterations in the DNA

repair pathway were nearly mutually exclusive with t-SCNC differentiation (P = .035). Detection of

t-SCNC was associated with shortened overall survival among patients with prior AR-targeting

therapy for mCRPC (hazard ratio, 2.02; 95% CI, 1.07 to 3.82). Unsupervised hierarchical clustering

of the transcriptome identified a small-cell–like cluster that further enriched for adverse survival

outcomes (hazard ratio, 3.00; 95% CI, 1.25 to 7.19). A t-SCNC transcriptional signature was

developed and validated in multiple external data sets with . 90% accuracy. Multiple tran-

scriptional regulators of t-SCNC were identified, including the pancreatic neuroendocrine marker

PDX1.

Conclusion
t-SCNC is present in nearly one fifth of patients with mCRPC and is associated with shortened

survival. The near-mutual exclusivity with DNA repair alterations suggests t-SCNC may be a distinct

subset of mCRPC. Transcriptional profiling facilitates the identification of t-SCNC and novel ther-

apeutic targets.

J Clin Oncol 36. © 2018 by American Society of Clinical Oncology

INTRODUCTION

Prostate cancer is the most common incident

cancer in men in developed countries and the

eighth leading cause of cancer death globally.1 The

introduction of highly potent androgen receptor

(AR)–targeting therapies such as abiraterone and

enzalutamide for the treatment of metastatic

castration-resistant prostate cancer (mCRPC) has

provided significant clinical benefit.2,3

In a subset of patients, therapeutic resis-

tance to AR-targeting therapy is accompanied

by the emergence of a histologic subtype that

morphologically resembles de novo small-cell

prostate cancer, a highly aggressive histologic
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variant present in, 1% of untreated prostate cancers at the time

of diagnosis.4 It is not clear if the treatment-emergent variant,

variously labeled neuroendocrine prostate cancer and aggressive

variant,5,6 is the same disease entity as de novo small-cell prostate

cancer. We have termed this histology treatment-emergent small-

cell neuroendocrine prostate cancer or t-SCNC. Previous reports

have sought to characterize t-SCNC but have been limited by the

availability of prospectively collected tissue from a consecutive

series of patients with sufficient follow-up to characterize in-

cidence of t-SCNC and clinical outcomes.7,8

To understand the prevalence and characteristics of this

treatment-emergent variant, and to provide a basis for tumor

classification, clinical recommendations, and future development

of therapies, we undertook a multi-institutional prospective study

to perform biopsy of metastases from consecutively enrolled pa-

tients with progressive mCRPC.

METHODS

Patients and Study Design

A prospective IRB-approved trial (ClinicalTrials.gov identifier:
NCT02432001) was conducted at five consortium sites. Eligibility criteria
included progressive mCPRC by Prostate Cancer Clinical Trials Working
Group 2 criteria,9 prior histologic evidence of adenocarcinoma of the
prostate gland, at least one bone or soft tissue metastasis amenable to biopsy,
and written informed consent. Patients were prospectively followed for
overall survival. Treatment post biopsy specimen acquisition was per in-
vestigator discretion. Serum prostate-specific antigen (PSA), lactate de-
hydrogenase, alkaline phosphatase, hemoglobin, neuron-specific enolase

(NSE), and chromogranin A (CGA) levels were measured at the time of
biopsy. Repeat tumor biopsy at progression was optional.

Tissue Acquisition and Pathology Evaluation

Metastatic biopsy tissue was acquired via image-guided core needle
biopsy as previously described.10 Separate needle core biopsies of the same
metastatic lesion were snap frozen and formalin fixed/paraffin embedded
(FFPE), respectively. Tumor RNA from frozen specimens was amplified
and sequenced for gene expression analyses. FFPE biopsy specimens were
evaluated by three experienced pathologists (G.T., J.H., L.T.) blinded to the
clinical and genomic features for determination of consensus pathologic
subclassification into three categories (pure small-cell morphology, mixed
biopsy specimens with discrete regions of t-SCNC and adenocarcinoma, or
biopsy specimens without any small-cell features), using recently described
classification criteria (Data Supplement).11 Because the diagnosis of
t-SCNC is based on morphologic criteria, immunohistochemical staining
for chromogranin, CD56, or synaptophysin was not routinely per-
formed.11 Next-generation targeted genomic sequencing of FFPE tissue
was performed as previously described.12

Transcriptional Analysis and Clustering

For the unsupervised gene expression analysis, complete-linkage
clustering was performed. The 5,000 most varying protein-coding HUGO
Gene Nomenclature Committee genes13 were selected to compute sample-
to-sample gene expression correlation values as distance metric for the
hierarchical clustering. The resulting sample tree was cut into five clusters.
Analysis of variance for the five sample clusters was performed, and 528
genes had an false discovery rate (FDR)-corrected P , .05.

Master regulator analysis was performed using the MARINa algo-
rithm implemented via the viper R package.14,15 MARINa infers candidate
master regulators (MRs) between two groups of samples on the basis of the
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Fig 1. CONSORT diagram indicating biopsy

site and disposition for the various analyses.

NGS, next-generation sequencing.
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expression of the regulators’ downstream targets. Sample-specific MR
scores were computed with the VIPER function and visualized using
TumorMap.16

t-SCNC Signature Development and Validation

RNA-Seq data from 18,538 protein-coding HUGO Gene Nomen-
clature Committee genes were used to distinguish t-SCNC versus ade-
nocarcinoma. Samples with mixed histology were excluded from the
learning set. Leave-pair-out cross-validation was performed on 100 models
to determine model accuracy.17 The signature was subsequently applied to
mixed histology tumors as well as three external mCRPC data sets and the
primary prostate cancer data set of TCGA.7,8,18,19

Characterization of AR Expression and Signaling

AR protein expression was analyzed using immunohistochemical
(IHC) analysis (Androgen Receptor [C6F11] XP Rabbit mAb; Data
Supplement). To evaluate canonical AR transcriptional activity in each
biopsy specimen, an AR expression signature was developed based on 53
AR-positive cell lines in the presence and absence of androgen.20 The
derived classifier had . 90% concordance with a previously described AR
signature.21

Statistical Considerations

Comparison of the continuous variables among groups was assessed
by the two-sample t test, analysis of variance, Wilcoxon rank sum test, and
Kruskal-Wallis test, when normality assumption did or did not hold,
respectively.22-24 The statistical association between categorical variables
was evaluated by x2 and Fisher’s exact test.

Overall survival (OS) was measured from the date of development of
mCRPC, as defined by Prostate Cancer Clinical Trials Working Group 2
criteria, with the prespecified primary analysis in patients previously
treated with abiraterone and/or enzalutamide. Kaplan-Meier product limit
method, log-rank, and Cox proportional hazards were used to characterize
the relationship between OS, histology subtype, and gene cluster.

Analyses pertaining to the incidence and clinical characteristics of
t-SCNC, DNA sequencing, and overall survival were conducted on a per-
patient basis, using the first evaluable biopsy. Baseline and progression
biopsy specimens, when available, were included as discrete samples for
gene and protein expression analyses.

RESULTS

Incidence of t-SCNC

Between December 2012 and April 2016, 202 patients with

mCRPC were enrolled and underwent a total of 249 metastatic

tumor biopsies. The median time from mCRPC to biopsy was

17.6 months (range, 0.1 to 212.6 months). Of 202 patients enrolled,

160 (79%) had sufficient tumor present in at least one biopsy

specimen to permit histologic classification. Bone metastases (n =

137) comprised 55% of all biopsy specimens, lymph node (n = 64)

26%, liver (n = 26) 10%, and other soft tissue (n = 22), 9% (Fig 1).

t-SCNC was found in 27 of 160 (17%) evaluable patients.

Twenty patients harbored tumors with pure small-cell histology,

and seven patients had mixed biopsy specimens with discrete

Nuclear AR IHCHistologic subtype

t-SCNC

t-SCNC

t-SCNC

Adenocarcinoma 3+

1+

3+

3+

Fig 2. Histologic appearance and immuno-

histochemical (IHC) staining of the androgen

receptor (AR). The top three rows represent

biopsy specimens with treatment-emergent

small-cell neuroendocrine prostate cancer

(t-SCNC) histologic classification. The top two

rows have strong 3+ expression of the AR

with nuclear localization. The third row dem-

onstrates a t-SCNC biopsy specimen with low

(1+) AR nuclear expression. The bottom row

represents ametastatic biopsy specimenwith

typical adenocarcinoma morphology, with

3+ nuclear expression of the AR.Magnification,

3400.
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regions of t-SCNC and adenocarcinoma within the same needle

core (Fig 2; Data Supplement). The percentage of t-SCNC in the

seven mixed cases ranged from 20% to 80%. Detection of t-SCNC

was observed at similar proportions by biopsy site, including 14%,

19%, and 14% of evaluable liver, lymph node, and bonemetastases,

respectively (P = .76).

Transcriptional Profile of t-SCNC

mRNA-Seq data were available from 119 baseline and pro-

gression biopsy specimens distributed across all organ sites (Fig 1),

including 21 tumors with t-SCNC histologic differentiation (pure

or mixed). Unsupervised hierarchical clustering of the tran-

scriptome identified a cluster of 12 cases (cluster 2) that was
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Fig 3. Transcriptional profile of treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC). (A) Gene expression analysis identifies t-SCNC cases in

unsupervised analysis. Unsupervised hierarchical clustering of transcriptional profile of metastatic castration-resistant prostate cancer biopsy specimens (n = 119). Sample

cluster 2 is enriched for presence of t-SCNC histology. The rows show the normalized gene expression of 528 genes with false discovery rate (FDR)-corrected P, .05 for

analysis of variance of gene expression in the five sample clusters, k-means clustered with k = 5 (labeled i-v). Hypergeometric testing for gene sets showed the gene

clusters are involved in (i) androgen response and metabolic processes; (ii) androgen response, androgen receptor (AR) activity and targets, and FOXA1 network; (iii)

translation; (iv) extracellular organization; and (v) cell cycle and transport. Pathology call, AR immunohistochemistry (IHC), and variant calls of TP53 and RB1 shown in top

rows. (B) Heatmap showing 61 genes with FDR-corrected P , .05 for t test of gene expression in the t-SCNC–enriched cluster 2 versus all other samples. Genes are

k-means clustered, with k = 3 (i-iii), in addition showing genes of interest PEG10, CHGA, E2F1, SYP, and AR (*). Hypergeometric testing for gene set enrichment showed gene

cluster i contains genes of theHallmark E2F Targets gene set, cluster ii is dominated by genes related to androgen response and AR activity, and cluster iii contains genes of

the Notch signaling pathway. (C) MARINa-inferred master regulators characterizing gene expression differences between small cell-like cluster versus other clusters. The

top 25 most activated (red) and repressed (blue) transcription factors in the small-cell–like cluster samples compared with all other samples are shown, as inferred by

the MARINa algorithm (FDR , 0.1). Each transcription factor’s targets are shown as tick marks projected onto the gene expression signature. Each row also shows the

regulator’s P value, inferred differential activity (Act), and differential expression (Exp). (D) A newly generated t-SCNC gene expression signature distinguishes small-cell

histology with 91% accuracy on leave-pair-out cross-validation. The numerical signature score is directly related to the predicted degree of t-SCNC differentiation (top). The

heatmap shows median-centered gene expression of the 106 genes in the signature, and membership in neural system development pathways in column on the right.

Abbreviations: NEPC, neuroendocrine prostate cancer.
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enriched for the presence of t-SCNC histologic differentiation (Fig

3A). Six of 14 (43%) pure t-SCNC tumors fell within cluster 2,

versus two of seven (26%) tumors with mixed histology versus four

of 90 (4%) tumors with pure adenocarcinoma (P , .001).

A supervised analysis identified 61 genes differentially expressed

between the t-SCNC–enriched cluster versus other clusters with

FDR-corrected P , .05 (Fig 3B). The topmost overexpressed genes

were transcriptional targets of E2F Transcription Factor 1 (E2F1;

negatively regulated by Retinoblastoma 1 [RB1]). RB1 loss signa-

ture25 scores were higher in the t-SCNC–enriched cluster (Data

Supplement). To further characterize the transcriptional hallmarks

of cluster 2, we used the MR Inference algorithm and visualized

results using TumorMap.14,16 Pancreatic-duodenal homeobox factor

1 (PDX1) was the topmost MR enriched in the t-SCNC cluster (P,

.001; Fig 3C; Data Supplement). Achaete-Scute family BHLH

transcription factor 1 (ASCL1), E2F1, Forkhead box A2 (FOXA2),

and POU class 3 homeobox 2 (POU3F2) were also among the top

MRs in the t-SCNC cluster (P , .05 for all comparisons; Fig 3C;

Data Supplement).

A gene expression signature of t-SCNC was subsequently de-

veloped, with 91% internal accuracy on leave-pair-out cross-validation,

and enriched for presence of neural development genes, including

SEMA3, EPHA7, and TENM3 (Fig 3D). t-SCNC signature scores of

biopsy specimens with mixed histology are shown in the Data Sup-

plement. The t-SCNC signature was applied to three external mCRPC

data sets and correctly categorized neuroendocrine tumors with nearly

100% accuracy (Data Supplement).7,8,18 Finally, the t-SCNC signature

was applied to the TCGA database of primary tumors and correctly

classified all cases as possessing adenocarcinoma histology (Data

Supplement).19

Targeted Genomic Sequencing of t-SCNC

Eighty-five patients were evaluable for somatic targeted se-

quencing, including 12 patients (14%) with pure or mixed t-SCNC
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histology (Fig 4; Data Supplement). The prevalence of AR copy

number gain and/or activating point mutations was similarly

distributed across histologic groups (67% of t-SCNC biopsy

specimens v 51% of biopsy specimens without t-SCNC; P = .304).

Variants predicted to lead to loss of function in TP53 and/or RB1

were found in 10 of 12 patients with t-SCNC (83%) compared with

25 of 73 (34%) patients who did not harbor t-SCNC on biopsy (P=

.0015). The presence of deleterious mutations and/or copy number

loss in DNA repair pathway genes (BRCA1, BRCA2, ATM, CDK12,

RAD51, PALB2, FANCA, CHEK2, MLH1, MSH2, MLH3, and

MSH6) was almost entirely mutually exclusive with t-SCNC tu-

mors (1 of 12 [8%] t-SCNC biopsy specimens v 29 of 73 [40%]

biopsy specimens without t-SCNC; P = .0350; Fig 4).

AR Expression and Activity

A total of 106 FFPE biopsy specimens were stained for AR

expression (Fig 2; Data Supplement). In the overall cohort, 2+/3+

nuclear AR expression by IHC and AR amplification were both

positively associated with higher AR transcriptional signature score

(Data Supplement). Of 20 t-SCNC specimens, 15 (75%) demon-

strated 2+/3+ nuclear AR staining, compared with 75 of 86 (87%)

adenocarcinoma (P = .170). The t-SCNC biopsy specimens without

strong nuclear AR staining had similar clinical features to the overall

t-SCNC cohort and fell within cluster 2 of the unsupervised

transcriptional analysis (Fig 3A). AR transcriptional activity was

lower in tumors with t-SCNC histology (median scores of the pure

t-SCNC, mixed, and not t-SCNC samples were 22.12, 21.10,
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and20.24, respectively; P = .017) and was lower in cluster 2 versus

other clusters (Data Supplement). Serum PSA and tissue KLK3

expression were not correlated (Pearson’s coefficient of determi-

nation, 0.0045).

Clinical Characteristics of t-SCNC

Baseline characteristics of the overall patient cohort at the

time of biopsy are summarized in Table 1 and were comparable

between the evaluable (n = 160) and inevaluable patients (n = 42).

Nearly three fourths of the patients had developed resistance to

abiraterone (n = 82; 40%), enzalutamide (n = 20; 10%), or both

(n = 46; 23%) at study entry.

The majority of clinical characteristics, except for serum

lactate dehydrogenase, were similar in patients harboring t-SCNC

histology (whether pure or mixed) compared with those who did

not (Table 1; Data Supplement). Median time from mCRPC to

study entry, serum PSA, Gleason score at time of diagnosis, and

sites of metastases were not significantly different in patients with

t-SCNC. A comparison of the clinical features of the t-SCNC

subset with two independent neuroendocrine prostate cancer

cohorts5,8 is shown in the Data Supplement.

Median serum NSE was higher in patients with t-SCNC (11.6

ng/mL v 7.1; P, .001); CGAwas not (median 7.8 ng/mL v 6.0; P =

.977). Using receiver operating characteristic curve analysis, if

serum NSE was. 6.05 ng/mL and CGAwas. 3.1 ng/mL (present

in 55% of patients), the sensitivity, specificity, and negative and

positive predictive values for the detection of t-SCNC histology on

biopsy were 95%, 50%, 98%, and 22%, respectively.

Survival Outcomes by Histologic and Genomic

Subgroups

The median time from the time of development of mCRPC to

death was 42.1 months, with a median follow-up of 34.1 months

and 131 deaths observed. Median overall survival in the preplanned

analysis of patients with prior abiraterone and/or enzalutamide

treatment was significantly shorter in those with t-SCNC (median

OS from date of mCRPC = 44.5 v 36.6 months; hazard ratio [HR],

2.02; 95% CI, 1.07 to 3.82; Fig 5A). A post hoc sensitivity analysis

including treatment-naı̈ve patients yielded similar results (Data

Supplement). Patients with mixed tumors had similarly reduced

survival as thosewith pure t-SCNC (medianOS, 36.3 and 36.8months,

respectively v 44.5 months in patients with adenocarcinoma; log-rank

P = .031). Patients whose biopsy fell within the small-cell–enriched

cluster 2 on unsupervised hierarchical clustering likewise had worse

survival (HR, 2.20; 95% CI, 1.03 to 4.69; Fig 5B). When histology and

transcriptomic data were combined, patients with t-SCNC tumors

falling within cluster 2 had significantly shorter survival than the

patients without t-SCNC histology falling outside cluster 2, with

a greater separation of survival curves than either histologic or

genomic analysis alone (HR for overall survival, 3.00; 95% CI, 1.25

to 7.19; Fig 5C).

DISCUSSION

Widespread use of abiraterone and enzalutamide has had a

transformative impact in the management of advanced prostate

cancer, yet therapeutic resistance is a near-universal phenomenon,

frequently heralded by a more aggressive clinical course. t-SCNC

was identified in 17% of evaluable patients in our large, prospective

series of patients with mCRPC, suggesting that this is an important

mechanism in the development of treatment-resistant mCRPC.

The near-mutual exclusivity between t-SCNC differentiation and

presence of DNA repair mutations raises the intriguing possibility

of distinct subsets of mCRPC.

The identification of mixed histologic subtypes within a single

metastatic biopsy suggests that treatment-emergent small-cell

neuroendocrine differentiation is a heterogeneous process. Het-

erogeneity may also partially account for the divergence observed

between AR protein expression and inferred transcriptional ac-

tivity in a subset of t-SCNC biopsy specimens. Nevertheless,
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although patients in this study underwent biopsy of a single

metastatic site, and heterogeneity across different metastatic sites in

the same patient was not evaluated, t-SCNC identified on a single

biopsy, whether pure or mixed, was associated with shortened

survival. Transcriptional analysis identified a subset of patients

with particularly high-risk t-SCNC and had additional prognostic

utility when combined with histopathologic classification. Vali-

dation of these observations in independent cohorts, as they be-

come available, will be important.

The observed prevalence of t-SCNC is substantially higher

than de novo small-cell cancer of the prostate, which occurs in

, 1% of cases.4 This may reflect a transdifferentiation process after

androgen-ablating therapy.26 Classic de novo SCNC is an AR-null

phenotype, progressing with low serum PSA levels. In contrast,

in our series of t-SCNC cases, the majority of tumors had

high nuclear AR expression by IHC, and median serum PSA

was . 60 ng/mL. Visceral metastases are common in de novo

SCNC; in the current series, only approximately one third of

patients with t-SCNC histology had livermetastases. The overlap in

clinical features between patients with t-SCNC and adenocarci-

noma calls into question current practice guidelines recom-

mending metastatic biopsy to evaluate for small-cell differentiation

only in cases with aggressive phenotypic features.27

In the Robinson et al18 series, the incidence of tumors with

small-cell neuroendocrine differentiation was approximately 1%,

compared with 17% in the current study. This may in part reflect

Table 1. Patient Demographics and Clinical Characteristics

Demographic or Characteristic
Total Cohort
(N = 202)

Small Cell
(n = 27)

Not Small Cell
(n = 133)

Inevaluable
(n = 42) P

Age, years 70 (45-90) 69 (55-90) 69 (45-90) 71 (59-89) .565

Race .741

White 163 (81) 23 (84) 108 (81) 32 (76)

African American 12 (6) 1 (4) 9 (7) 2 (5)

Asian 5 (2) 0 4 (3) 1 (2)

Native American 1 (, 1) 0 1 (1) 0

Not reported 21 (10) 3 (12) 11 (8) 7 (17)

Gleason score at diagnosis .992

, 8 90 (45) 12 (44) 59 (44) 17 (40)

$ 8 97 (48) 13 (48) 65 (49) 21 (50)

Unknown 15 (7) 2 (7) 9 (7) 4 (10)

ECOG performance status .796

0 101 (50) 15 (56) 69 (52) 19 (45)

1 85 (42) 9 (33) 53 (40) 21 (50)

2 7 (3) 2 (7) 5 (4) 1 (2)

Unknown 9 (4) 1 (4) 6 (5) 1 (2)

Prior treatment

First-generation antiandrogen
(bicalutamide, flutamide,
nilutamide)

182 (90) 25 (93) 118 (89) 38 (90) .932

Abiraterone 81 (40) 10 (37) 52 (39) 18 (43) .789

Enzalutamide 20 (10) 4 (15) 12 (9) 3 (7)

Both abiraterone and enzalutamide 46 (23) 6 (22) 27 (20) 13 (31)

Neither abiraterone nor enzalutamide 55 (27) 7 (26) 42 (32) 8 (19)

Interval between mCRPC and baseline
biopsy on study, months

17.6 (0.1-212.6) 13.4 (0.9-81.3) 16.7 (0.1-212.6) 18.8 (1.4-112.5) .893

Duration of prior treatment, months

Primary androgen-deprivation
therapy

44.5 (3.7-125.5) 36.3 (3.7-97.5) 48.4 (5.7-119.2) 44.9 (7.9-125.5) .120

Abiraterone 9.2 (1.2-50.6) 6.7 (2.6-37.8) 9.6 (1.2-50.6) 8.6 (1.4-21.4) .465

Enzalutamide 7.5 (1.0-24.3) 8.1 (1.5-24.3) 7.3 (1.0-20.2) 4.3 (2.0-20.7) .933

No PSA decline on prior treatment, %

Abiraterone 38 36 41 39 .923

Enzalutamide 40 56 36 42 .449

Metastatic sites of disease at time of
biopsy

Liver 35 (17) 8 (30) 22 (17) 5 (12) .112 (liver v no liver)

Other visceral 38 (19) 4 (15) 29 (22) 5 (12)

Bone/node only 130 (64) 15 (56) 82 (62) 32 (76) .257 (overall)

Laboratory values

PSA, ng/mL 49.5 (0.4-1,657) 64.8 (0.4-1,500) 46.2 (0.4-1,657) 46.0 (0.5-1,444) .938

Alkaline phosphatase, U/L 96 (20-1,506) 146 (55-1,506) 94 (36-996) 99 (20-1,079) .212

LDH, IU/L 203 (31-2,643) 235 (150-1,284) 199 (31-2,643) 205 (129-856) .039

Hemoglobin, g/dL 12.5 (7.8-16.1) 12.5 (8.9-14.4) 12.6 (7.8-16.1) 12.4 (8.0-15.9) .439

NSE, ng/mL 7.8 (1-90) 11.6 (5-90) 7.1 (1-83) 7.1 (1-79) , .001

CGA, ng/mL 6.3 (1-198) 7.8 (1-70) 6.0 (1-198) 6.5 (1-23) .977

NOTE. Data presented as No. (%) or median (range) unless otherwise noted.
Abbreviations: CGA, chromogranin A; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; mCRPC, metastatic castration-resistant prostate
cancer; NSE, neuron-specific enolase; PSA, prostate-specific antigen.
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the prospective design of the current study with inclusion of

consecutively enrolled patients, in contrast to the characterization

of biopsy specimens obtained within a clinical trial network de-

scribed previously.18 In addition, enrollment in the current study

occurred at varying time points during the course of mCRPC, with

potential enrichment for patients at higher risk. Methodologic

differences in pathologic evaluation of FFPE versus frozen tissue

may also partially account for the difference in incidence between

the two series. Application of the t-SCNC expression signature to

other external data sets, as they become available, will provide

additional clarity regarding the incidence of t-SCNC.

The practical limitations in obtaining metastatic tumor tissue

from patients make the development of noninvasive biomarkers of

t-SCNC of critical importance. In this series, the serum neuro-

endocrine markers CGA and NSE had a high sensitivity (95%) and

negative predictive value (98%) for detecting t-SCNC but lacked

specificity. If independently validated, patients with normal serum

neuroendocrine markers, representing 45% of the patients in our
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series, may not require biopsies to detect t-SCNC. Circulating

tumor cells and imaging tools may yield additional diagnostic

utility in identifying t-SCNC and quantifying the degree of intra-

and intertumoral heterogeneity.28,29

Persistent nuclear ARexpression in the setting of lower predicted

canonical AR transcriptional activity, as observed in a subset of

t-SCNC biopsy specimens, suggests that AR may be under epigenetic

regulation of an alternative transcriptional program. This is consistent

with the observation that marked epigenetic differences exist between

CRPC with and without neuroendocrine differentiation.8 The po-

tential plasticity of the transdifferentiation process and persistent AR

expression in the setting of low canonical activity raises intriguing

therapeutic implications of restoring AR activity via application of

epigenetic modifiers such as enhancer of zeste homolog 2 (EZH2)

inhibitors.30,31 These hypotheses warrant additional investigation.

The molecular pathogenesis of t-SCNC remains incompletely

defined but seems to arise in the context of TP53 andRB1 aberration

from adenocarcinoma under selective pressure of AR pathway in-

hibition.32 We observed frequent loss of TP53 and/or RB1 at the

genomic level, and upregulation of E2F, a hallmark of RB1 deficient

tumors. DEK, the highest overexpressed E2F1 target gene in the

t-SCNC–enriched cluster, has previously been implicated in the

progression to neuroendocrine prostate cancer.33 Among tumors

without small-cell differentiation, there exists a wide variability in

histologic appearance, with some cases demonstrating classic ade-

nocarcinoma features and other tumors with features suggestive of

neuroendocrine differentiation. Analysis of paired longitudinal bi-

opsies is ongoing to characterize this transitional disease state.

Despite the aggressive phenotypic features of t-SCNC, there is

no standard of care for the treatment of patients who harbor this

subtype. Master regulator analysis of the transcriptome identified

several additional transcriptional factors implicated in the pro-

gression to neuroendocrine prostate cancer, including EZH2, POU

class 3 homeobox 2 (BRN2), FOXA2, andASCL1. FOXA2 has recently

been described as a molecular marker of small-cell neuroendocrine

prostate cancer.34 POU3F2, encoding the transcription factor BRN2,

was recently implicated in the progression to neuroendocrine

prostate cancer and inversely associated with AR expression.35Direct

enzymatic inhibitors of EZH2 are currently under clinical evaluation

(ClinicalTrials.gov identifier: NCT02860286), as are drugs targeting

cell-surface proteins transcriptionally regulated by these factors (eg,

delta-like protein 3/ASCL1; ClinicalTrials.gov identifier:NCT02709889).

The identification of PDX1, a Hox-type transcription factor that drives

neuroendocrine differentiation in the pancreas,36 as the most active

transcription factor in t-SCNC raises intriguing possibilities for pan–

small-cell diagnostic and therapeutic strategies. With novel therapies in

clinical development, there is the potential to improve disease outcomes

for this high-risk and increasingly prevalent subset of mCRPC.
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